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Math . Slovaca 38, 1988, No. 3,273—296 

A NONLINEAR DIFFUSION EQUATION WITH 
NONLINEAR BOUNDARY CONDITIONS: 

METHOD OF LINES 

JAN FILO 

1. Introduction 

In this paper we investigate the existence and some properties of solutions of 
the initial-boundary value problem 

($(u))t - Au = / ( x , t, u) xeD, t > 0 

(1.1) — + g(x9 t, w) = 0 xeT, t>0 
dv 

w(x, 0) = w0(x) xeD, 

where p(w) = |«|msign« for some positive parameter m, D a RN is a smoothly 
bounded domain with boundary F, du/d v denotes the outward directed normal 
derivative of u on F, / and g are functions satisfying some smoothness and 
growth conditions to be detailed later, nevertheles, g is nondecreasing in u and 
the initial function u0 is allowed to change the sign. 

The equation in (1.1) appears in various physical, chemical and biological 
models and without the reaction term / it is for 0 < m < 1 well known as the 
porous medium or slow diffusion equation, for m = 1 as the heat conduction 
equation and for m > 1 as the plasma or fast diffusion equation. Many results 
are known in the case m = 1 and therefore we are primarily interested in the case 
m # 1. For these values of m, however, a "degeneracy" or "singularity" may 
occur. To see this let us rewrite the equation in (1.1) putting v = P(w) into a more 
familiar form 

v, — A(|t;|asignt;) = / a — \/m 

and one can see that the diffusion coefficient D(v) = a|t;|a_1 tends to zero 
(0 < m < 1) or to infinity (m > 1) when v tends to zero. Therefore it is necessary 
to be careful and consider a suitable class of weak solutions (see, e.g., [13] for 
0 < m < 1 and [14] for m > 1). 
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The present paper is organized as follows. In Section 2 we prove the existence 
of the solution to Problem (1.1) for 0 < m ^ 1 using the method of lines. This 
method was applied to the nondegenerate parabolic equations with the non
linear boundary conditions by Chzhou Yui-Lin in [2], Kacur in [8], and in 
general it was intensively studied in [7]. As concerns the nonlinear diffusion 
problems, this method was used to treat the slow diffusion equation with 
homogeneous Dirichlet boundary conditions by Jerome in [6]. Here we improve 
his procedure using a more suitable inequality to estimate the time derivative. 
By means of that also the restriction on the sign of initial functions is removed 
and the Lx estimate is not necessary. Further, a certain type of the smoothing 
effect is established, namely, starting with the initial function u0eLm+ ](D) it is 
shown that the weak solution u of Problem (1.1) is actually in Lm+](D)n 
n H](D) at any later time (see also [12]). 

In Section 3 some sufficient conditions for L x solvability are presented and 
a type of the "maximum" principle is derived. The case of the fast diffusion is 
briefly considered in Section 4. We are able to introduce the uniqueness and 
comparison theorem for Problem (1.1) only for the L x solutions, and for its 
proof the method discussed in [1] is adopted. In the end also a local existence 
theorem is stated. 

In the sequel we shall adopt the following notations: Let I = (0, T), QT = 
= Dxl, ST= rxl, Q£ T= D x (s, T), Sc^ T analogously and let \D\ denote the 
Lebesgue measure of the set D. The norms in the spaces LP(D), W]p(D) 
(\V] 2 = H]) are denoted by \-\p, |-|, p 1 ̂  p ^ oo and in L2(L) by |-|2 r (the 
function spaces we use are rather familiar and we omit the definitions, see, e.g., 
[10]). Cor C(TJ) indicates various constants (even in the same discusion) depend
ing on r] and other known constants and set, suppressing integration variables, 

u(t)ц>(t) 
D 

u(x, t)(p(x, t)dx, 
D 

and 

g(t, u(t))<p(t) = g(X, t, u(X, t))y(X, t) dS 
r Jr 

f(u)<P= fix, t, u(x, t))y(x, t)dxdt. 
]QT J JQr 

We shall frequently use Young's inequality, i.e. ab ^ ear + s*bq, where a, b >- 0, 
p> \,p~l +q-' = \, e* = ((PcypqY\ and denote y(u) = \u\im f m sign u. 
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2. The case of slow diffusion 

