Mathematic Slovaca

Božena Mihalíková

On the oscillation of a class of nonlinear differential systems with deviating arguments

Mathematica Slovaca, Vol. 37 (1987), No. 3, 273--277,278--289

Persistent URL: http://dml.cz/dmlcz/136453

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE OSCILLATION OF A CLASS OF NONLINEAR DIFFERENTIAL SYSTEMS WITH DEVIATING ARGUMENTS

BOŽENA MIHALÍKOVÁ

1. Introduction

Much attention has been paid recently to the oscillatory properties of nonlinear functional differential equations with deviating arguments. However, most of the published papers dealt with scalar differential equations; comparatively little is known about the properties of systems of differential equations.

Fundamental results concerning the oscillatory properties of two-dimensional systems of differential equations have been obtained by Varech, Gritsai, Sevelo, Kitamura, Kusano. The oscillatory properties of n-dimensional systems were studied by Foltýnska, Werbowski and Marušiak.

The aim of the present paper is to extend certain results from $[4,7,8]$ to a differential equation system

$$
\begin{equation*}
\left(p_{i}(t) \varphi_{i}\left(x_{i}^{\prime}(t)\right)\right)^{\prime}=f_{i}\left(t, x_{1}(t), \ldots, x_{n}(t), x_{1}\left(\tau_{1}(t), \ldots, x_{n}\left(\tau_{n}(t)\right)\right) \quad i=1, \ldots, n\right. \tag{A}
\end{equation*}
$$

under the assumption that the following conditions hold:
(a) $\quad p_{i} \in \mathrm{C}([a ; \infty), \mathrm{R}), p_{i}(t)>0$ and $\int^{\infty} \frac{\mathrm{d} s}{p_{i}(s)}=\infty, i=1, \ldots, n$;
(b) $\varphi_{i} \in \mathrm{C}(\mathrm{R}, \mathrm{R})$ and $\varphi_{i}(u) . u>0$ for $u \neq 0,\left|\varphi_{i}(u)\right| \leqslant \alpha_{i}|u|, i=1, \ldots, n$; $\alpha_{i}>0$, const.
(c) $f_{i} \in \mathrm{C}\left([a ; \infty) \times \mathrm{R}^{2 n}, R\right), i=1, \ldots, n$ and

$$
f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) v_{i+1}\left\{\begin{array}{l}
>0 \text { if } i=1, \ldots, n-1 \\
<0 \text { if } i=n\left(v_{n+1}=v_{1}\right)
\end{array} \text { for } v_{i} . u_{i}>0\right.
$$

(d) $\quad \tau_{i} \in \mathrm{C}([a ; \infty), \mathrm{R})$ and $\lim _{t \in \infty} \tau_{i}(t)=\infty, i=1, \ldots, n$.

The term "solution $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ of (A)" will be understood in the sequel to refer to a solution of (A) which exists on an interval $\left[T_{x}: \infty\right) \subset[a ; \infty)$ and satisfies the condition

$$
\sup \left\{\sum_{i=1}^{n}\left|x_{i}(t)\right| ; t \geqslant T\right\}>0 \text { for every } T \geqslant T_{x} .
$$

A solution $\boldsymbol{x}(t)$ of (A) is said to be (weakly) oscillatory if each (at least one) of its components has a sequence of zeros tending to ∞.

A solution $\boldsymbol{x}(t)$ of (A) is said to be (weakly) nonoscillatory if each (at least one) of its components has a constant sign for sufficiently large values of t.

2. Oscillatory theorems

Lemma 1. If $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a weakly nonoscillatory solution of (A), then x is nonoscillatory.

Proof. Suppose that $x_{i}(t)$ is a nonoscillatory component of $\boldsymbol{x}(t)=\left(x_{1}(t)\right.$, $\left.x_{2}(t), \ldots, x_{n}(t)\right)$ and $x_{i}(t) \neq 0$ for $t \geqslant T \geqslant a$.

1) Let $1<i \leqslant n$. Owing to (c), (d) we obtain from (A)

$$
\left(p_{i-1}(t) \varphi_{i-1}\left(x_{i-1}^{\prime}((t))\right)^{\prime} \neq 0 \text { for } t \geqslant T_{1},\right.
$$

with t_{1} such that $\tau_{i}(t) \geqslant T$ for $t \geqslant t_{1}$. From (a) and (b) we see that $x_{i-1}(t)$ is monotonic and therefore there exists $t_{2} \geqslant t_{1}$ such that $x_{i-1}(t) \neq 0$ for $t \geqslant t_{2}$. This shows that $x_{i-1}(t)$ is a nonoscillatory component of \boldsymbol{x}. Analogously it can be shown that the components $x_{i-2}(t), \ldots, x_{1}(t)$ are nonoscillatory.
2) Let $i=1$. From the nth equation of (A) we see that

$$
\left(p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)\right)^{\prime} \neq 0 \text { for } t \geqslant T_{1} \geqslant T
$$

where T_{1} is such that $\tau_{1}(t) \geqslant T$ for $t \geqslant T_{1}$. The function is monotonic and from (a) and (b) it is evident that there exists $t_{3} \geqslant T_{1}$ such that $x_{n}(t) \neq 0$ for $t \geqslant T_{3}$. Using the same method as that we used in 1) starting with $i=n$ we prove that all the components are nonoscillatory.

Now let us consider the system (A) assuming that

$$
\begin{gathered}
f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) \operatorname{sgn} v_{i+1} \geqslant a_{i}(t) q_{i}\left(v_{i+1}\right) \operatorname{sgn} v_{i+1} \geqslant 0 i=1, \ldots, n-1 \\
f_{n}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) \operatorname{sng} v_{1} \leqslant a_{n}(t) q_{n}\left(v_{1}\right) \operatorname{sng} v_{1} \leqslant 0
\end{gathered}
$$

where $a_{i} \in \mathrm{C}([a ; \infty), R), a_{i}(t) \geqslant 0, i=1, \ldots, n$,

$$
a_{i} \in \mathrm{C}(\mathrm{R} ; \mathrm{R}) \text { and } q_{i}(v) \cdot v>0, i=1, \ldots, n-1, q_{n}(v) \cdot v<0, v \neq 0 .
$$

Lemma 2. Let the conditions (1) and

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty} \inf \left|q_{i}(v)\right| \neq 0, i=1, \ldots, n-1 \tag{2}
\end{equation*}
$$

hold. If

$$
\begin{equation*}
\int^{\infty} a_{i}(t) \mathrm{d} t=\infty \text { for } i=1, \ldots, n-1 \tag{3}
\end{equation*}
$$

then for a nonoscillatory solution $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of (A) we have

1) $x_{1}(t) . x_{i}^{\prime}(t)>0$ for $t \geqslant t_{0} \geqslant a, i=1, \ldots, n$;
2) there exists $k \in\{1, \ldots, n\}$ and $t_{0} \geqslant a$ such that for $t \geqslant t_{0}$ $x_{1}(t) x_{i}(t)>0, i=1, \ldots, k, x_{1}(t) x_{i}(t)<0, i=k+1, \ldots, n ;$
3) there exists a finite limit $\left.\lim _{t \rightarrow \infty} p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)\right)=c_{k}$;
4) $\lim _{t \rightarrow \infty} x_{i}(t)=\lim _{t \rightarrow \infty} p_{i}(t) \varphi_{i}\left(x_{i}^{\prime}(t)\right)=0, i=k+1, \ldots, n, k<n$;
5) $\lim _{t \rightarrow \infty} x_{i}(t)=+\infty(-\infty), i=1, \ldots, k$

$$
\text { if } c_{k} \neq 0, k>1
$$

$\lim _{t \rightarrow \infty} p_{i}(t) \varphi_{i}\left(x_{i}^{\prime}(t)\right)=+\infty(-\infty), i=1, \ldots, k-1$
Proof. Let $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right.$ be a nonoscillatory solution of (A) on $[a ; \infty)$. Without loss of generality we may suppose that $\left.x_{1}(t)>0\right)$ for $t \geqslant t_{0} \geqslant$ $\geqslant a$ (the proof is analogous if $x_{1}(t)<0$). Owing to assumption (d) there exists $t_{1} \geqslant t_{0}$ such that $x_{1}\left(\tau_{1}(1)\right)>0$ for $t \geqslant t_{1}$. The last equation of (A) leads to the inequality

$$
\begin{equation*}
p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) \leqslant p_{n}\left(t_{1}\right) \varphi_{n}\left(x_{n}^{\prime}\left(t_{1}\right)\right), t \geqslant t_{1} \tag{4}
\end{equation*}
$$

