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Math. Slovaca 36,1986, No. 3, 253—265 

ON TWO PROBLEMS OF QUANTUM 
LOGICS 

ANATOLIJ DVURECENSKIJ 

The solution to the Gudder conjecture on an equivalence of the independence 
and the strong independence of observables on a logic of a separable Hilbert space, 
and its generalization to a logic of a Hilbert space whose dimension is a non-real 
measurable cardinal are given. 

Further we bring a positive answer to a problem of the author: supposing 
a system of observables has a joint distribution in a state is then the state 
a valuation on the minimal sublogic generated by all ranges of the observables ? 

1. Definitions and preliminaries 

Let L be a logic, that is, let L be a a-lattice with the first and last elements 0 and 
1, respectively, with an orthocomplementation J_: a*-+a±, a, a±eL, which satis­
fies: (i) (a±)±=a for all aeL; (ii) if a<b, then b±<a±; (iii) ava± = l for all 
aeL; (iv) the orthomodular law holds in L: if a<b, then b = av(b/\a*-). 

Two elements a, beL are (i) orthogonal, and we write a±b, if a<b±; (ii) 
compatible, and we writea<-»b, if there are three mutually orthogonal elements 
ai, bu c such that a = at v c, fc = 6iVC.A logic is called separable if every system of 
mutually orthogonal nonzero elements is at most countable. 

An observable is a map x: B(.Ri)-»L such that (i) x(0) = O; (ii) if EnF=0, 

E, Fe B(J?0, then x(E) _L y(F); (iii) x (\J &) = V x(E,), JE, € B(Rt). The range 

of an observable x, 2ft(x) = {x(E): Ee B(Rt)}, is a Boolean sub-a-algebra of L. 
The spectrum of an observable x, o(x), is the smallest closed subset Cof Ri such 
that JC( C) = 1. If o(x) is a compact, then x is said to be bounded. An observable x is 
purely atomic if (i) o(x) = {Xu A2, ...} ; (ii) x({Xt}) is an atom of L for any 1. Two 
observables x and y are compatible if x(E)<-+y(F) for all E, Fe B(l?i). There has 
been developed a calculus for compatible observables (see [13] and [15, 
Theorem 6. 17]). Therefore we may speak of a sum of compatible observables, of 
a scalar multiple of an observable, etc. 
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A state is a map m: L—>[0, 1] such that (i) m(\) = 1; (ii) m (\f a-) = ]£ m(a) if 
\ , = i / ,=i 

fl/J-ay, *V=T 
If x is an observable and / a Borel function, then the mean value of / o x in a state 
is given by the formula m(/o x) = /(f) dmx(r) (provided the integral exists), 

J-00 

where mx(E)= m(x(E)), EeB(jRi). 
We say that the observables xu ..., xn have a joint distribution in a state m if 

there is a probability measure mXi...Xx on B(Rn) such that 

mxl.Xn(E1x...xEn)=m(/\ x-(fi)) , (1.1) 

fieB(Ki), i = l , . . . , n. 

The necessary and sufficient conditions for the existence of the joint distribution 
of observables in a given state may be found in [2, 4, 11, 12]. 

2. Joint measurability of Boolean subalgebras 

One of important problems of the quantum logic theory is a determination of 
a joint distribution for noncompatible observables, as indicated, for example, in 
[10, Problem VII]. The answer to this question has been obtained in the above 
quoted papers [3, 4, 11, 12]. 

Here we shall investigate a similar problem for subalgebras of L. If x is an 
observable, then its range 9l(x) is a Boolean sub-a-algebra of L with a countable 
set of generators. Conversely, for any Boolean sub-a-algebra i of L with 
a countable set of generators there is an observable x such that 9l(x) = s& [15, 
Theorem 1,6]. Hence a study of a joint measurability (see the definition below) of 
Boolean sub-a-algebras of L with countably many generators in a state m may be 
transformed to a study of a joint distribution of observables in a state. The general 
case of Boolean sub-a-algebras will be solved in this section. 

For any a e L we put a0 = aL, ax= a. Let a e L. The nonempty subset Ma L is 
partially compatible with respect to a (in abbrevation, p.c. a) of (i) M++a, that is, 
b++ a for any beM; (ii) the set M A a = {b/\a: be M} is compatible in L, that is, 
bi A a<-> b2 A a for any bu bz e M. The condition (ii) may be equivalently expressed 
in the following way: M A a is the set of mutually compatible elements belonging to 
a logic L(o,a)={ceL: c<a) (here the orthocomplementation of c, c', is defined 
via c' = A A C 1 ) . 