This part of the paper is concerned with the existence and some properties of 
solutions to Problem (1.1) for 0 < m ^ 1 assuming the following: 

(H,) u0eLm+l(D) with no restriction on the sign ofu0. 
(H2) feC(grxR), where T is an arbitrarily fixed positive time, and there 

exists a constant K(= K(T))e R+ such that 

| f (x , t9 u) - / ( * , s, t>)| < K(\t - s| (1 + |P(w)|) + |p(M) - POOD 

for all (x, t), (x, s)eQT9 u9 veR. 
(H3) geC(STx R) and there exists a constant L(= L(T))eR + such that 

|g(x, t, u) - g(x, s, i;)| ^ L(\t - s| (1 + \u\) + \u - v\) 

for all (x, t)9 (x, s)eST9 u9 veR. 
(H4) g(x, t, u) is nondecreasing in u for all (x, t)eST. 
We shall refer to these hypotheses collectively as (H). The assumption of 

continuity off and g in the space variable may be relaxed but we omit such 
generalization for the sake of convenience. 

The main result of this section reads then as follows. 
Theorem 1. Let (H) hold9 and suppose that 0 < m ^ 1. Then Problem (1.1) 

admits a solution u in the following sense: 

(2.1) ueLf(L9 Lm+l(D))nL2(T9 Hl(D))9 t1/2
WeL°°(/; H](D))9 

t]/2uteL2(I; Lm+l(D))9 t]'2(y(u))teL2(QT), 
and 

(2.2) P(u(0)<p(0- f f (P(«)9,-VMV(p+/(i/)<p) + 
» J Je, 

+ JJsg(")9 = JDP("o)9(0) 

for all tel and <p6H\Qr). 

If, in addition to (H), u0eH\D), then instead of (2.1) we have 

(2.3) ueL*{I;H\D)), u,eL\l; Lm + 1(D)), (Y(w)),eL2(Qr), 

one/ //we takef{x, t, u) =f{x, u) andg{x, t, u) = g{x, u) only, then 

{m + 1) 

for allO ^s ^t ^ T, where 

Í (Y("Ж + J(«(0) < Ąu(s)) 
D 

(2.5) Лu) - ì J|V-P + Ц í M * " [ JV)* -
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Inequality (2.4) is an energy inequality. 
Remark . It is not difficult to see that (2.1) ((2.3)) implies that WGC((0, T\\ 

Lm+l(D)% Y(K)eC((0, 71; L2(D)) (i#eC([0, T\; Lm+X(D)% y(u)eC([0, T\; 
L2(D))9 respectively). 

We now prove a series of assertions, which contain most of the essential 
elements for the proof of Theorem 1. Because in Section 4 the case of the fast 
diffusion (m > 1) will be considered, we shall treat, where it is possible, also this 
value of parameter m. 

Suppose now that an integer n is specified and set h = T/n. For / = 1, 2, ..., n 
consider the sequence of semilinear elliptic problems obtained formally by 
applying to (1.1) an implicit time discretization formula 

- An, + / r j(p(W/) - p(W/_ ,)) = / ( * , 0' ~ l)h, «/- i) in D, 

(2.6) Qu 
—l + g(x, ih9 ut) = 0 on F, 
dv 

where w0 is given by (Hj). At the end of this section we prove the following result 
concerning weak solutions of Problem (2.6). 

Proposition 1. Suppose that 0 < m < oo and set V = Hl(D) n i m + l(D). Then 
for given FeL{m+l)/m(D), c > 0 and G(x, v) satisfying (H3)—(H4), the semilinear 
elliptic problem, 

f (W (2.7) (Vt;Vcp + (cP(t;)-E)(p) + G(y)(p = 0 for all yeV, 

has a unique solution veV. 
Using Proposition 1 one can immediately obtain the existence of the unique 

weak solution w, to Problem (2.6) for any i = 1, 2, ...*, n. 
Consider the sequence of step functions un defined by 

un(x, 0) = Uo(x), 
(2.8) 

wn(x, t) = w,(x), for (i — l)h < t ^ /A, / = 1, 2, ..., n. 