We shall show that there exists $t_{2} \geqslant t_{1}$ such that $x_{n}^{\prime}(t)>0$ for $t \geqslant t_{2}$. For suppose that this were not true. This implies the existence of $T \geqslant t_{2}$ such that $x_{n}^{\prime}(T)<0$ and $x_{n}^{\prime}(t)<0$ for $t \geqslant T_{1}$. From (4)

$$
\alpha_{n} x_{n}(t) \leqslant \alpha_{n} x_{n}(T)+p_{n}(T) \varphi_{n}\left(x_{n}^{\prime}(T)\right) \int_{T}^{t} \frac{\mathrm{~d} s}{p_{n}(s)} \rightarrow-\infty \text { for } t \rightarrow \infty
$$

and therefore $x_{n}(t) \rightarrow-\infty$ for $t \rightarrow \infty$. By condition (2) for $i=n-1$ there must exist a constant $K>0$ and $T_{2} \geqslant T_{1}$ such that

$$
q_{n-1}\left(x_{n}\left(\tau_{n}(t)\right)\right) \leqslant-K<0 \text { for } t \geqslant T_{2}
$$

Using this relation and integrating the $(n-1)$ th equation of (A), we see that

$$
\begin{array}{r}
p_{n-1}(t) \varphi_{n-1}\left(x_{n-1}^{\prime}(t)\right) \leqslant p_{n-1}\left(T_{2}\right) \varphi_{n-1}\left(x_{n-1}^{\prime}\left(T_{2}\right)\right)-K \int_{T_{2}}^{t} a_{n-1}(s) \mathrm{d} s \rightarrow-\infty \tag{5}\\
\text { for } t \rightarrow \infty
\end{array}
$$

and therefore there eixsts $T_{3} \geqslant T_{2}$ such that $x_{n-1}^{\prime}(t)<0$ for $t \geqslant T_{3}$. From (5), integrating and taking into consideration (b), we get

$$
\begin{aligned}
\alpha_{n-1} x_{n-1}(t) \leqslant \alpha_{n-1} x_{n-1}\left(T_{3}\right)+p_{n-1}\left(T_{3}\right) \varphi_{n-1}\left(x_{n-1}^{\prime}\left(T_{3}\right)\right) \int_{T_{3}}^{t} \frac{\mathrm{~d} s}{p_{n-1}(s)} \rightarrow-\infty \\
\text { for } t \rightarrow \infty,
\end{aligned}
$$

and therefore $x_{n-1}(t) \rightarrow-\infty$ for $t \rightarrow \infty$. Analogously we show that $x_{i}(t) \rightarrow-\infty, x_{i}^{\prime}(t)<0$ for $t \rightarrow \infty, i=n-2, \ldots, 1$, which contradicts the assumption that $x_{1}(t)>0$ for $t \geqslant t_{0}$. Therefore $x_{n}^{\prime}(t)>0$ for $t \geqslant t_{2}$. Two cases may now obtain for $x_{n}(t)$:
i) there exists $t_{3} \geqslant t_{2}$ such that $x_{n}(t)>0, x_{n}\left(\tau_{n}(t)\right)>0$ for $t \geqslant t_{3}$;
ii) $x_{n}(t)<$ for $t \geqslant t_{2}$.

Suppose that i) obtains. This means that $x_{n}(t)$ is a positive increasing function which either has an upper bound or is unbounded as $t \rightarrow \infty$. In the first case there exist constant $c>0$ and $t_{4} \geqslant t_{3}$ such that $0<c \leqslant x_{n}\left(\tau_{n}(t)\right)$ for $t \geqslant t_{4}$ and owing to the continuity of q_{n}, this means that

$$
\begin{equation*}
0<m \leqslant q_{n-1}\left(x_{n}\left(\tau_{n}(t)\right)\right) \leqslant M, m, M-\text { const., } t \geqslant t_{4} . \tag{6}
\end{equation*}
$$

In the second case because of the condition (2) there exist a constant $K>0$ and $t_{5} \geqslant t_{4}$ such that

$$
\begin{equation*}
q_{n-1}\left(x_{n}\left(\tau_{n}(t)\right) \geqslant K>0 \text { for } t \geqslant t_{5} .\right. \tag{7}
\end{equation*}
$$

Integrating the $(n-1)$ st equation of (A) and using (6) and (7), we have

$$
\begin{array}{r}
p_{n-1}(t) \varphi_{n-1}\left(x_{n-1}^{\prime}(t)\right) \geqslant p_{n-1}\left(t_{5}\right) \varphi_{n-1}\left(x_{n-1}^{\prime}\left(t_{5}\right)\right)+L \int_{t_{5}}^{t} a_{n-1}(s) \mathrm{d} s \rightarrow \infty \\
\text { for } t \rightarrow \infty
\end{array}
$$

where L is a suitable positive constant. From this inequality we see that $x_{n-1}^{\prime}(t)>0$ for $t \geqslant t_{6} \geqslant t_{5}$ and by suitably transforming and integrating we see that $x_{n-1}(t)>0$ for $t \geqslant t_{7} \geqslant t_{6}$ as well. Analogously it can be shown that $x_{i}(t)>0, x_{i}^{\prime}(t)>0$ for $i=n-2, \ldots, 1$ and a sufficiently large t. This proves that 1) holds for $i=1, \ldots, n$ and 2) hold for $k=n$.

Suppose now that ii) obtains. From ($n-1$)st equation of (A),

$$
\begin{equation*}
p_{n-1}(t) \varphi_{n-1}\left(x_{n-1}^{\prime}(t)\right) \leqslant p_{n-1}\left(t_{2}\right) \varphi_{n-1}\left(x_{n-1}^{\prime}\left(t_{2}\right)\right), t \geqslant t_{2} . \tag{8}
\end{equation*}
$$

We shall show that $x_{n-1}^{\prime}(t)>0$ for $t \geqslant t_{3} \geqslant t_{2}$. We suppose that this is not true and that there exists $t_{4} \geqslant t_{3}$ such that $x_{n-1}^{\prime}\left(t_{4}\right)<0$. Then by (7) $x_{n-1}^{\prime}(t)<0$ for $t \geqslant t_{4}$ and

$$
\begin{aligned}
& \alpha_{n-1} x_{n-1}(t) \leqslant \alpha_{n-1} x_{n-1}\left(t_{4}\right)+p_{n-1}\left(t_{4}\right) \varphi_{n-1}\left(x_{n-1}^{\prime}\left(t_{4}\right)\right) \int_{t_{4}}^{t} \frac{\mathrm{~d} s}{p_{n-1}(s)} \rightarrow-\infty \\
& \text { for } t \rightarrow \infty
\end{aligned}
$$

so that $x_{n-1}(t) \rightarrow-\infty$ for $t \rightarrow \infty$. Repeating the procedure used in the first part of our proof we arrive at contradiction with the assumption that $x_{1}(t)>0$ on $\left[t_{0}: \infty\right)$. Thus $x_{n-1}^{\prime}(t)>0$ for $t \geqslant t_{3}$ and two cases may obtain for $x_{n-1}(t)$:
i_{1}) there exists $t_{4} \geqslant t_{3}$ such that $x_{n-1}(t)>0, x_{n-1}\left(\tau_{n-1}(t)\right)>0$ for $t \geqslant t_{4}$;
ii_{1}) $x_{n-1}(t)<0$ for $t \geqslant t_{3}$.
For i_{1}) we use the same method as for i) to prove that $x_{i}(t)>0, x_{i}^{\prime}(t)>0$ for $i=1, \ldots, n-1$ and t sufficiently large, which is exactly what statements 1) and 2) of the Lemma state for $k=n-1$.