Let F={au ..., an}<=L. According to [11] put 

comF=com(au ..., an)= V fl^A-.-AflJ", (2.1) 
deDn 

where D = { 0 , 1}, d = (d1, ..., 4 , ) e D \ 
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The element com F is called the commutator of the finite set F. For an arbitrary 
0 =£ Ma L we define a commutator of M, com M, via 

com M= A { com F: F-finite subset of M} (2.2) 

(if it exists in L). 
From [11, Theorem 3.10] it follows that if com Mexists, then Mis p. c. com M. 

Especially, M is the set of mutually compatible elements iff com M= 1. 
n 

Let siu ..., sin be Boolean subalgebras of L, and let st= [J s£h For any /i-tuple 
i = l 

(au ..., an) 6 ^i x ... x sin define 

a°(au ..., an)=com (au ..., an). 

Put 
a°(stu ..., stn) = /\{a°(a1, ..., a„): a*e.rf„ i = l, ..., n} (2.3) 

if it exists in L. 
We say that the Boolean subalgebras sAu ..., sdn are jointly measurable in a state 

m if 
m(a°(au ..., a„)) = l forany a{esii, i=l,...,n. 

An arbitrary system of Boolean subalgebras of L, {«9#s: a e S}, is jointly measur­
able in a state m if every finite subsystem of {sis: 56 S} is jointly measurable. 

In order to state a necessary and sufficient condition for a system of Boolean 
subalgebras to be jointly measurable in a state m we have to prove the following 
lemma. 

Lemma 2.1. Let Ax = {a\, ..., a\x} c= siu ..., As = {a{, ..., as
ks) a sis be systems 

of orthogonal elements, 1 ^ s ^ n. For any i=\, ..., s, define 

а .,= < 

a), if t=0, 

• Л t f ift=i. 
7 « = 1 

Then for any bs+1esís+1, ..., bne sdn we have 

A .. A com(a\, ..., a), b»l9 ..., bn) = 
i - i Jŕ°l 

= V V \! ••• V4 4 ^ . . ^ ^ ! . ' = 
dє£> ř[ + . . . + .'s<j A = l 75=1 

<l€{0, 1} 

= com(AiU...u A,vB), (2.4) 

wňere b"= bžh1 A ... A &< </=(<f.,i,.... d„)€D"-', B={ft r t l , . . . , *>„}. 
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Proof. We shall prove (2.4) by induction over s and fc5. 
(i) Let s=l. In this case (2.4) converts to the form 

A com(a), b,, ..., bn)= V (V <t>AbdvA a)-Abd} = 
;=-l dsDn~l l / = l i=l J 

= com (a\, ..., a\ b2, ..., bn). (2.5) 

It is evident that (2.5) holds for fc= 1. Suppose it holds for any fci ̂  fc. Then putting 
com (a, b2, ..., bn)= com (a, B) we have 

fc+l k fc+1 

A com (a), B) = A com (a), B)A A com (a), B)= V 
)=-l /=1 j=2 deDn~l 

{ k k ~\ f f c+1 k+1 ") 

V a)AbdvA a)xAbd A V V al/Kbdw/\ a)^Abd\. 
The elements in M= U ( ^ A 6', ..., dk+lAbd, J\ a)~-Abd, A fl/xAfcd} form 

d-D*-1 I /—I /—2 J 

the Foulis-Holland set. That is, from any triple of elements from Mone of them 
is compatible with two others. We note that in Mthe only noncompatible pairs are 

k fc+l 

A <*)±A bd, A a)±A bd, (de Dn_1). Therefore the minimal sublattice of L gener-
/=- J-2 

ated by M is distributive (see [6]) and this proves (2.5). 
(ii) The general case of (2.4) may be proved by analogical reasonings. This rather 
technical but essentially simple step is left to the reader. 

Q.E.D. 
Corollary 2.1.1. Let Ki = {a[, ..., ak)czs4i, i = l,...,k, be finite decomposi­

tions of 1, that is, for any i = l, ..., n we have a'M±a'w for l^u, v^k{, and 

V a i= l . Then 
u = ì 

com (K1u...uKn)= A com (au ..., an) (2.6) 
a.eJ-i 

i = l, ..., n. 

The element a = /\{a,: teT} is said to be countably obtainable from 
{a,: teT} if there is a countable subset T j c T such that a=/\{at: teTt}. 