We start with 
Lemma 1. Suppose that (H) holds, and let 0 < m < oo. Then the sequence {iin} 

is bounded in the space L2(I; Hl(D)) and for any ^9 0 < ^ < min(l, h~l), the 
estimate 

(2.9) \un(t)\m + , ^ (|Mo|m + , + C) exp ((t + h)(K+ tj)/(l - tjh)m) 

holds for all tel. For the nonnegative constant 

C = C(N, 2), L, K, m, 17, |g(0, 0)|2, r , | /(0, 0)i(m + I)/m) 
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see (2.17) below. Moreover, there exist a subsequence of{un} (let us denote it again 
by {un}) and a function u such that 

un-*u in L2(I\ H\D)), as n -> oo. 

Remark . If, in addition to (H), we suppose that g(x, t, u)u^0 and 
/ (x , t, u) = / ( x , w), then the constant C in (2.9) may be evaluated as 

C = (2/(m + l))1/w(w + 1)(|/(0)|(m + 1)/Ji7y/-

Proof. Putting F = / ( x , (i - 1)/*, w,-1) + h~^(u(_ x\ c = h'1 and G(x, u) = 
= g(x, ih, u), (2.7) as a weak formulation of (2.6) yields for cp = u{\ 

(2.10) 

f (k-r+1 +h|VW/f)= f (P(K,_,)H,, + * / ( ( ! - 1)A, ",-,)",) - h f *(fc, " M -
JD JD Jr 

It might be noted that our hypotheses imply 

|/(x, /, u)\ ^ \f(x, t, 0)| + KMm (by (H2)), 
(2.11) 

-g(x, t,u)u^ \g(x, t, 0)||M| (by (H4)), 
and 

(2.12) f \g(t,0)\\u\^n\ |V«|2 + ^ f M m + , + C,(77) foranyr/, 
Jr JD 2 JD 

0 < X] < oo, where 

C, (17) = ^ |£(,, 0)H r + C ( m ' * ' D ) |g(r, 0)|<- '*-. 

For w ^ 1, (2.12) follows from Holder's inequality, the embedding H\D) into 
L2(r) and Young's inequality. To obtain (2.12) for 0 < m < 1 we need to 
estimate the L2 norm by the Lm + 1 norm. For this purpose we introduce a special 
case of the Nirenberg—Gagliardo inequality (see [4, Theorem 10.1, p. 27]) in the 
form 

(2.13) M2 ^ CF\v\l2\v\XnTA , a = (1 - m)N/(2N-(N-2)(m + 1)), 

and (2.12) follows then by routine calculations if we use Young's inequality. 
Now, using (2.11—12), from (2.10) we get 

(2.14) (1 - 17/0 f \ur + l + h(\ - //) f |VW/|
2 ^ (1 + Kh) f |«,_ , r k l + C2h, 

JD JD JD 

where C2 - C,(;7) + r;* |/((i - 1)/J, 0)|(m+ ,)/m. Choosing 77 sufficiently small 
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|m + 1 s , ( l + £/i)(m+1)/m |м ŕ _,Г + 1 + A C 3 , C 3 -
JD m{\ — rjh) 

we have further 

f \u,r+l ^ (1 + &) f k - i l m k l + AC2/(1 - rjh), £ = (K+ vW - rjh), 
JD JD 

and applying Young's inequality 

(2 15) \u\m + ] **'* ' *tA(m+1) /m ' '•• |m + 1 ' t-^ n _ ( m + l ) C 2 

From (2.15) we obtain succesively 

f iM,r+ ' ^ (i + &ym+,)/m(f i«oim+• + , n, 
JD \JD( {{\ + $hf"+1)/m- 1)/ 

but as £/./(( 1 + %h)(m + l)lm - 1) ^ 1, we get 

(2.16) |M,.|m+ , < (|M0|m+, + (C3/£)1/(m + •>) _*«". 