For ii_{1}) we prove analogously as for ii) that $x_{n-2}^{\prime}(t)>0$ for $t \geqslant t_{4} \geqslant t_{3}$ and that the following two possibilities exist for x_{n-2} :
i_{2}) there exists $t_{5} \geqslant t_{4}$ such that $x_{n-2}(t)>0, x_{n-2}\left(\tau_{n-2}(t)\right)>0$ for $t \geqslant t_{5}$;
ii ${ }_{2}$) $x_{n-2}(t)<0$ for $t \geqslant t_{4}$.
The method used in i_{1}), i_{1}) is now used repeatedly to prove statements 1) and 2) of the Lemma for $k=n-2, \ldots, 1$.

By hypothesis, $x_{1}(t)>0, x_{1}\left(\tau_{1}(t)\right)>0$ for $t \geqslant t_{0}$ and therefore the function $p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)$ is positive and decreasing and thus has a finite limit. Statement 3) holds for $k=n$.
If k has the property 2) then $p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)$ is a positive decreasing function and has a finite limit. If

$$
\left.\lim _{t \rightarrow \infty} p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)\right)=c_{k}>0
$$

then there exists $T \geqslant t_{0}$ sufficiently large and such that

$$
\left.\alpha_{k} p_{k}(t) x_{k}^{\prime}(t) \geqslant p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)\right) \geqslant \frac{1}{2} c_{k}
$$

whence we see by integrating that $\lim _{t \rightarrow \infty} x_{k}(t)=\infty$. Using (3), (2) and (a) it is easy to prove from the first $\mathrm{k}-1$ equations of (A) that $\lim _{t \rightarrow \infty} x_{i}(t)=\infty$ for $i=1, \ldots$, k and $\lim _{i \rightarrow \infty} p_{i}(t) \varphi_{i}\left(x_{i}^{\prime}(t)\right)=\infty$ for $i=1, \ldots, k-1$. This proves statement 5$)$ of the Lemma.

Statement 4) will be proved by contradiction. Assume that there exists $j \in\{k+1, \ldots, n\}$ such that $\lim _{t \rightarrow \infty} p_{j}(t) \varphi_{j}\left(x_{j}^{\prime}(t)\right)=c_{j}>0$. Using the preceding part of our proof this leads to $\lim _{t \rightarrow \infty} p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)=\infty$ which contradicts 3). Analogously assume t^{\prime}. existence of $j \in\{k+1, \ldots, n\}$ such that $\lim _{t \rightarrow \infty} x_{j}(t) \neq 0$. Since $x_{j}(t)$ is a negative increasing function there exist constants c_{j}, d_{j} and T sufficiently large such that

$$
c_{j} \leqslant x_{j}\left(\tau_{j}(t)\right) \leqslant d_{j}<0, t \geqslant T
$$

and the continuity of q_{j-1} implies that there exist constants m, M such that

$$
m \leqslant q_{j-1}\left(x_{j}\left(\tau_{j}(t)\right) \leqslant M<0 \text { for } t \geqslant T\right.
$$

From the $(j-1)$ equation of (A) we have

$$
\begin{array}{r}
p_{j-1}(t) \varphi_{j-1}\left(x_{j-1}^{\prime}(t)\right) \leqslant p_{j-1}(T) \varphi_{j-1}\left(x_{j-1}^{\prime}(T)\right)+M \int_{T}^{t} a_{j-1}(s) \mathrm{d} s \rightarrow-\infty \\
\text { for } t \rightarrow \infty,
\end{array}
$$

which again yields a contradiction to 3). This completes the proof of the Lemma.
Theorem 1. Suppose that, in addition to the assumptions of Lemma 2,

$$
\begin{equation*}
\int^{\infty} a_{n}(t) \mathrm{d} t=\infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty}\left|q_{n}(v)\right| \neq 0, \tag{10}
\end{equation*}
$$

then every solution of (A) is oscillatory.
Proof. Suppose that (A) has a weakly nonoscillatory solution $\left(x_{1}(t)\right.$, $\ldots, x_{n}(t)$). By Lemma 1 this solution is nonoscillatory. Suppose that $x_{1}(t)>0$, $x_{1}\left(\tau_{1}(t)\right)>0$ for $t \geqslant t_{1} \geqslant a$. By Lemma 2, $x_{1}(t)$ is a positive increasing function and there exists $\lim _{1 \rightarrow \infty} x_{1}(t)=d_{1}$ such that either $d_{1}<\infty$ or $d_{1}=\infty$. In both cases, owing to (10) and the continuity of q_{n}, there exist a constant $L>0$ and T sufficiently large so that

$$
q_{n}\left(x_{1}\left(\tau_{1}(t)\right)\right) \leqslant-L \text { for } t \geqslant T
$$

By Lemma 2, $p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)$ is a positive decreasing function. Using these properties, we see after integrating the last equation of (A) that

$$
p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)-p_{n}(T) \varphi_{n}\left(x_{n}^{\prime}(T)\right) \leqslant-L \int_{T}^{t} a_{n}(s) \mathrm{d} s,
$$

which contradicts (9).
Remark 1. Theorem 1 is a generalization of Theorem 2 of [8]. If $\tau_{i}(t)=t$ for $i=1,2, \ldots, n$, we obtain the results formulated in Theorem 1 of [7] under weaker assumptions about f_{i}.

The following example shows that the assumption (10) of Theorem 1 is indispensable.

Example 1. The system

$$
\begin{gathered}
\left(t^{\frac{1}{2}} x_{1}^{\prime}(t)\right)^{\prime}=\frac{3}{2} t^{-\frac{1}{4}}\left(x_{2}\left(t^{\frac{1}{4}}\right)\right)^{3} \\
\left(t^{\frac{1}{2}} x_{2}^{\prime}(t)\right)^{\prime}=-\frac{1}{18} t^{-\frac{5}{3}}(1+t) \frac{x_{1}\left(t^{\frac{1}{3}}\right)}{1+\left(x_{1}\left(t^{\frac{1}{3}}\right)\right)^{2}}
\end{gathered}
$$

satisfies all conditions of Theorem 1 except (10), but the system has a nonoscillatory solution $\left(x_{1}(t), x_{2}(t)\right)=\left(t^{\frac{3}{2}}, t^{\frac{1}{3}}\right)$ for $t>0$.

Remark 2. The assumptions of Theorem 1 are rather strong in the sense that the deviating arguments $\tau_{i}(t)$ have no influence on the oscillatory properties of solutions of (A).