Theorem 2.2. The commutator com (siu ..., sdn) = com ( ( j sdA exists iff 

a°( sd i, ..., s4n) exists, and in that case com (sdu ..., sdn) = a°(sdu ..., sdn). Moreov­
er, if com ( du ..., dn) is countably obtainable from {com:R-finile subset of sd}, 
so is a°(s4), ..., sdn) from {a°(au ..., an): atesii, i = l, ..., n}. 

Proof. Let a = com (sdu ..., s4n) exist in L. Then, for any a(esdi, i = l, ..., n, 
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we have a<a°(au ..., a«). Let now c<a°(au ..., an) for any ^esdi. Each finite 
subset 0&Fczs& generates a finite decomposition of 1, Ki9 in each sd( in the 
following way. If in F there are no elements from some s£iy then we put K, = {0, 1}, 
otherwise we put Kl={aiV...Afl£Ut/: ajeFnsdi}. Then 

com F=com (KiU...uKn). 

From Corollary 2.1.1 we have 

com F= A c o w l (au -.., 0n). ( 2 7 ) 
flieXi 

i = l, ..., n 

Hence a°(^i,..., si*) exists and equals a. 
Conversely, let a°= a°(siu ..., sdn) exist. Then (2.7) implies com F>a° for any 

Fez si, and therefore a = a0. 
The last assertion is evident. Q.E.D. 
Remark 1. Let {sis: s e S} be a system of Boolean subalgebras of a complete 

logic L. Put d = \J sds. Then 

com si = A co»n(.s.f .„,..., j t f j . (2.8) 
{*il. . . . . Sin) 

Theorem 2.3. Let sdu ..., sdn be Boolean subalgebras of L. 
(i) Ifa°(siu ..., s£n) is countably obtainable from {com F: Fczsd, F—finite}, 

then the following conditions are equivalent: (a) s&u ..., sdn are jointly measurable 
in a state m; (b) m(com F) = l for any finite Fcz sd; (c) m(a°(si1, ..., s4n)) = l. 

(ii) Let {sds: seS} be a system of Boolean subalgebras of a separable logic L. 
Then the following conditions are equivalent: (a) {sis: seS} is jointly measurable 
in a state m; (b) m(a°(sdsi, ..., ^ 5 J ) = 1 for any finite subset {sh, ..., sin} c S; (c) 

m (com | J sds) = l. 

Proof. To prove Theorem 2.3 it suffices to show that if {a?}k=i is a sequence of 
elements from siu i = l, ..., n, then 

m(\a°(au..., aj)) = l for any ; = 1,2, . . . . 

Indeed, let ; be given. For any i = l, ..., n there is an observable xt so that 
&i(xi) = sii, where ^, is the minimal subalgebra of L generated by {a \..., a } . For 
the observables xu ..., xn there is a joint distribution in a state m [3, 4]. Theorefore 
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m ( A a°(au •••- an)) = l. The continuity of a state m from above implies that 

m ( A a\au • ••, flJ) = Hm m ( A «°(fli, ••-, «I)) = 1- Hence m(a°) = l. This ob-
\ k - i J—00 \ k - i / 

servation and (2.7) complete the proof of the first part of Theorem 2.3. Analogical­
ly we proceed for the second part, too. 

Q.E.D. 

Remark 2. If a state m on a logic L has the property: "if m(at) = \ for any 

t e T, and a = f\ at exists, then 

m(a)=l, (2.9) 

then the part (i) in Theorem 2.3 holds without the assumption on countable 
obtainability of a°(sdi, ..., sin) provided com (du ..., sdn) exists. 

From the results of [12] it follows that the commutator of a sequence of 
separable subalgebras of L exists on every logic. 

3. Independence and strong independence 

We say that observables xl9 ..., xn are independent in a state m if 

m(Axi(Ei))=Y\m(xi(Ei)\ (3.1) 
\ i = l / i-1 

EieB(R1), i = l, ..., n. 

Following S. Gudder [8] we say that bounded observables xu ..., xn on a sum 
logic [7] are strongly independent in a state m if for any bounded Borel functions 
fu •••-/-! 

mh 0 xl+...+fn oXn = mfloX1*...*mfno Xn, (3 .2) 

where the sign * denotes the convolution. 
The system of observables {JC5: SGS} is independent (strongly independent) in 

a state m if any finite subsystem of {xs: seS} is independent (strongly indepen­
dent) in a state m. 