Now let fe Ibe arbitrary but fix and for each n let k be such that te{{k — l)/i, 
£/.]. Using the notation (2.8), (2.16) for / = k yields 

'{t + h){K+T]f 

ҺC, 

(2.17) |мл(0L + , < ( К L + , + ( ( " + l)C2/m77)1/(m+1) exp(-
m(l — í7/г) 

hence (2.9). 
To get the boundedness of {un} in L2(I; Hl(D)), let us add up (2.14) for 

/ == 1, 2, ..., /i, and we obtain 

(1 - 17) t Ä f |Vм,|2 + (1 - rjh) t f k Г + 

i = I JD / = 1 Jí) 

+ (l-r/A)X k_,Гkl + /г(K+r7)Z 
í = 1 JD i = 1 

ł ^C7T + 

k_,rkl 

As the right hand side of the above inequality may be estimated by Young's and 
Holder's inequalities, we have further 

(i - 17) t 4 
i - 1 Jt 

|VM,|2 + ÍLZJÍÚHL f k r
 + - ,: LZJĚJJ. f ,M( 

m + \ JD m + 1 Jo 
r+ i + 

+ c 2 T+(K+77)XAk-, l m
+ .kL + , , 

/ = 1 

and the proof of Lemma 1 is completed by (2.16). 
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Lemma 2. Under the same hypotheses as in Lemma 1 there exists a nonnegative 
constant C such that the estimate 

jV«_< (2.18) tJJVi7„(t)|2^C 

holds for all (sufficiently large) n and 0 < t < T, i.e. t1/2|w„(t)|K2 < C for all 
0 < t ^T. If in addition to (H), u0eH\D), then 

j>* (Ol2 <- c 
JD 

for all nandO^t^T. 
Proof. Analogously to the proof of Lemma 1, (2.6) for (p = i(w, - w,_i), 

/ ^ 2 yields 

+ i Ĵ  (P(u,) - P(u, _,)) (u, - u, _,) + ih JDVuN(u, - u, _,) 

+ ih giih, uHui ~ "i-1) = 'A /((/ - 1)A, u,_ ,)(u, - u,_,). 

If we use the notation 

(2.19) *,(u) = J j"g(/A,r)_V, 

(H4) implies the obvious inequality 

¥,(u,) - T,(u,_,) ^ J g(/A, u,)(u, - u,_,), 

and we have further 

/ Jo (P(u,) - P(u, _,)) (u, - u, _,) + /A2-' (jD |Vu,|2 - Jo |Vu, _ ,|2) + 

(2.20) +/AeF,(u,)-¥,(u,_ , ) )<« . [ f / ( ( / -DA, r)„r + 
J D JW,_ i 

+ /A Jo(J ( / ( ( / - 1)A, u,_,) - / ( ( / - DA, r))drj. 

Now, the last term on the right-hand side of (2.20) may be estimated using (H2) 
by 

ih I |K f | p(u, _ ,) - p(r) \dr\ <. ihK I (p(u,) - P(u, _,)) (u, - u, _,), 
JD JW,_I JD 
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and if we add up (2.20) for i = 2, 3,..., k and perform recognizable calculations, 
we obtain 

(i - щ x ,• (P(K.)-P(«.-l))(M. - « . - , ) + — I |V«,P 
D 2 

~\^uk\
2-kүih\\Vu\2 + 

2 JD І= i JD 

+ kh%(щ) - Һ%(Щ) - £ AҖfø) + I /Ä(Җ- l(« ř- l) - Җ(«/- .)) ^ 

ř 

/((/-l)A,r)_V + 

A - 1 

/ = 1 / = 2 

(2.21) л /•«* _v — i 

*£*A Д ( / c - l ) / l , r ) d r - £ й 
JD JO /= i 

I 
/ = 2 

+ £/л ( / ( ( / - 2 ) ? J , r) - / ( ( / - l)A,r))_V. 