Theorem 2. Suppose that, in addition to (1) and (3),

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty} \inf \frac{q_{i}(v)}{v} \neq 0, \lim _{|v| \rightarrow 0} \inf \frac{q_{i}(v)}{v} \neq 0 \text { for } i=1, \ldots, n-1 \tag{11}
\end{equation*}
$$

holds. If

$$
\begin{equation*}
\left|q_{n}(v)\right| \leqslant\left|q_{n}(u)\right| \text { for }|v| \leqslant|u| \tag{12}
\end{equation*}
$$

and

$$
\begin{gathered}
\infty=\int_{T}^{\infty} a_{k}\left(v_{k}\right) \int_{\tau_{k+1}\left(v_{k}\right)}^{\infty} \frac{1}{p_{k+1}\left(u_{k+1}\right)} \int_{u_{k+1}}^{\infty} a_{k+1}\left(v_{k+1}\right) \int_{\tau_{k+2}\left(v_{k+1}\right)}^{\infty} \frac{1}{p_{k+2}\left(u_{k+2}\right)} \int_{u_{k+2}}^{\infty} \ldots \\
\ldots \int_{u_{n}}^{\infty} a_{n}(v) \left\lvert\, q_{n}\left(c \int_{T}^{\tau_{1}(v)} \frac{1}{p_{1}\left(u_{1}\right)} \int_{T}^{u_{1}} a_{1}\left(v_{1}\right) \int_{T}^{\tau_{2}\left(v_{1}\right)} \frac{1}{p_{2}\left(u_{2}\right)} \int_{T}^{u_{2}} \ldots\right.\right. \\
\left.\ldots \int_{T}^{u_{k-1}} a_{k-1}\left(v_{k-1}\right) \mathrm{d} v_{k-1} \ldots \mathrm{~d} u_{1}\right) \mid \mathrm{d} v \ldots \mathrm{~d} v_{k}
\end{gathered}
$$

for every $c \neq 0$ and $k=1, \ldots, n$; then every solution of (A) is oscillatory.

Proof. Suppose that (A) has a weakly nonoscillatory solution. By Lemma 1 it is nonoscillatory; assume that $x_{1}(t)>0$ for $t \geqslant t_{0} \geqslant a$. The first part of (11) implies the validity of (2) and therefore by Lemma 2 there exist $k \in$ $\in\{1, \ldots, n\}$ and $T_{0} \geqslant t_{0}$ such that for $t \geqslant T_{0}$ and $i=1, \ldots, k$ all $x_{i}(t)$ are positive and increasing and $\lim _{t \rightarrow \infty} x_{i}(t)=\infty$. Owing to (11) there exist positive constants K_{i} and $T \geqslant T_{0}$ such that

$$
\begin{equation*}
q_{i}\left(x_{i+1}\left(\tau_{i+1}(t)\right)\right) \geqslant K_{i} x_{i+1}\left(\tau_{i+1}(t)\right) \text { for } t \geqslant T, i=1, \ldots, k-1 \tag{14}
\end{equation*}
$$

By transforming the first $(k-1)$ equations of (A) as follows

$$
\begin{aligned}
\alpha_{i} p_{i} x_{i}^{\prime}(t) & \geqslant p_{i}(t) \varphi_{i}\left(x_{i}^{\prime}(t)\right) \geqslant p_{i}(T) \varphi_{i}\left(x_{i}^{\prime}(T)\right)+\int_{T}^{t} a_{i}(s) q_{i}\left(x_{i+1}\left(\tau_{i+1}(s)\right)\right) \mathrm{d} s \geqslant \\
& \geqslant \int_{T}^{t} a_{i}(s) q_{i}\left(x_{i+1}\left(\tau_{i+1}(s)\right)\right) \mathrm{d} s>0, t \geqslant T, i=1, \ldots, k-1
\end{aligned}
$$

and integrating we obtain

$$
\begin{gather*}
x_{i}(t) \geqslant \frac{K_{i}}{\alpha_{i}} \int_{T}^{t} \frac{1}{p_{i}(u)} \int_{T}^{u} a_{i}(s) x_{i+1}\left(\tau_{i+1}(s)\right) \mathrm{d} s \mathrm{~d} u, i=1, \ldots, k-2 \tag{15}\\
x_{k-1}(t) \geqslant \frac{d_{k} K_{k-1}}{\alpha_{k-1}} \int_{T}^{t} \frac{1}{p_{k-1}(u)} \int_{T}^{u} a_{k-1}(s) \mathrm{d} s \mathrm{~d} u . \tag{16}
\end{gather*}
$$

Since the kth component of the solution is an increasing function there exists a constant $d_{k}>0$ such that $x_{k}\left(\tau_{k}(t)\right) \geqslant d_{k}$ for $t \geqslant T$. After a transformation of (15), (16) we have

$$
\begin{gather*}
x_{1}(t) \geqslant c \int_{T}^{t} \frac{1}{p_{1}\left(u_{1}\right)} \int_{T}^{u_{1}} a_{1}\left(v_{1}\right) \int_{T}^{\tau_{1}\left(v_{1}\right)} \frac{1}{p_{2}\left(u_{2}\right)} \int_{T}^{u_{2}} a_{2}\left(v_{2}\right) \int_{T}^{\tau_{2}\left(v_{2}\right)} \ldots \\
\ldots \int_{T}^{\tau_{k-2}\left(v_{k-2}\right)} \frac{1}{p_{k-1}\left(u_{k-1}\right)} \int_{T}^{u_{k-1}} a_{k-1}\left(v_{k-1}\right) \mathrm{d} v_{k-1} \mathrm{~d} u_{k-1} \ldots \mathrm{~d} v_{2} \mathrm{~d} u_{2} \mathrm{~d} v_{1} \mathrm{~d} u_{1}, \tag{17}
\end{gather*}
$$

where $c=d_{k} \prod_{i=1}^{k-1} \frac{K_{i}}{\alpha_{i}}$.
By Lemma 2, $\left.\lim _{t \rightarrow x} x_{i}(t)=0, \lim _{t \rightarrow \infty} p_{i}(t)\right) \varphi_{i}\left(x_{i}^{\prime}(t)=0\right.$ for $i=k+1, \ldots, n$; therefore the $(k+1)$ st to the nth equation of (A) yield

$$
\begin{equation*}
\left|x_{i}\left(\tau_{i}(t)\right)\right| \geqslant \frac{1}{\alpha_{i}} \int_{\tau_{i}(t)}^{x} \frac{1}{p_{i}(u)} \int_{u}^{\infty} a_{i}(v)\left|q_{i}\left(x_{i+1}\left(\tau_{i+1}(v)\right)\right)\right| \mathrm{d} v \mathrm{~d} u . \tag{18}
\end{equation*}
$$

Further, owing to (11) there exist constants $M_{i}>0$ and $T_{1} \geqslant T$ such that

$$
\left.\left|q_{i}\left(x_{i+1}\left(\tau_{i+1}(t)\right)\right)\right| \geqslant M_{i} \mid x_{i+1}\left(\tau_{i+1}(t)\right)\right) \mid, t \geqslant T_{1}, i=k+1, \ldots, n-1 .
$$

Using this property, we can transform (18) to obtain

$$
\begin{gather*}
\left|x_{k+1}(t)\right| \geqslant D \int_{1}^{\infty} \frac{1}{p_{k+1}\left(u_{k+1}\right)} \int_{u_{k+1}}^{\infty} a_{k+1}\left(v_{k+1}\right) \int_{\tau_{k+2}\left(v_{k+1}\right)}^{\infty} \frac{1}{p_{k+2}\left(u_{k+2}\right)} \int_{u_{k+2}}^{\infty} \ldots \\
\ldots \int_{\tau_{n}\left(v_{n-1}\right)}^{\infty} \frac{1}{p_{n}\left(u_{n}\right)} \int_{u_{n}}^{\infty} a_{n}(v)\left|q_{n}\left(x_{1}\left(\tau_{1}(v)\right)\right)\right| \mathrm{d} v \mathrm{~d} u_{n} \ldots \mathrm{~d} v_{k+1} \mathrm{~d} u_{k+1}, \tag{19}\\
t \geqslant T_{1}, D=\frac{1}{\alpha_{n} i=k+1} \prod_{1-1}^{n-1} \frac{M_{i}}{a_{i}} .
\end{gather*}
$$

Now by Lemma 2 there exists a finite $\left.\operatorname{limit} \lim _{t \rightarrow \infty} p_{k}(t)\right) \varphi_{k}\left(x_{k}^{\prime}(t)=L\right.$. Integrating the kth equation of (A) we have after some manipulations

$$
\begin{equation*}
\left|L-p_{k}\left(T_{1}\right) \varphi_{k}\left(x_{k}^{\prime}\left(T_{1}\right)\right)\right| \geqslant M_{k} \int_{T_{1}}^{\infty} a_{k}(s)\left|x_{k+1}\left(\tau_{k+1}(s)\right)\right| \mathrm{d} s \tag{20}
\end{equation*}
$$

Using the fact that $\left|q_{n}(v)\right|$ is nondecreasing we substitute (17) into (19). The resulting expression is then substitued into (20) and this yields a contradiction to (13).

