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ON TWO PROBLEMS OF QUANTUM
LOGICS

ANATOLI DVURECENSKIJ

The solution to the Gudder conjecture on an equivalence of the independence
and the strong independence of observables on a logic of a separable Hilbert space,
and its generalization to a logic of a Hilbert space whose dimension is a non-real
measurable cardinal are given.

Further we bring a positive answer to a problem of the author: supposing
a system of observables has a joint distribution in a state is then the state
a valuation on the minimal sublogic generated by all ranges of the observables ?

1. Definitions and preliminaries

Let L be a logic, that is, let L be a o-lattice with the first and last elements 0 and
1, respectively, with an orthocomplementation L: aw» a*, a, a* € L, which satis-
fies: (i) (a*)*=a for all ae L; (ii) if a<b, then b*<a*; (iii) avat=1 for all
a€ L; (iv) the orthomodular law holds in L: if a<b, then b=av(bAa').

Two elements a, be L are (i) orthogonal, and we write aLlb, if a<b*; (ii)
compatible, and we writea<> b, if there are three mutually orthogonal elements
a,, by, csuch that a=a,v ¢, b= b,V c. A logic is called separable if every system of
mutually orthogonal nonzero elements is at most countable.

An observable is a map x: B(R;)— L such that (i) x(@)=0; (ii) if EnF=40,

E, Fe B(R,), then x(E) L y(F); (iii) x (101 E,) =.\71 x(E), E;e B(R,). The range

of an observable x, (x)={x(E): Ee€ B(R,)}, is a Boolean sub-o-algebra of L.
The spectrum of an observable x, o(x), is the smallest closed subset C of R, such
that x(C)=1. If o(x) is a compact, then x is said to be bounded. An observable x is
purely atomic if (i) o(x)={A, A, ...}; (ii) *({A;}) is an atom of L for any i. Two
observables x and y are compatible if x(E) <> y(F) for all E, Fe B(R,). There has
been developed a calculus for compatible observables (see [13] and [15,
Theorem 6. 17]). Therefore we may speak of a sum of compatible observables, of
a scalar multiple of an observable, etc.
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A state is a map m: L— [0, 1] such that (i) m(1)=1; (ii) m (C/ a,-) = i m(a;) if
i=1 i=1
a; L aj, i?I: j.
If x is an observable and fa Borel function, then the mean value of fo x in a state

m is given by the formula m(fo x)= j f(t) dm (1) (provided the integral exists),
where m,(E)= m(x(E)), Ee B(R,).

We say that the observables xi, ..., x, have a joint distribution in a state m if
there is a probability measure m, . on B(R,) such that

My o (B X ... X E,,)=m<A x,(E,-)), (1.1)

i=1
EeB(R), i=1,..,n.

The necessary and sufficient conditions for the existence of the joint distribution
of observables in a given state may be found in [2, 4, 11, 12].

2. Joint measurability of Boolean subalgebras

One of important problems of the quantum logic theory is a determination of
a joint distribution for noncompatible observables, as indicated, for example, in
[10, Problem VII]. The answer to this question has been obtained in the above
quoted papers [3, 4, 11, 12].

Here we shall investigate a similar problem for subalgebras of L. If x is an
observable, then its range R(x) is a Boolean sub-o-algebra of L with a countable
set of generators. Conversely, for any Boolean sub-o-algebra o of L with
a countable set of generators there is an observable x such that R(x)= o [15,
Theorem 1,6]. Hence a study of a joint measurability (see the definition below) of
Boolean sub- o-algebras of L with countably many generators in a state m may be
transformed to a study of a joint distribution of observables in a state. The general
case of Boolean sub-g-algebras will be solved in this section.

For any ae L we put a®°=a*, a'=a. Let ae L. The nonempty subset Mc L is
partially compatible with respect to a (in abbrevation, p.c. a) of (i) M« a, that is,
b afor any b e M; (ii) the set MAa={bAa: be M} is compatible in L, that is,
biAa< b, Aafor any by, b, € M. The condition (ii) may be equivalently expressed
in the following way: MA a is the set of mutually compatible elements belonging to
a logic Lo, 5= {ce L: c<a} (here the orthocomplementation of c, c’, is defined
via ¢'=anct).