Both the last term on the left-hand side and the last term on the right hand side 
of (2.21) may be estimated using (H 2 _ 3 ) and Lemma 1 by Ckh, where the 
nonnegative constant C does not depend on k. If we choose h sufficiently small, 
(2.21), yields 

kh 

2 
|VÍ/A.|2 + kh %(uk) ^ Ckh + kh ï 

D JO 

f((k-\)h,r)dr + 

k- 1 

+ £ A 
/ = 1 

As by (H4) we have 

(2.22) 

ivм,p + вд -
D JD 

f((i-\)h,r)dr) + h%(u]). 

g(kh,0)щ^Ч>k(щ), 

(2.12), (H2__3)
 a r-d Lemma 1 gives 

kh \Vuk\
2^Cxkh + C2, 

JD 

where the nonnegative constants C,, C2 do not depend on k. Suppose now that 
tel ranks among ({k — 1)/?, kh), then 

|V^(t)|2 < C, 

where C does not depend on /, hence (2.18). 
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If „0eH'(D), let us multiply (2.20) by l/i and add up such inequalities for 
i- 1, 2, ..., k. We obtain 

(i - kh) __ /.-• [ (p(«,) - p(M,_,))(«, -«,_,) + _ [ IV«,I2+ 
i =-1 Jz> J D 

+ **(«„) - I f((k -\)h,r)dr^\\ |V„0|
2 + T0(Mo) -

(2-23) 
f f*° * 

/(0, r)cjr + X |4»,(„,_ ,) - ¥,_,(«,_ ,)| + 
JD JO i =- 1 

+ Z I |/(i*,r)-/((/-l)A,r)|_>|. 
i = i J D JO 

Now, by virtue of (2.22), (2.12), (H2_3) and Lemma 1, we arrive at 

|Vw,|2 < C, L 
where the constant C does not depend on k, hence the conclusion. 

As regards an a priori estimate for the time derivative, we begin with the 
proposition giving the inequality, which plays a key role in our considerations. 

Proposition 2. Let 0 < m < oo andy(x) = \x\{m + ])/2signxfor xeR. Then the 
inequality 

(2.24) — ^ — (y(x) - y(y)f < (P(x) - P(y)) (x - y) 
(m + l)2 

holds for any x, ye R. 
Proof. If signx#signy, (2.24) may be verified by direct computations 

and we omit the details. 
If signx = signy, it is sufficient to verify the inequality 

( y ( z ) - l ) 2 ^ ( p ( z ) - l ) ( z - l ) f o r z > l , 
(m + 1) 

assuming m > 1 (as for 0 < m < 1 we put m' = m l > 1, z' = p(z)), which may 
be rewritten into 

(VPT_) - x/i)2 ^ ^ - ^ (Y(-0 - l)2 for z > 1. 
(m+ l)2 

Putting A = y/z, it is not difficult to demonstrate that the function 
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f(A) = - -(A'"+1 - 1)~A(AW-1 - 1) 
m + 1 

is nonnegative for A ^ 1, hence the conclusion. 
Let us now consider the sequence of piecewise linear functions {£/„}, defined 

by 

(2.25) <7„(x, t) = y(Ui_ , (x)) + (Y(t//(x)) - 7(«/ . ,W)) ' - ( ' - 0 * 
h 

for ( / - l ) h ^ t^ ///, / = 1, 2, ..., n, 
and {M„}, constructed analogously to {£/„} by means of ur Then we have the 
following assertions. 

Lemma 3. Let the hypotheses of Lemma I be satisfied. Then the sequence 
{t] 2(Un)(} is bounded in the space L2(QT). 

If in addition to (H), u0eH{(D), then (Un)t is uniformly (with regard to n) 
bounded in L2(QT). 