For compatible observables these notions are equivalent. Gudder [8, 
Theorem 4.5] has proved that the strong independence of observables in a state m 
implies the independence. The converse proposition has been proved only for 
special question observables on the logic L(H) of all closed subspaces of 
a separable Hilbert space H in a pure state [8, Theorem 4.6]. We extend the 
validity of the above converse implication on a logic L(H) for all states and 
observables. 

258 



Comparing (3.1) and (1.1) we see that the observables JCI, ..., JC„ are independent 
in a state m iff there is a joint distribution in a state m, mxl.Xn, so that mxl.Xn 

(Eix ...xEn) = f\ mixiEd), EieB(R1), i = 1,..., n. 
i» i 

Theorem 3.1. Let xu ..., xn be purely atomic observables on a logic L and let m 
be a state. Let a(jc,) = {Ai, A}, . . . } . Put 

M(xu ..., xn) = {aeL: there are iu...,in so that 

a = xi({kl}) = ... = xn({k?n})}, 

Mm(xu ..., xn) = {a: a eM(xu ..., xn): m(a)£0}, 

aa = \/{a: aeM(xu ..., xn)}, 

am = \J{a: a eMm(xu ..., xn)}. 

Then the following conditions: (a) JC2, ..., JC„ have a joint distribution in a state m; 
(b) m(a°)=l; (c) m(am) = l; are equivalent. 

Proof. From the results of paper [12, Corollary 2.1] we have that a° = 
a°(0l(xi), ..., gi(xn)), and Theorem 2.3 yields the statement of Theorem 3.1. 

Q.E.D. 

Theorem 3.2. Let {xs: seS} be a system of purely atomic observables on 
a logic L. Then 

(i) {JCS: s e S} has a joint distribution in a state m iff any pair of observables 
{xs, JC,}, s, te T, has a joint distribution. 

(ii) {JC5: seS} are independent in a state m iff any pair of observables {xs, xt}, 
s±t, is independent in m. 

Proof. For any finite system JCI, ..., JC„ we may verify that Mm(jCi, ..., JC„) = 

f l Mm(jc4). 
i - i 

Theorem 3.1 proves the part (i). 
For (ii) we may observe that for any i there is a unique A, such that 

m(xt({A/})) = 1. Therefore the indepencjeoce of any pair of the observables implies 
independence of the entire system {JCS: seS}. Q.E.D. 

If H is a Hilbert space over real or complex numbers, not necessarily separable, 
and W is a von Neumann operator, that is, W is a Hermitean, nonnegative 
operator of trace class with trW= 1 (for details of the trace class see [14]), then 
mw(M) = tr(WPM), MeL(H), is a state on L(H). Here PM denotes the orthopro-
jector onto the subspace M. It is known that to any bounded observable JC there is 
a unique Hermitean operator Ax and conversely. For any fe H, \\f\\ = 1, we define? 
an operator /(§)/: JCH-»(/, JC)/, jceH. Using results of [9, 3], we have: 
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Theorem 3.3. (i) The Boolean subalgebras sdu...,sin of L(H) are jointly 

measurable in a state mw, where W= ^ kafa (x) fa, fa ± fb, a±b, \\fa\\ = 1, a, bel, 
ael 

is a von Neumann operator on H, iff one of the following conditions is satisfied: 
(a) for any fa with Aa==0 we have 

where (iu ..., in) is any permutation of (1, ..., n) and Mi€stu i = l, ..., n; 
(b) P* ...PM»W=PM« ...pU'-WforanyMiesdi, i = l,...,n. 

(ii) The bounded observables xu ..., xn have a joint distribution in a state mw iff 
one condition is satisfied: (a) for any fa with Aa=£0 we have 

Ajtj . . . AXfja = AX ( . . . . . AXija , 

where (/-, ..., /„) is any permutation of (1, ..., n); 

^ i M, M, 

(b) Axl...AXnW=AXil...AXinW 
for any permutation (/-, ..., /„) of (1, ..., n). 

Moreover, if H0 is the commutator of s£u ..., sdn, then sdu ..., sdn are jointly 
measurable in mw iff fa eH0 for any ael with K =5-0. 

Proof. The proof follows from the observation that if a von Neumann operator 

is of the form W=]? Xafa (x) fa, then there is a countable subset Da I such that 
ael 

Afl = 0 if ael—D. The rest of the proof follows from results of papers [9, 
Theorem 3.7] and [3, Theorem 14]. Q.E.D 

We shall say that a subspace H0 reduces an observable x on L(H) if px<E)pHo = 
PHop*Wfor any EeB(R1). 