Let F={ay, ..., a,} c L. According to [11] put

com F=com (ay, ..., a,)=\ afn...nak, (2.1)
de D"
where D={0, 1}, d=(4,, ..., d,)e D".
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The element com F is called the commutator of the finite set F. For an arbitrary
@ # Mc L we define a commutator of M, com M, via

com M= A {com F: F-finite subset of M} (2.2)

(if it exists in L).
From [11, Theorem 3.10] it follows that if com M exists, then M s p. c. com M.
Especially, M is the set of mutually compatible elements iff com M=1.

Let s, ..., o, be Boolean subalgebras of L, and let o = L"J ;. For any n-tuple
i=1
(ai, ..., a,) e A X ... X o, define
a(a, ..., a)=com (a, ..., a,).
Put
(s, ..., A)=N\{a’ay, ..., a,): e, i=1,..,n) (2.3)

if it exists in L.

We say that the Boolean subalgebras ¢, ..., o, are jointly measurable in a state
m if

m(a®(ay, ..., a,))=1 forany ae s, i=1,..., n.

An arbitrary system of Boolean subalgebras of L, { ,: ae S}, is jointly measur-
able in a state m if every finite subsystem of {,: se€ S} is jointly measurable.

In order to state a necessary and sufficient condition for a system of Boolean

subalgebras to be jointly measurable in a state m we have to prove the following
lemma.

Lemma 2.1. Let A;={d}, ..., ak)c s, ..., A,={ai, ..., ai,} = A, be systems
of orthogonal elements, 1<s< n. For any i=1, ..., s, define

a} if t=0,
aj=

k; X .
N\ ait if t=1.

Jji=1

Then for any b1 € Ay, ..., bu€ A, we have

/k\ /k\ com(aj, ..., @, by, ..., b)) =

i=1 j=1
k; k.
=V V. V..V ad,A. . .AaAbi=
deD""* g+..+tgss =1 js=1
1€(0,1)
= com (A,v...u A,U B), 24

where b%= bfﬁ‘/\.../\ b:", d=(d,..1, vy d,.)E D™, B={b,“, ey b,,}.
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Proof. We shall prove (2.4) by induction over s and k..
(i) Let s=1. In this case (2.4) converts to the form

/{ com(al, by, ..., b)= {\7 ajA b"v/( a}*/\b"}=
=1 =1

j=1 de D™
=com (ai, ..., @l b, ..., by). 2.5)

It is evident that (2.5) holds for k= 1. Suppose it holds for any k; < k. Then putting
com (a, b, ..., b,)= com (a, B) we have

k+1

/\ com (a}, B)= /\ com (a}, B)A/\ com(a}, B)= \/

Dnl

{V b"v/{ a}*/\b‘}/\ V {vla‘,«\b‘vxla}*/\b‘}.
=1 1 =2

j=1 de D" =2

The elements in M= [ ) { aAabd ..., diiabd /\ al*Abe, /+\l al* A b"} form

de D™ =2
the Foulis-Holland set. That is, from any triple of elements from Mone of them
is compatible with two others. We note that in M the only noncompatible pairs are

/\ aj*A b4, /\ aj* A b? (de D*"). Therefore the minimal sublattice of L gener-

=1

ated by M is dlstrxbutlve (see [6]) and this proves (2.5).

(ii) The general case of (2.4) may be proved by analogical reasonings. This rather
technical but essentially simple step is left to the reader.

Q.E.D.

Corollary 2.1.1. Let K;={ai, ..., a,‘,}csd,, i=1,..., k, be finite decomposi-

tions of 1, that is, for any i=1,..., n we bave al, La‘ for 1<u,v<k;, and
k;

V ai=1. Then

u=1

com (Kyu..uK,))= A com(ay, ..., a,) (2.6)

aieK;
i=1,..., n.

The element a=A{a: teT} is said to be countably obtainable from
{a: te T} if there is a countable subset T, c T such that a= A {a: te T;}.

Theorem 2.2. The commutator com (s, ..., 4.)=com U &1,-) exists iff
i=1

a’( A1, ..., Aa) exists, and in that case com (s, ..., A,) = a®(A,, ..., A,.). Moreov-
er, if com ( A, ..., oA,) is countably obtainable from {com:R-finile subset of s{},
so is a°(dA), ..., d,) from {a%a,, ..., a,): a; €, i=1, ..., n}.