P r o o f If we take into account the proof of Lemma 2, (2.21) yields 

(1 - Kh) X i f (PM - (3(",_,))(", - uf_,) ^ C, 
/ = 1 JD 

where the constant C does not depend on n. Now, with the assistance of 
Lemma 1 and (2.24), the above inequality gives 

[ t(un)2^ i i | ( Y ( ^ ) - Y ( ^ - « ) ) 2 ^ C , 
JQT i = l JD 

hence the first conclusion. 
If u0eHl(D), the assertion follows from (2.23) analogously as above. 
Lemma 4. Suppose that (H) holds, and let 0 < m <. 1. Then the sequence 

{r12(un),} is bounded in the space L2(I; Lm + ,(D)), and 

(i) u„^u inC([e,T\;Lm + 1(D)), 
(2.26) 

(ii) un - u in L2(e, T; L'"+ ' (D)), as n - oo, 

for any e, 0 < e < T (through a subsequence depending on e). Moreover, u satisfies 

(2.27) \u(t)\m + , <. (|H0L + , + C(t])) exp((K 4- n) t/m) 

for all tel and 0 < t] <. 1, where the constant C(TJ) is from (2.17). 
If in addition to (H), unsH\D), then {(«„),} is bounded in L2(I; Lm + '(£>)) and 

e = 0 is allowed in (2.26). 
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Corollary 1. Let the hypotheses of Lemma 4 be satisfied, then there exists a 
subsequence of {n} such that, by relabelling, we have: 

(i) For tel let k = kn be such positive integer that 
(k- \)h< t^kh. Then 
un(kh)->u(t) inLm + ](D), 

(2.28) 
(ii) V(u„(kh)) - P(«(/)) in L(m + i),m(D), 

(iii) u„(- + /.)->« inLm + i(Q,T), 

(iv) P(w„(- - h)) - p » i/i L,m+ l)/m(Q£, r), a«</ 

(v) (U„), -- (y(w)), /« L2(& r), as « -> oo, 

for any e,Q<e< T (in (iii) for simplicity we put u„(t + h) = u„for te(T— h,T\. 
Ifu0eHi(D), then t = 0 is allowed in (i—ii) and e = 0 is allowed in (iii—v). 
Moreover, the function u satisfies (2.1). If however, u0eHl(D), then (2.5) is 

satisfied. 
Proo f of Lemma 4. We start with the calculation: 

I I! ' /2(«n),l2, + , = I f ' . (« , -« ,_ i)/h\2
m +,«*< 

J l / = 1 J(i- \)h 

(2.29) ^ M - Y £ (|M,t+
+,l)/2 + |«,_ . t + W -w)/(m+ "• 

Vm + 1/ /=i 

J»/A Y(И/)- Y(w,_,) í/t ^ C(ш, ||мJLx(/,£m + 1(Z)))) /|(D„),|2Л. 

Now, taking into account Lemmas 1 and 3, we have the first assertion of 
Lemma 4. As for any s, 0 < £ < T it holds that 

í 
T 

2 l(«я).l;+1 < C and |йв(/)li. 2 < C for all /єfc 7], 

using a standard argument (see e.g. [7, Lemma 1.3.13, p. 25]) we arrive at 
(2.26) (i). (2.26) (ii) follows from (2.26) (i) and the estimate 

J ."--«-.« + (2.30) Ĵ  \u„-u„\2

m+^Ch2 (see (2.29)). 

The estimate (2.27) is a simple consequence of (2.9) and (2.26) (i), and the 
conclusion for u0eHi(D) follows from the corresponding part of Lemma 3. 
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P r o o f of C o r o l l a r y 1. As 

(2.31) k ( 0 - « „ ( j ) L + .^ l l(»„),U,KO(£)ll-sr< 

for f, 8e[£, 7], s > 0, (i) follows easily from (2.26) (i). 
m + 1 

To prove (ii), let us note tha t f = \$(u„(kh)) - P(w(t))| '" tends to zero a.e. 

in D (through a subsequence). Because 

Lemma 2, we see that 

\f„\2{m+ ° are uniformly bounded by 

1^i/j2,-,+.,iBi<,-'">2-

Hence, the hypotheses of Vitali's theorenvare satisfied (see, e.g., [10, Theorem 
2.1.4, p. 60]) and we can conclude that 

f -> 0 as n -> oo, hence (2.28) (ii). 