Corollary 1. If in addition to the assumptions of Theorem 2 with the exception of the second condition in (11)

$$
\frac{q_{i}(v)}{v} \geqslant \frac{q_{i}(u)}{u} \text { for }|u| \leqslant|v|, i=1, \ldots, n-1,
$$

holds, then every solution of (A) is oscillatory.
Example 2. The system

$$
\begin{gathered}
\left(\left(\frac{3}{13} t^{-\frac{5}{6}}+\frac{1}{3} t^{-\frac{2}{3}}\right) x_{1}^{\prime}(t)\right)^{\prime}=2 t^{-\frac{1}{2}}\left(\left(x_{2}\left(\tau_{2}(t)\right)\right)^{\frac{5}{3}}+x_{2}\left(\tau_{2}(t)\right)\right) \\
\left(t^{-\frac{1}{2}} x_{2}^{\prime}(t)\right)^{\prime}=-\frac{1}{2} t^{-3}\left(x_{1}\left(\tau_{1}(t)\right)\right)^{3}, t \geqslant 0
\end{gathered}
$$

with the deviating arguments $\tau_{1}(t)=t^{\frac{1}{2}}, \tau_{2}(t)=t^{2}$ has an nonoscillatory solution $\left(x_{1}(t), x_{2}(t)\right)=\left(t^{4}, t^{\frac{1}{2}}\right)$ for $t \geqslant 0$ (since for $k=1$ the asumption (13) does not
hold), but for the deviating arguments $\tau_{1}(t)=t^{2}, \tau_{2}(t)=t^{\frac{1}{4}}$ every solution of the system is oscillatory.

Example 3. For the system

$$
\begin{gathered}
\left(t^{-3} x_{1}^{\prime}(t)\right)^{\prime}=t^{-\frac{7}{2}}\left(\frac{15}{4}+t^{2}\right)\left(t+\frac{\pi}{2}\right)^{\frac{1}{2}} x_{2}\left(t+\frac{\pi}{2}\right) \\
\left(t^{-3} x_{2}^{\prime}(t)\right)^{\prime}=-t^{-\frac{3}{2}}\left(t^{2}-\frac{1}{4}\right)\left(t+\frac{\pi}{2}\right)^{-\frac{3}{2}} x_{1}\left(t+\frac{\pi}{2}\right)
\end{gathered}
$$

all the conditions of Theorem 2 are satisfied and therefore every one of its solutions is oscillatory on $[\pi ; \infty)$.
$\left(x_{1}(t), x_{2}(t)\right)=\left(t^{\frac{3}{2}} \sin t, t^{-\frac{1}{2}} \cos t\right)$ is one such solution.
We shall now study the behaviour of (A) under the following assumptions:

$$
\begin{gather*}
f_{i}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) \operatorname{sgn} v_{i+1} \geqslant a_{i}(t) g_{i}\left(u_{i+1}\right) \operatorname{sgn} u_{i+1} \geqslant 0, i=1, \ldots, n-1 \\
f_{n}\left(t, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right) \operatorname{sgn} v_{1} \leqslant g_{n}\left(t, v_{1}\right) \operatorname{sgn} v_{1} \leqslant 0, \tag{2}
\end{gather*}
$$

where

$$
\begin{gathered}
a_{i} \in \mathrm{C}([a ; \infty), \mathrm{R}), a_{i}(t) \geqslant 0, i=1, \ldots, n-1 ; \\
g_{i} \in \mathrm{C}(\mathrm{R} ; \mathrm{R}), g_{i}(v) v>0 \text { for } v \neq 0, i=1, \ldots, n-1 ; \\
g_{n} \in \mathrm{C}([a ; \infty) \times \mathrm{R} ; \mathrm{R}), g_{n}(t, v) . v<0 \text { for } v \neq 0 .
\end{gathered}
$$

Let $i_{k} \in\{1,2, \ldots, 2 n-1\}, 1 \leqslant k \leqslant 2 n-1$ and $t, s \in[a ; \infty)$. Define

$$
\begin{gathered}
\mathrm{I}_{0}(t, s)=\mathrm{J}_{0}(t, s)=1 \\
\mathrm{I}_{k}\left(t, s ; y_{i_{k}}, \ldots, y_{i_{1}}\right)=\int_{s}^{t} y_{i_{k}}(x) \mathrm{I}_{k-1}\left(x, s ; y_{i_{k-1}}, \ldots, y_{i_{1}}\right) \mathrm{d} x, \\
\mathrm{~J}_{k}\left(t, s ; y_{i_{k}}, \ldots, y_{i_{1}}\right)=\int_{s}^{t} y_{i_{1}}(x) \mathrm{J}_{k-1}\left(t, x ; y_{i_{k}}, \ldots, y_{i_{2}}\right) \mathrm{d} x .
\end{gathered}
$$

Further let us introduce the following notation

$$
\begin{aligned}
& \quad \mathrm{R}_{k}(t, T)=\mathrm{I}_{2 n-1}\left(t, T ; \frac{1}{p_{1}}, a_{1}, \frac{1}{p_{2}}, a_{2}, \ldots, \frac{1}{p_{k-1}}, a_{k-1}, \frac{1}{p_{n}}, a_{n-1}, \ldots, a_{k}, \frac{1}{p_{k}}\right) \\
& 1 \leqslant k \leqslant n .
\end{aligned}
$$

Lemma 3. Suppose that, in addition to (21),

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \inf \left|g_{i}(u)\right| \neq \text { for } i=1, \ldots, n-1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int^{\infty} a_{i}(t) \mathrm{d} t=\infty \text { for } i=1, \ldots, n-1 \tag{23}
\end{equation*}
$$

Then for any nonoscillatory solution $x=\left(x_{1}, \ldots, x_{n}\right)$ the statements 1) to 5) of Lemma 2 hold.