We recall that a cardinal I is said to be non-real measurable if there exists 
a positive measure JU^=0 on the power set of I with ju({a}) = 0 for each ael. 

Theorem 3.4. Let L(H) be a logic of a Hilbert space H (real or complex) whose 
dimension is a non-real measurable cardinal number. Then the independence and 
strong independence of bounded observables in any state are equivalent. 

Proof. Let a finite system of bounded observables JCi, ..., xn be independent in 
a state m on L(H). The completeness of the lattice L(H) provides an existence of 
a commutator H0=com (0l(xi), ..., 0l(xn)). If H is a separable Hilbert space, then 
the commutator is countable obtainable, so that, due to Theorem 2.3 (i), m(H0) = 
1. If H is nonseparably, then according to a generalization of the Gleason theorem 
to a nonseparable Hilbert space logic with a non-real measurable cardinal I we 

have ([1,5]) that there is a unique von Neumann operator W=^A f l / f l®/ f l , 
ael 
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/. ± fb9 ||/.II = 1, /, <=H, such that m(M) = tr(WPM), MeL(H). Theorem 2.3 (i) 
and Remark 2 imply that m(H0)= 1. Hence the restriction of m to L(H0), m0, is 
a state, too. 

The commutator Ho reduces the observables xu ..., jcn so that JCI0(E) = 

JC,(E)AH0, EeB(R1), i = \, ..., n, are mutually compatible observables on a logic 

L(H0). Moreover, m (A *(fl)) = mo ( A JCf0(B)), £ e 6(1?!). 

If Ho reduces JC, then it reduces / o JC for any Borel function / . Let bounded 
observable JC correspond to a Hermitean operator Ax. Then H0 reduces JC iff 
AXPH°=PH°AX. So that Ho reduces /i o JCt +. . . + /n o JC„ for any bounded functions 
/ i , . . . , / n and ( / IOJCI+ . . . + / „ o.xn)o = / i o . c 1 0 + . . . + / f l o *n0. 

It can be easily checked that 

m(( / 1 oX 1 + . . . + / n o j c n ) ( E ) ) ) = m((/ 1ojc1 + . . . + / n ojc n ) (EAH 0 ) ) ) = 

= ™o((/l oX10+...+fno xn0)(E)). 

Hence 

ГПf1cX1+...+fnoXn — mO(f1oX10 + ...+fnoXn0) — 

mofloX10 * . - .* Ш o / n o X ř ł 0 = m / l o X 1 * . . . * mfnoЛ 

Q.E.D. 

This Theorem is a consequence of the correspondence between the joint 
distribution of observables defined by (1.1) and the so-called type II joint 
distribution on the logic L(H). 

We recall that the bounded observables JC1? ..., jcn on a sum logic have a type II 
joint distribution in a state m [15] if for any au ..., aneRi there is a probability 
measure JU"1 fl» on B(Rn) such that 

^ ai{(tu...,tn): a1t1 + ... + antneE}) = 

= m((alXl + ... + anxn)(E))9 EeB(R,). 

By analogical reasonings as those used in the proof of Theorem 3.4 we may prove 
the following theorem. 

Theorem 3.5. Let L(H) be a logic of a Hilbert space H (real or complex) whose 
dimension is a non-real measurable cardinal. Then if the bounded observables 
JCI, ..., JC„ have a joint distribution in a state m, they have a type II joint 
distribution, and they are identical. 

Remark 3. Theorem 3.5 may be proved for the case of unbounded observables, 
too, see [3, Theorem 20]. 
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The general relationship between the joint distribution of observables in a state 
by (1.1) (type I joint distribution, too) and a type II joint distribution is still 
unknown. A very special case of independence may be given for logics with 
a distributive Segal product JC o y of two bounded observables JC and y defined in 
[ 7 ] : 

JC o y = 1/2((JC + y)2 - JC2 - y2). (3.3) 

For any a e L w e define a question observable jca: xa({0}) = a±, jca({l}) = a. 