Proof. Let a=com (dA,, ..., o,) exist in L. Then, for any a;ie ;, i=1, ..., n,
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we have a<a®(ay, ..., a,). Let now c<a’ay, ..., a,) for any a; € ;. Each finite
subset A+ Fc o generates a finite decomposition of 1, K, in each o, in the
following way. If in F there are no elements from some &;, then we put K; = {0, 1},
otherwise we put K, ={ai{n...Aal*: aje Fns;}. Then

com F=com (K,u...uK,).
From Corollary 2.1.1 we have

com F= A\ com (ay, ..., a,). 2.7)
ajeK;
i=1,..,n

Hence a%(s4,, ..., o,) exists and equals a.

Conversely, let a®=a°(d,, ..., #,) exist. Then (2.7) implies com F> a° for any
Fc o, and therefore a =a°.

The last assertion is evident. Q.E.D.

Remark 1. Let {4,: s€ S} be a system of Boolean subalgebras of a complete
logic L. Put &=\ s4,. Then

S€S

comd= N\ com (A, ..., 4,). (2.8)

{Si1s -+s Sin}

Theorem 2.3. Let o,, ..., o, be Boolean subalgebras of L.

() Ifa(4ys ..., $4,) is countably obtainable from {com F: Fc o, F — finite},
then the following conditions are equivalent: (a) s, ..., A, are jointly measurable
in a state m; (b) m(com F) =1 for any finite Fc o ; (c) m(a®(s4,, ..., ,))=1.

(ii) Let {A,: s€ S} be a system of Boolean subalgebras of a separable logic L.
Then the following conditions are equivalent: (a) {4,: s € S} is jointly measurable
in a state m; (b) m(a®(,,, ..., &,,)) =1 for any finite subset {s,, ..., s,} =S; (c)

m (com U .szi,) =1.

S€S

Proof. To prove Theorem 2.3 it suffices to show that if {af} .., is a sequence of
elements from «;, i=1, ..., n, then

m (/\ a(af, ..., a,’f)>=1 forany j=1,2, ....

k=1

Indeed, let j be given. For any i=1, ..., n there is an observable x; so that
R(x;) = of;, where & is the minimal subalgebra of L generated by {a } ..., a }. For
the observables x;, ..., x, there is a joint distribution in a state m [3, 4]. Theorefore
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m (A a’(at, ..., a,’:)>= 1. The continuity of a state m from above implies that
k=1

m (;\ a’(at, ..., a¥)=lim m <A a’(ast, ..., a,’f)> =1. Hence m(a®)=1. This ob-
k=1 J—® k=1
servation and (2.7) complete the proof of the first part of Theorem 2.3. Analogical-
ly we proceed for the second part, too.
Q.E.D.

Remark 2. If a state m on a logic L has the property: “if m(a,)=1 for any

teT, and a= ) a, exists, then

m(a)=1, 2.9)

then the part (i) in Theorem 2.3 holds without the assumption on countable
obtainability of a°(s4, ..., &,) provided com (s, ..., &,) exists.

From the results of [12] it follows that the commutator of a sequence of
separable subalgebras of L exists on every logic.

3. Independence and strong independence

We say that observables x;, ..., x, are independent in a state m if

m (A 5(ED) =[] mCx(B), (3.1)

i= i=

EeB(R,), i=1,.., n.

Following S. Gudder [8] we say that bounded observables xi, ..., x, on a sum
logic [7] are strongly independent in a state m if for any bounded Borel functions

fl, ceey fn
mfgoxl+...+!,.ex,.=mllexl*"'*mf,.ax,., (3'2)

where the sign » denotes the convolution.

The system of observables {x,: s e S} is independent (strongly independent) in
a state m if any finite subsystem of {x,: s € S} is independent (strongly indepen-
dent) in a state m.