The proof of the Lemma is analogous to that of Lemma 2.
Lemma 4. Suppose that, in addition to (21) and (23),

$$
\begin{equation*}
\frac{g_{i}(u)}{u} \leqslant \frac{g_{i}(v)}{v} \text { for }|u| \leqslant|v|, i=1, \ldots, n-1 \tag{24}
\end{equation*}
$$

Then for any nonoscillatory solution $x=\left(x_{1}, \ldots, x_{n}\right)$ of (A) and $a \leqslant s<t$ we have

$$
\begin{align*}
& \left.\left|p_{1}(t) \varphi_{1}\left(x_{1}^{\prime}(t)\right) \geqslant \prod_{i=1}^{j} \frac{\left|g_{i}\left(x_{i+1}(s)\right)\right|}{\alpha_{i+1}\left|x_{i+1}(s)\right|} \int_{s}^{t}\right| \varphi_{j+1}\left(x_{j+1}^{\prime}(u)\right) \right\rvert\, \times \tag{25}\\
& \quad \times \mathrm{J}_{2 j-1}\left(t, u ; a_{1}, \frac{1}{p_{2}}, \frac{1}{p_{3}}, \ldots, \frac{1}{p_{j}} a_{j}\right) \mathrm{d} u, 1 \leqslant j \leqslant k-1
\end{align*}
$$

and

$$
\begin{align*}
& \mid p_{k}(s) \varphi_{k}\left(x_{k}^{\prime}(s)\right) \geqslant \\
& \prod_{i=k}^{j} \frac{\left|g_{i}\left(x_{i+1}(t)\right)\right|}{\alpha_{i+1}\left|x_{i+1}(t)\right|} \int_{s}^{t}\left|\varphi_{j+1}\left(x_{j+1}^{\prime}(u)\right)\right| \times \tag{26}\\
& \times \mathrm{I}_{2(j-k)+1}\left(u, s ; a_{j j}, \frac{1}{p_{j}}, a_{j-1}, \ldots, \frac{1}{p_{k+1}}, a_{k}\right) \mathrm{d} u, k \leqslant j \leqslant n-1,
\end{align*}
$$

where $k=1, \ldots, n-1$ is determined according to Lemma 3.
Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a nonoscillatory solution of (A) defined on $[a ; \infty)$ and suppose that $x_{1}(t)>0, x_{1}\left(\tau_{1}(t)\right)>0$ for $t \geqslant t_{0} \geqslant a$. The condition (24) implies the validity of (22). Thus by Lemma 3 there exist $T \geqslant t_{0}$ and $k \in\{1, \ldots, n\}$ such that $x_{i}^{\prime}(t)>0$ for $i=1, \ldots, n, x_{j}(t)>0$ for $j=1, \ldots, k, x_{j}(t)<0$ for $j=-$ $=k+1, \ldots, n$ and $t \geqslant T$.

To prove (25), we shall use the monotonicity of the first k components of the solution, the relations (21) and (24), the first ($k-1$) equations of (A) and integration by parts.

Suppose that $T \leqslant s<t$. Then

$$
\begin{aligned}
& p_{1}(t) \varphi_{1}\left(x_{1}^{\prime}(t)\right)=p_{1}(s) \varphi_{1}\left(x_{1}^{\prime}(s)\right)+\int_{s}^{t}\left(p_{1}(z) \varphi_{1}\left(x_{1}^{\prime}(z)\right)\right)^{\prime} \mathrm{d} z \geqslant \\
& \geqslant \int_{s}^{t} a_{1}(z) g_{1}\left(x_{2}(z)\right) \mathrm{d} z \geqslant \frac{g_{1}\left(x_{2}(s)\right)}{x_{2}(s)} \int_{s}^{t} a_{1}(z) x_{2}(z) \mathrm{d} z= \\
& =g_{1}\left(x_{2}(s)\right) \cdot \mathrm{J}_{1}\left(t, s ; a_{1}\right)+\frac{g_{1}\left(x_{2}(s)\right)}{x_{2}(s)} \int_{s}^{t} x_{2}^{\prime}(z) \mathrm{J}_{1}\left(t, z ; a_{1}\right) \mathrm{d} z \geqslant \\
& \geqslant \frac{g_{1}\left(x_{2}(s)\right)}{a_{2} x_{2}(s)} \int_{s}^{t} \varphi_{2}\left(x_{2}^{\prime}(z)\right) \mathrm{J}_{1}\left(t, z ; a_{1}\right) \mathrm{d} z,
\end{aligned}
$$

which is (25) for $j=1$. Integrating the last integral we have

$$
\begin{gathered}
p_{1}(t) \varphi_{1}\left(x_{1}^{\prime}(t)\right) \geqslant \frac{g_{1}\left(x_{2}(s)\right)}{\alpha_{2} x_{2}(s)} p_{2}(s) \varphi_{2}\left(x_{2}^{\prime}(s)\right) \mathrm{J}_{2}\left(t, s ; a_{1}, \frac{1}{p_{2}}\right)+ \\
\quad+\frac{g_{1}\left(x_{2}(s)\right)}{\alpha_{2} x_{2}(s)} \int_{s}^{t} a_{2}(z) g_{2}\left(x_{3}(z)\right) \mathrm{J}_{2}\left(t, z ; a_{1}, \frac{1}{p_{2}}\right) \mathrm{d} z \geqslant \\
\geqslant \frac{g_{1}\left(x_{2}(s)\right)}{\alpha_{2} x_{2}(s)} \cdot \frac{g_{2}\left(x_{3}(s)\right)}{x_{3}(s)} \int_{s}^{t} a_{2}(z) x_{3}(z) \mathrm{J}_{2}\left(t, z ; a_{1}, \frac{1}{p_{2}}\right) \mathrm{d} z
\end{gathered}
$$

By the above transformations and ($2 \mathrm{j}-2$) integrations we obtain (25).
To prove (26), we use the last ($n-k+1$) equations of (A), the relations (21) and (24) and the properties of the last $(n-k+1)$ components of the solution as well as the fact that they are negative increasing functions.

For $T \leqslant s<t$ we have

$$
\begin{gathered}
p_{k}(s) \varphi_{k}\left(x_{k}^{\prime}(s)\right)=p_{k}(t) \varphi_{k}\left(x_{k}^{\prime}(t)\right)-\int_{s}^{t}\left(p_{k}(u) \varphi_{k}\left(x_{k}^{\prime}(u)\right)\right)^{\prime} \mathrm{d} u \geqslant \\
\geqslant-\int_{s}^{t} a_{k}(u) g_{k}\left(x_{k+1}(u)\right) \mathrm{d} u \geqslant-\frac{g_{k}\left(x_{k+1}(t)\right)}{x_{k+1}(t)} \int_{s}^{t} a_{k}(u) x_{k+1}(u) \mathrm{d} u= \\
=-g_{k}\left(x_{k+1}(t)\right) \mathrm{I}_{1}\left(t, s ; a_{k}\right)+\frac{g_{k}\left(x_{k+1}(t)\right)}{a_{k+1} x_{k+1}(t)} \int_{s}^{t} \varphi_{k+1}\left(x_{k+1}^{\prime}(u)\right) \mathrm{I}\left(u, s ; a_{k}\right) \mathrm{d} u \geqslant \\
\geqslant \frac{g_{k}\left(x_{k+1}(t)\right)}{\alpha_{k+1} x_{k+1}(t)} \int_{s}^{t} p_{k+1}(u) \varphi_{k+1}\left(x_{k+1}^{\prime}(u)\right) \frac{1}{p_{k+1}(u)} \mathrm{I}_{1}\left(u, s ; a_{k}\right) \mathrm{d} u,
\end{gathered}
$$

which is (26) for $j=k$. Again integrating by parts and using the above properties ($\mathrm{n}-1-\mathrm{k}$) times we obtain (26).

For $x_{1}(t)<0$ the proof is analogous.

Theorem 3. Suppose that, in addition to the assumptions of Lemma 4, the following conditions hold:

1) $\lim _{|u| \rightarrow 0} \inf \frac{g_{i}(u)}{u} \neq 0$ for $i=1, \ldots, n-1$;
2) $\frac{\left|g_{n}(t, u)\right|}{|u|^{\beta}} \leqslant \frac{\left|g_{n}(t, v)\right|}{|v|^{\beta}}$ for $|u| \leqslant|v|, \beta>1$;
3) There exists a function $h(t)$ continuous and differentiable on $[a ; \infty)$, such that $0<h(t) \leqslant \tau_{1}(t), h^{\prime}(t) \geqslant 0, \lim _{t \rightarrow \infty} h(t)=\infty$.