The assertion (iii) follows from (2.30—31) and (2.26) (i). 
The assertion (iv) can be proved analogously to (ii). 
To prove (v) let us note that Lemma 3 implies (Un)f —* £ in L2(Qf 7) as n -> oo, 

and that by the same way as in (ii) we obtain that U„ -* y(u) in L2(Qe 7), hence 

£ = Y(«). 
Now let us show that l12(y(u)) feL2(QT). First by Lemma 3 we have that 

tl2(Un)t-*9in L2(QT) and by (2.28)(v) that tx 2(Un)f- tl 2(y(u))t in L2(Q,T), 
hence 9 = t]2(y(u))f a.e. in QT. The rest of the proof is not difficult and is 
omitted. 

Consider now that the test function cp is from C2 ](QT+ \) and set 

Фf(.v) = -
Һ 

.</• + 1)/? 

ф(x, s)ds for / = 0, 1, ..., n. 

By means of cp,- we can construct the sequences of functions {cpn} and {cp.f} 
analogously to {MW} and {un} as above. Then we have the following lemma, the 
proof of which is left to the reader. 

Lemma 5. Let the function cp, cp„ and cp,; he as above and for fixed te I let k = kn 

be such that (k — \)h < t ^ kh. Then 

ipn(kh) -> <p(/), (p„(h) -> cp(0) in U (/)), 

(2.32) (cpj, -> q>„ cp„(. + //) - cp i/i L x ( g r ) , 

(p« -* <P in L2(I; H\D)), as n-* oo. 

After these preparations it is now easy to prove Theorem 1. 
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P r o o f of T h e o r e m 1. Putting cp, into a weak formulation of (2.6) and 
adding up such identities for / = 1, 2, ..., k we obtain, after recognizable 
arrangements: 

f pkh /% (*kh i* 

H"n(kh))<pn(kh) - P(M-„(- - /.))(<p„), + Vt7„Vcp„ -
JD Jh JD JO JD 

J
*{k-\)h /» ~kh /. 

f>-„)cp„(.+/0+ §M)Vn = 
o JD JO Jr 

= f P(t/o)<pn(/t) + / t f / ( 0 , u0)<p„(h), 
JD JD where 

gn(x, t, u) = g(x, ih,u)\ 
f(x,t,u)=f(x,ih,u)\ foг(i-l)A<^iA. 

Now, letting n -* oo in (2.33), with the help of Lemmas 1 and 4, Corollary 1, 
(H2 _ 3) and Lemma 5, we obtain 

(2.34) 

f P(M(0)<P(0 - f f (P(")9, - VWcp +/(M)cp) + f f x<? = f P("0)<P(0), 
JD J JQ( J Jst JD 

where xeL2(ST) is such that g„(ii„) -* % in L2(ST) as n -^ oo (through a subse
quence). We still have to show that % = g(x, t, w). To that purpose let us first 
note that (2.34) yields 

(2.35) 

\ P("(0)<P(0 - f f (P(")<P, - VwVcp + f(u)<$>) + [ f CT = f P("('))q>(*) 
J/) J* Jo JS Jr JD 

for 0 < s < t ^ T, and that this identity continues to hold also for (p = u. In fact, 
we have already shown above that ue Wu m + \Qe T) for any s, 0 < s < T, so w 
can be approximated by smooth functions and the assertion follows easily. 