For compatible observables these notions are equivalent. Gudder [8,
Theorem 4.5] has proved that the strong independence of observables in a state m
implies the independence. The converse proposition has been proved only for
special question observables on the logic L(H) of all closed subspaces of
a separable Hilbert space H in a pure state [8, Theorem 4.6]. We extend the
validity of the above converse implication on a logic L(H) for all states and
observables.
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Comparing (3.1) and (1.1) we see that the observables x;, ..., x, are independent
in a state m iff there is a joint distribution in a state m, m,, _,, so that m,, .,

(E; x ...XE,,)=]:1 m(x(E)), E.e B(R), i=1, ..., n.

Theorem 3.1. Let x,, ..., x, be purely atomic observables on a logic L and let m
be a state. Let o(x;)={Ai, A, ...}. Put

M(xi, ..., x,)={aeL: thereare i, ..., i, so that
a=x,({Az})=...=x.({A}})},

M, (x1, ..., x,)={a: ae M(x,, ..., x,): m(a)#0},
a°=\{a: aeM(xy, ..., x.)},
an=\{a: aeM,(x, ..., X,)}.

Then the following conditions : (a) xi, ..., x, have a joint distribution in a state m;
(b) m(a®)=1; (c) m(a,)=1; are equivalent.
Proof. From the results of paper [12, Corollary 2.1] we have that a°=
a®(R(x,), ..., R(x,)), and Theorem 2.3 yields the statement of Theorem 3.1.
Q.E.D.

Theorem 3.2. Let {x;:seS} be a system of purely atomic observables on
a logic L. Then 7

(i) {x,: s€S} has a joint distribution in a state m iff any pair of observables
{x;, x.}, s, te T, has a joint distribution.

(i) {x,: se€S} are independent in a state m iff any pair of observables {x,, x,},
s#t, is independent in m.

Proof. For any finite system x;, ..., X, we may verify that M, (xi, ..., X,)=
‘_ﬂl M,.(x).

Theorem 3.1 proves the part (i).

For (ii) we may observe that for any i there is a unique A; such that
m(x;({A:})) = 1. Therefore the independence of any pair of the observables implies
independence of the entire system {x,: seS}. Q.E.D.

If H is a Hilbert space over real or complex numbers, not necessarily separable,
and W is a von Neumann operator, that is, W is a Hermitean, nonnegative
operator of trace class with rW=1 (for details of the trace class see [14]), then
mw(M) = tr(WP™), M e L(H), is a state on L(H). Here P denotes the orthopro-
jector onto the subspace M. It is known that to any bounded observable x there is’
a unique Hermitean operator A, and conversely. For any f € H, ||f|| =1, we defin®
an operator f®f: x—(f, x)f, x € H." Using results of [9, 3], we have:
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Theorem 3.3. (i) The Boolean subalgebras s, ..., 4, of L(H) are jointly
measurable in a state my,, where W=> ALf. ® fo, fo L fo, a# b, ||If.]l=1,a, bel,
ael

is a von Neumann operator on H, iff one of the following conditions is satisfied :
(a) for any f, with A,#0 we have

PMi ... PMif, = PMa . PMaf,

where (iy, ..., I,) is any permutation of (1, ..., n) and Mie &4;, i=1, ..., n;
(b) P ... PM»W=PM: . PM~W for any Mie &4, i=1, ..., n.

(i) The bounded observables x,, ..., x, have a joint distribution in a state my iff
one condition is satisfied: (a) for any f, with A,#+0 we have

Ay Acfi=As, ... Anfs,
where (iy, ..., i») is any permutation of (1, ..., n);

M M; M;, M; iy xi,

b)) A, ... A W=A, ..A W
for any permutation (iy, ..., i,) of (1, ..., n).

Moreover, if H, is the commutator of A, ..., A,, then HA,, ..., o, are jointly
measurable in my, iff f, € H, for any a € I with A,=#0.

Proof. The proof follows from the observation that if a von Neumann operator

'n n

is of the form W= Af, ® f., then there is a countable subset D I such that
ael

A, =0 if ael—D. The rest of the proof follows from results of papers [9,
Theorem 3.7] and [3, Theorem 14]. Q.E.D.

We shall say that a subspace H, reduces an observable x on L(H) if P*®PH =
PHop*® for any E € B(R,).

We recall that a cardinal I is said to be non-real measurable if there exists
a positive measure u# 0 on the power set of I with u({a})=0 for each ae L.