If

$$
\begin{equation*}
\int^{\infty} \mathrm{R}_{k}(h(t))\left|g_{n}(t, c)\right| \mathrm{d} t=\infty \text { for all } c \neq 0 \text { and } k=1, \ldots, n \tag{27}
\end{equation*}
$$

then all solutions of (A) are oscillatory.
Proof. Suppose that (A) has a weakly nonoscillatory solution $\boldsymbol{x}=$ $=\left(x_{1}, \ldots, x_{n}\right)$. By Lemma 1 this solution is nonoscillatory and without loss of generality we may assume that $x_{1}(t)>0, x_{1}(h(t))>0$ for $t \geqslant t_{0} \geqslant a$. By Lemma $3, \lim _{t \rightarrow \infty} x_{i}(t)=0$ for $i=k+1, \ldots, n$ and by the assumption 1) there exist constants $\delta_{i}>0$ and $T \geqslant t_{0}$ such that

$$
\frac{g_{i}\left(x_{i+1}(t)\right)}{x_{i+1}(t)} \geqslant \delta_{i}, i=k+1, \ldots, n-1, t \geqslant T
$$

Since $p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)$ is decreasing, we have the following relation from (26) for $j=n-1$:

$$
\begin{gather*}
p_{k}(s) \varphi_{k}\left(x_{k}^{\prime}(s)\right) \geqslant p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) \prod_{i=k}^{n-1} \frac{\delta_{i}}{\alpha_{i+1}} \mathrm{I}_{2(n-k)}\left(t, s ; \frac{1}{p_{n}}, a_{n-1}, \ldots, \frac{1}{p_{k+1}}, a_{k}\right) \\
T \leqslant s<t \tag{28}
\end{gather*}
$$

Substituting (28) into (25) for $s=T, j=k-1$ we have

$$
\begin{aligned}
p_{1}(t) \varphi_{1}\left(x_{1}^{\prime}(t)\right) & \geqslant \alpha p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) \int_{T}^{t} \mathrm{I}_{2(n-k)}\left(t, u ; \frac{1}{p_{n}}, a_{n-1}, \ldots, \frac{1}{p_{k+1}}, a_{k}\right) \times \\
& \times \frac{1}{p_{k}(u)} \mathrm{J}_{2 k-3}\left(t, u ; a_{1}, \frac{1}{p_{2}}, \ldots, \frac{1}{p_{k-1}}, a_{k-1}\right) \mathrm{d} u
\end{aligned}
$$

where $\alpha=\prod_{i=1}^{k-1} \frac{q_{i}\left(x_{i+1}(T)\right)}{a_{i+1} x_{i+1}(T)} \prod_{i=k}^{n-1} \frac{\delta_{i}}{a_{i+1}}$,
and therefore

$$
\begin{gather*}
x_{1}^{\prime}(t) \geqslant \frac{\alpha}{a_{1}} p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) \frac{1}{p_{1}(t)} \times \\
\times \mathrm{I}_{2 n-2}\left(t, T ; a_{1}, \frac{1}{p_{2}}, \ldots, a_{k-1}, \frac{1}{p_{n}}, a_{n-1}, \ldots, a_{k}, \frac{1}{p_{k}}\right) . \tag{29}
\end{gather*}
$$

Taking $t_{1} \geqslant T$ such that $h(t) \geqslant T$ for $t \geqslant t_{1}$, calculate the following derivative using the nth equation of (A), the relation (29) and assumption 2) of the theorem:

$$
\begin{gathered}
{\left[\mathrm{R}_{k}(h(t), T) p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) x_{1}^{-\beta}(h(t))\right]^{\prime} \leqslant} \\
\leqslant \\
{\left[\mathrm{R}_{k}(h(t), T)\right]^{\prime} h^{\prime}(t) p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) x_{1}^{-\beta}(h(t))+} \\
+\mathrm{R}_{k}(h(t), T) x_{1}^{-\beta}(h(t)) g_{n}\left(t, x_{1}\left(\tau_{1}(t)\right)\right) \leqslant \\
\leqslant \frac{\alpha_{1}}{\alpha} x_{1}^{\prime}(h(t)) h^{\prime}(t) x_{1}^{-\beta}(h(t))+\mathrm{R}_{k}(h(t), T) g_{n}(t, K) \cdot K^{-\beta},
\end{gathered}
$$

where $K=x_{1}(T)$.
Integrating the last inequality yields after necessary manipulations

$$
\begin{gathered}
-K^{-\beta} \int_{t_{1}}^{t} \mathrm{R}_{k}(h(s), T) g_{n}(s, K) \mathrm{d} s \leqslant \alpha_{1} \frac{x_{1}^{1-\beta}\left(h\left(t_{1}\right)\right)}{\alpha(\beta-1)}+ \\
\quad+\mathrm{R}_{k}\left(h\left(t_{1}\right), T\right) p_{n}\left(t_{1}\right) \varphi_{n}\left(x_{n}^{\prime}\left(t_{1}\right)\right) x_{1}^{-\beta}\left(h\left(t_{1}\right)\right)
\end{gathered}
$$

The right-hand part of this inequality is a finite positive number. Therefore the integral is convergent, which is a contradiction to (27).

Example 4. The system

$$
\begin{aligned}
& \left(t^{-2} x_{1}^{\prime}(t)\right)^{\prime}=4 t^{-\frac{1}{2}} x_{2}\left(\tau_{2}(t)\right) \\
& \left(t^{-3} x_{2}^{\prime}(t)\right)^{\prime}=-\frac{7}{4}\left(t^{-\frac{49}{2}}+t^{-\frac{33}{2}}\right) \frac{x_{1}^{5}\left(\tau_{1}(t)\right)}{1+x_{1}\left(\tau_{1}(t)\right)}
\end{aligned}
$$

with $\tau_{1}(t)=\tau_{2}(t)=t$ has a nonoscillatory solution $\left(x_{1}(t), x_{2}(t)\right)=\left(t^{4}, t^{\frac{1}{2}}\right)$ for $t \geqslant 0$. For $\tau_{1}(t)=t^{4}, \tau_{2}(t)=t^{\frac{1}{2}}$ every solution is oscillatory.

The following theorem presents a sufficient condition for the oscillation of all solutions of (A) if $0<\beta<1$ in condition 2) of Theorem 3.

Let

$$
\begin{aligned}
& \tau_{0}(t)=\min \left(\tau_{1}(t), t\right) \\
& \mathrm{P}_{0}^{1}(t, T)=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{2 j}^{1}(t, T)=\mathrm{I}_{2 j}\left(t, T ; \frac{1}{p_{1}}, a_{1}, \frac{1}{p_{2}}, a_{2}, \ldots, \frac{1}{p_{j}}, a_{j}\right) \\
& \mathrm{P}_{2 j+1}^{1}(t, T)=\mathrm{I}_{2 j+1}\left(t, T ; \frac{1}{p_{1}}, a_{1}, \frac{1}{p_{2}}, a_{2}, \ldots, a_{j}, \frac{1}{p_{1+j}}\right) \\
& \mathrm{P}_{k}^{1}(t, a)=\mathrm{P}_{k}^{\prime}(t), 0 \leqslant k \leqslant 2 n-2 .
\end{aligned}
$$

Theorem 4. If in addition to the assumptions of Lemma 4

1) $\lim _{|u| \rightarrow 0} \inf \frac{g_{i}(u)}{u} \neq$ for $i=1, \ldots, n-1$;
2) $\quad \frac{\left|g_{n}(t, u)\right|}{|u|^{\beta}} \leqslant \frac{\left|g_{n}(t, v)\right|}{|v|^{\beta}}$ for $|u| \leqslant|v|, 0<\beta<1$
and

$$
\begin{equation*}
\int^{\infty}\left(\frac{\mathrm{R}_{k}\left(\tau_{*}(t)\right)}{\mathrm{P}_{2 k-2}^{1}\left(\tau_{1}(t)\right)}\right)^{\beta}\left|g_{n}\left(t, c \mathrm{P}_{2 k-2}^{1}\left(\tau_{1}(t)\right)\right)\right| \mathrm{d} t=\infty \text { for all } c \neq 0, k=1, \ldots, n .(\tag{30}
\end{equation*}
$$