Lemma 3.6. If the Segal product is distributive, then 

(xm+xb)({l}) = (aAb±)v(a±Ab). (3.4) 
Proof. The distributivity of the product (3.3) implies 

(xa + xb)
2 + (xa - xb)

2 = 2x2
a + 2x2

b = 2xa + 2xb, 

(xa - xb)
2 = 2(xa + xb) - (xa + xb)

2. 
But 

(jca-jcb)2({l}) = [2(jcfl + jc,)-(jcfl + jcb)2]({l}). 
Hence 

(xa-xb)({-l,l}) = fo(xa+xh)({l}) = (a^Ab)v(b^Aa) = 

= (jca + jc.)({l}), where/(r) = 2r-r 2 . 

The latter equality follows from [7, Corollary 6.3]. 
Q.E.D. 

Corollary 3.6.1. Two observables x and y on a sum logic with the distributive 
Segal product are independent in a state m iff 

mXEoX+XFoy~ mXEoX * mXF*V (3.5) 

for any E, F B(i?i). (XA is a characteristic function of a set A e B(Ri)). 
Proof. In [7, Theorem 6.2, Corollary 6.3] one proves that 

(xm + xb)({0}) = a±Ab\ 
(xa + xb)({2}) = aAb, 

for any a, beL. If for E, Fe B(.Ri) we put a = JC(E), b = y(F), then jca = XE ° JC, 

xb = XF O y. An easy calculation shows that 

mxa * mxb({0}) = m(a±Ab±), 

m*a * mxb({l}) = m(axAb) + m(a Ab"-), 

mxa* mXb({2}) = m(aAb). 

Using these equalities and Lemma 3.6 we prove (3.5). Q.E.D. 
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4. Valuation property 

In [2, p. 349] the author posed the following question: If JCI, ..., xn have a joint 
distribution in a state m, does m have the property of a valuation on the minimal 
sublogic Lo generated by all ranges £%(*,)? The question is whether we have 

m(a v b) + m(a/\b) = m(a) + m(b) (4.1) 

for any a, beLo. 
Here we show that the answer is in the affirmative. 
Let aeL and 0=£MczL be p.c. a. By Zorn's lemma there is a maximal set Qa 

p.c. a and such that MczQaczL. Denote by Lo(M) the minimal sublogic of L 
generated by M. 

Lemma 4.1. Let M be p.c. a and iet com M exist. Then 

(i) a<comM. (4.2) 
(ii) 1/ a = com M, then 

a = com Oa = com Lo(M) = com M. (4.3) 

Proof. Since for any finite subset Fez M we have com F A a = a we obtain (4.2) 
immediately. 

According to Theorem 3.8 from [11], we see that Qa is a sublogic of L, so that 
MczLo(M)czQa(M). From (4.2) we have that for any finite FczQa(M), a< 
com F. Let now c<com F, then c<com M. Therefore (4.3) holds. 

Q.E.D. 

Theorem 4.2. Let {si: seS} be a system of Boolean subalgebras of L jointly 
measurable in a state m. Let either com si be countably obtainable from 
{com F: Fez si} or let com si exist and for the state m the condition (2.9) hold. 
Then the restrictions of m to O ^ A and Lo(si), respectively, have the valuation 
property (4.1). 

Proof. Let a = com si. Using Remark 3.9 from [11], we have that QaAa is 
a Boolean sub-a-algebra of logic L(0,fl)= {b eL: b<a}, and the restriction of m 
to L(o,a), mo, is a state. Theorem 2.3 and Remark 2 imply that m(b) = m(b/\a) = 
mo(bAfl) for any beQa. For mutually compatible elements from Q«Aa the 
property (4.1) holds, and therefore it holds for all elements from Lo(sd) and Qa, 
respectively. 

Q.E.D. 
Remark 4. In the process of investigating the properties of the above 

constructions some open problem arose: 
1. Does pairwise joint measurability in a state of Boolean subalgebras imply 

a joint measurability of a given system of Boolean subalgebras? 
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2. Especially, have we 

com (a, b, c) = com (a, b)/\com (a, c)/\com (b, c) 

for any a, b, ceL? 
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О ДВУХ ПРОБЛЕМАХ КВАНТОВЫХ ЛОГИК 

АпаюЩ Оуигебепзкц 

Резюме 

Дается решение предположения Гаддера о равносильности независимости и сильной независи­
мости наблюдаемых на логике сепарабельного пространства Гильберта, а также обобщение 
предположения на логику пространства Гильберта, размерность которого неизмеримое карди­
нальное число. 

Кроме того решается одна проблема автора заметки: Если система наблюдаемых имеет 
совместное распределение в состоянии, будет-ли состояние оценкой на минимальной логике, 
генерированной всеми областями значений наблюдаемых? 
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