Theorem 3.4. Let L(H) be a logic of a Hilbert space H (real or complex) whose
dimension is a non-real measurable cardinal number. Then the independence and
strong independence of bounded observables in any state are equivalent.

Proof. Let a finite system of bounded observables x, ..., x, be independent in
a state m on L(H). The completeness of the lattice L(H) provides an existence of
a commutator Hy= com (R(x,), ..., R(x,)). If H is a separable Hilbert space, then
the commutator is countable obtainable, so that, due to Theorem 2.3 (i), m(H,) =
1. If H is nonseparably, then according to a generalization of the Gleason theorem
to a nonseparable Hilbert space logic with a non-real measurable cardinal I we

have ([1,5]) that there is a unique von Neumann operator W= Af. ® f.,
ael
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fo L fo, If.ll =1, f. € H, such that m(M) = tr(WP™), M e L(H). Theorem 2.3 (i)
and Remark 2 imply that m(Ho) = 1. Hence the restriction of m to L(H,), m, is
a state, too.

The commutator H, reduces the observables x,..., x, so that x(E)=
x.(E)AH,, E€ B(R,), i=1, ..., n, are mutually compatible observables on a logic

n

L(H,). Moreover, m (/\ xi(Ei)) =my ('/:\1 x.-o(E.-)), E;e B(R)).

i=1

If H, reduces x, then it reduces fo x for any Borel function f. Let bounded
observable x correspond to a Hermitean operator A,. Then H, reduces x iff
A,PHo=PHA, . So that H, reduces f, o Xy + ...+ f, o x, for any bounded functions
fl, ceey f,. and (fl o X1+ ... +f,. ) x,.)o=f1 o X+ ... +f,. o Xno-

It can be easily checked that

m((fioxi+...+fu o x)EN)=m((fro X1+ ...+ fu o X, )(EAHy))) =
= mo((fi o X0+ ...+ fr o X0)(E)).

Hence

My exitctfroxn = MO o x104...+fnoxn0) —

=mo,l_,m HK.ok mo,n.,no=mh,xl L U m,,‘,,,‘.

Q.E.D.

This Theorem is a consequence of the correspondence between the joint
distribution of observables defined by (1.1) and the so-called type II joint
distribution on the logic L(H).

We recall that the bounded observables x;, ..., X, on a sum logic have a type 11
joint distribution in a state m [15] if for any aj, ..., a. € R, there is a probability
measure u® - on B(R,) such that

pera({(ty .o ) asti+...+at, € E})=
=m((aix,+ ...+ a.x,)(E)), Ee€ B(R,).

By analogical reasonings as those used in the proof of Theorem 3.4 we may prove
the following theorem.

Theorem 3.5. Let L(H) be a logic of a Hilbert space H (real or complex) whose
dimension is a non-real measurable cardinal. Then if the bounded observables
Xi, ..., X, have a joint distribution in a state m, they have a type Il joint
distribution, and they are identical.

Remark 3. Theorem 3.5 may be proved for the case of unbounded observables,
too, see [3, Theorem 20].
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The general relationship between the joint distribution of observables in a state
by (1.1) (type I joint distribution, too) and a type II joint distribution is still
unknown. A very special case of independence may be given for logics with
a distributive Segal product x - y of two bounded observables x and y defined in
[7]:

Xoy=1/2((x+y)*—x*—y?). 3.3)

For any a € L we define a question observable x,: x,({0})=a"*, x.({1})=a.
Lemma 3.6. If the Segal product is distributive, then
(xa+x){1})=(arnb*)v(a*Ab). (3.4)
Proof. The distributivity of the product (3.3) implies
(Xa+ 2 )2+ (xa =% ) =2x2+2x3=2x, +2Xs,

(xa =% )2 =2(xa + %) — (32 + x)>
But

(xa = %) ({1}) =[2(xc + %) = (. + %) ({1}).

Hence
(xa=x){—1,1})=fo (xa +x,)({1})=(a*Ab)v(b*ra)=
=(x, + %, )({1}), where f(t)=2t— 1%

The latter equality follows from [7, Corollary 6.3].
. Q.E.D.