Then every solution of (A) is oscillatory.
Proof. The proof will be indirect. We start by repeating the proof of Theorem 3 up to and including the inequality (29). Integrating this inequality from T to $t \geqslant T$ we have

$$
\begin{equation*}
x_{1}(t) \geqslant \frac{\alpha}{\alpha_{1}} p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right) \mathrm{R}_{k}(t, T) \tag{31}
\end{equation*}
$$

By Lemma $3 x_{1}(t)$ is increasing and $p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)$ decreasing. Using this, it is possible to transform (31) as follows:

$$
\begin{gather*}
\left(p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)\right)^{-\beta} \geqslant\left(p_{n}\left(\tau_{*}(t)\right) \varphi_{n}\left(x_{n}^{\prime}\left(\tau_{*}(t)\right)\right)\right)^{-\beta} \geqslant \tag{32}\\
\geqslant\left(\frac{\alpha}{\alpha_{1}}\right)^{\beta} \mathrm{R}_{k}^{\beta}\left(\tau_{*}(t), T\right) x_{1}^{-\beta}\left(\tau_{*}(t)\right) \geqslant\left(\frac{\alpha}{\alpha_{1}}\right)^{\beta} \mathrm{R}_{k}^{\beta}\left(\tau_{*}(t), T\right) x_{1}^{-\beta}\left(\tau_{1}(t)\right),
\end{gather*}
$$

where $t \geqslant t_{1} \geqslant T$ such that $\tau_{*}(\mathrm{t}) \geqslant T$ for $t \geqslant t_{1}$.
Starting with (25) for $j=k-2, s=T$, integrating by parts and using the $(k-1)$ th equation of (A) and the monotonicity of x_{k} leads to

$$
\begin{gathered}
p_{1}(t) \varphi_{1}\left(x_{1}^{\prime}(t)\right) \geqslant g_{k-1}\left(x_{k}(T)\right) \times \\
\times \prod_{i=1}^{k-2} \frac{g_{i}\left(x_{i+1}(T)\right)}{\alpha_{i+1}\left(x_{i+1}(T)\right)} \mathrm{J}_{2 k-3}\left(t, T ; a_{1}, \frac{1}{p_{2}}, a_{2}, \ldots, \frac{1}{p_{k-1}}, a_{k-1}\right) .
\end{gathered}
$$

Integrating the last inequality from T to $t \geqslant T$ we have

$$
\begin{equation*}
x_{1}(t) \geqslant c \mathrm{P}_{2 k-2}^{1}(t, T), \text { where } c=\frac{g_{k-1}\left(x_{k}(T)\right)}{\alpha_{1}} \prod_{i=1}^{k-2} \frac{g_{i}\left(x_{i+1}(T)\right)}{\alpha_{i+1} x_{i+1}(T)} . \tag{33}
\end{equation*}
$$

Using the nth equation of (A), the relations (33) and (32) and condition 2) we see that

$$
\begin{aligned}
& {\left[\left(p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)\right)^{1-\beta}\right]^{\prime}=(1-\beta)\left(p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)\right)^{-\beta}\left(p_{n}(t) \varphi_{n}\left(x_{n}^{\prime}(t)\right)\right)^{\prime} \leqslant} \\
& \quad \leqslant(1-\beta)\left(\frac{\alpha}{\alpha_{1}}\right)^{\beta} \mathrm{R}_{k}^{\beta}\left(\tau_{1}\left(t\left(\tau_{*}(t), T\right) x_{1}^{-\beta}(t)\right) g_{n}\left(t, x_{1}\left(\tau_{1}(t)\right)\right) \leqslant\right. \\
& \leqslant(1-\beta)\left(\frac{\alpha}{\alpha_{1}}\right)^{\beta} \mathrm{R}_{k}^{\beta}\left(\tau_{*}(t), T\right)\left(\mathrm{P}_{2 k-2}^{1}\left(\tau_{1}(t), T\right)\right)^{-\beta}\left|g_{n}\left(t, c \mathrm{P}_{2 k-2}^{1}\left(\tau_{1}(t)\right)\right)\right| .
\end{aligned}
$$

Integrating the last inequality yields a contradicition to (30). This completes the proof.

Remark 4. For the case when (A) is equivalent to a differential equation with deviating arguments of order 2 n the theorem yields a result proved in [5].

Example 5. If for some $k \in\{1, \ldots, n\}$ the assumption (30) is not satisfied, then there may exist nonoscillatory solutions of the system. The system

$$
\begin{aligned}
& \left(\frac{1}{t} x_{1}^{\prime}(t)\right)^{\prime}=3 \cdot t^{-\frac{2}{3}} x_{2}\left(t^{\frac{1}{3}}\right) \\
& \left(\frac{1}{t^{2}} x_{1}^{\prime}(t)\right)^{\prime}=-\frac{2}{t^{23}} x_{1}\left(t^{7}\right)
\end{aligned}
$$

does not satisfy (30) for $k=2$ and has a nonoscillatory solution $\left(x_{1}(t), x_{2}(t)\right)=$ $=\left(t^{3}, t^{2}\right)$ for $t \geqslant 0$.

REFERENCES

[1] FOLTÝNSKA, I.—WERBOWSKI, J.: On the oscillatory behaviour of solutions of system of differential equations with deviating arguments. Colloquia Math. Soc. J. B. 30, Oualitative theory of Diff. Eq. Szeged, 1979, 243-256.
[2] KITAMURA, Y.-KUSANO, T.: Oscillation and a class of nonlinear differential systems with general deviating arguments, Nonlinear Analysis, Theory, Methods and Appl. Vol. 2, No. 5, 1978, 337-351.
[3] KITAMURA, Y.-KUSANO, T.: Asymptotic properties of solutions of two-dimensional differential systems with deviating argument. Hiroshima Math. J. 8, 1978, 305-326.
[4] KITAMURA, Y.-KUSANO, T.: On the oscillation of a class of nonlinear differential systems with deviating argument. J. Math. Anal. Appl. 66, 1978, 20-36.
[5] KITAMURA, Y.-KUSANO, T.: Nonlinear oscillation of higherorder functional differential equations with deviating arguments. J. Math. Anal. Appl. 77, 1980, 100-119.
[6] MARUŠIAK, P.: On the oscillation of nonlinear differential systems with retarder arguments. Math. Slovaca 34, No. 1, 1984, 73-88.
[7] ОЛЕХНИК, С. Н.: О колеблемости решений некоторой системы обыкновенных дифференциальных уравнений второго порядка. Дифф. урав. 9, № 12, 1973, 2146-2151.
[8] ШЕВЕЛО, В. Н.-ВАРЕХ, Н. В.-ГРИЦАЙ, А. Г.: Об осцилляторных свойствах решений систем дифференциальных уравнений с запаздывающим аргументом. Ин-т математики АН УССР, Киев 1982.
[9] ВАРЕХ, Н. В.-ШЕВЕЛО, В. Н.: Об условиях осцилляции решений систем дифференциальных уравнений с запаздывающим аргументом. В кн. Качественные методы теории дифференциальных уравнений с отклоняющимся аргументом. Ин-т матиметики АН УССР, Киев 1977, $26-46$.

Katedra matematickej analýzy
Prirodovedeckej fakulty UPJŠ
Jesenná 5
04154 Košice

О КОЛЕБЛЕМОСТИ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ

Božena Mihalíková

Резюме

В статье приведены достаточные условия колеблемости решений сыстемы (А).