Corollary 3.6.1. Two observables x and y on a sum logic with the distributive
Segal product are independent in a state m iff

Mygoxtypey™ Mygox ® My, y (3.5)

for any E, F B(R,). (xa is a characteristic function of a set A € B(R))).
Proof. In [7, Theorem 6.2, Corollary 6.3] one proves that

(x. +x)({0})=a*Ab*,
(x. +x)({2})=anb,

for any a, be L. If for E, Fe B(R,) we put a =x(E), b =y(F), then x, = xg o X,
X, =Xr o ¥. An easy calculation shows that

m,, « m,({0})=m(a*Ab"),

m., « m,({1})=m(a*Ab)+ m(anb*),

m, « my({2})=m(anb).
Using these equalities and Lemma 3.6 we prove (3.5). Q.E.D.
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4. Valuation property

In [2, p. 349] the author posed the following question: If x, ..., x, have a joint
distribution in a state m, does m have the property of a valuation on the minimal
sublogic L, generated by all ranges R(x;)? The question is whether we have

m(av b)+ m(aAb)=m(a)+ m(b) 4.1)

for any a, b € L,.

Here we show that the answer is in the affirmative.

Let aeL and §# Mc L be p.c. a. By Zorn’s lemma there is a maximal set Q,
p.c. a and such that Mc Q,c L. Denote by Lo(M) the minimal sublogic of L
generated by M.

Lemma 4.1. Let M be p.c. a and let com M exist. Then

(i) a<com M. 4.2)
(ii) If a=com M, then

a=com Q, =com Lo(M)=com M. 4.3)

Proof. Since for any finite subset F = M we have com FAa = a we obtain (4.2)
immediately.

According to Theorem 3.8 from [11], we see that Q, is a sublogic of L, so that
Mc Ly(M)c Q.(M). From (4.2) we have that for any finite Fc Q.(M), a<
com F. Let now c<com F, then ¢ <com M. Therefore (4.3) holds.

Q.E.D.

Theorem 4.2. Let {f: s€ S} be a system of Boolean subalgebras of L jointly
measurable in a state m. Let either com s{ be countably obtainable from
{com F: Fc o} or let com s exist and for the state m the condition (2.9) hold.
Then the restrictions of m to Q.m 4 and Lo(s), respectively, have the valuation
property (4.1).

Proof. Let a=com . Using Remark 3.9 from [11], we have that Q,Aa is
a Boolean sub-o-algebra of logic L, .,={beL: b<a}, and the restriction of m
to Lo, sy Mo, is a state. Theorem 2.3 and Remark 2 imply that m(b) =m(baa)=
mo(bAa) for any be Q,. For mutually compatible elements from Q,Aa the
property (4.1) holds, and therefore it holds for all elements from Lo(#f) and Q,,
respectively.

Q.E.D.

Remark 4. In the process of investigating the properties of the above
constructions some open problem arose:

1. Does pairwise joint measurability in a state of Boolean subalgebras imply
a joint measurability of a given system of Boolean subalgebras?
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2. Especially, have we .
com (a, b, ¢)=com (a, b)Aacom (a, c)acom (b, c)

for any a, b, ceL?
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O OBYX ITPOBJIEMAX KBAHTOBBIX JIOTMK
Anatolij Dvuredenskij

Pe3ome

HaeTcs peuienre npeanonoxenns agnepa o paBHOCKIBHOCTH HE3aBUCHMOCTH U CHIILHOH HE3aBUCH-
MOCTH HabniofaeMbIX Ha JIOTHKE cemapabenbHOro mpoctpaHcTBa I'mibGepra, a Takxe o0606leHHe
OPERNONOXKEHHS Ha JIOTHKY nmpocTpaHcTBa I'ibbepTa, pa3sMepHOCTb KOTOPOro HEM3MEPHMOE Kapau-
HaJIbHOE YHCJIO.

Kpome Toro pewraetcsi ogHa npoGineMa aBTopa 3aMeTkH: Eciu cuctema HaGmiogaeMbIx UMeeT
COBMECTHOE pacnpefiejieHHe B COCTOSIHMH, GyneT-IM COCTOSTHHE OLEHKOH Ha MMHHMMalbHOM JIOTHKE,
reHepUPOBAHHOM BceMM 06nacTAMM 3HadeHUH HabGnonaeMbIx ?
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