Now let 0 < s < t ^ T be arbitrary and let / = /„, k = kn be such that 
(/ — \)h < s ^ Ih and (k — 1) h < t ^ kh. Then, by the same way as in (2.33), we 
obtain 

-Ar/f ,*. pkh r> (%kh » 

,l2 + *,,(*-)*- = |3(«.(- - ! ! ) ) ( « „ ) , - |V«J 
Jih Jr Jih JD Jih JD 

J
*{K-\)h r r r 

f(ú„)ún(- +h)+\ $(un(lh))u„(lh)- P(u„(kh))u„(kh). 
( l-i)/» JD JD JD 

.(*-!)Л 

+ ' 

By Lemmas 1 and 4, (H2) and Corollary 1 we have further 
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0 + 
(2.36) 

lim sup J gn(u„) un ^ f I (p(i/)M, - |VM|2 +f(u)u) 
"-«> Js Jr J, JD 

+ J P(M(J))I#(5)- f P(W(0)"(0-
Jo JD 

Next, considering (H3_4) and taking Lemma 1 into account, we obtain 

0 ^ lim sup (gn(un) - g„(w)) (un - w) = 
n~+* Js Jr 

(2.37) 
= lim sup .iŠЛЮa--[[/"-[. g(w) (u - w), 

which holds for all weL2(ST). So, if we estimate the first term on the right-hand 
side of (2.37) by (2.36) and apply (2.35), it can be seen that 

0 ^ ÍJ 
Js J 

ІX - g(w)) (u - и-) for all w є L2(SГ). 

Now, by standard arguments we may conclude that x = #(** U u) a.e. on ST. 
To prove the energy inequality (2.4), let us note (2.23), which with the help 

of (2.24) yields 

(1 -Kh)4m Ckh 

(m + l)2 Jih 
^(U„)2 + J(ӣ„ (t)) ^ J(щ) 

and the assertion follows easily from (2.28) (v), Lemmas 2 and 4, (H2 _ 3) and the 
weak lower semicontinuity of a norm. The proof of Theorem 1 is complete. 

P r o o f of P r o p o s i t i o n 1. Put 

I(vv) =1 (ilVиf + c ím+lYVľ i + i Ew) + 
JГ Jo 

G(r)dr f o r w e K 

We merely show that I is a continuous, strictly convex and coercive functional 
over V. The existence of the unique solution v of Problem (2.7) then follows 
immediately if the classical results concerning the minimization of I, namely the 
existence and the characterization of the solution, are taken into account (see 
e.g. [5, Theorem 26.8]). Due to the assumptions (H3) and (2.13), the continuity 
of I in Fwith the norm |-|, 2 if 0 < m ^ 1 or |V-|2 + |-|m + 1 if m > 1 is evident. 
The convexity of I is guaranteed by (H4) and strong convexity by the term | • \Z X ! • 
To show the coercivity let us note that (H 3 _ 4 ) and (2.12) implies 

I I G(r)dr^\ G(0)w^ - J \ |Vvv|2 + | \w\m + l) - C(T]). 
Jr Jo Jr \JD JD / 

Choosing r\ sufficiently small, we arrive at 
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Цw)žc(\ |Vиf + ľ k r + lj-c, 

hence the conclusion. 

3. L00 solvability 

In this section we shall discuss Problem (1.1) providing that the initial 
function u0 is bounded. The question arises whether the solution u would be 
bounded for any later time under our hypothesis (H). To answer this question 
it seems to be necessary (for our way of proof) to add an additional condition 
on the function g. Therefore, let us assume instead of (H): 

(H,)* u0eL™(D). 
(H 2 _ 4 ) as in Section 2. 
(H5) there exists a function reLco(ST) such that 

g(x, t, r(x, t)) = 0 on ST. 
We shall refer to these hypotheses as (H)*. 
Now we can state the main result of this section. 

Lemma 6. Suppose that (H)* holds, and let 0 < m < oo. Then the estimate 

\un(0L < (Kloo + \\r\\L«{S( + h) + (^^llfWIILco^^))1^). 

• exp (((K +s)(t + h)/m(\ - eh)) 

holds for any t, 0 ^ t < T and e, 0 < e < h~\ 
As the simple consequence of Lemma 6 we have 

Corollary 2. Suppose that (H)* holds, and let 0 < m ^ 1. Then the solution u 
of Problem (1.1) satisfies 

(3.2) MOL ^ ( k L + \\r\\L^St) + (e-x\\f(0)\\L^m) e x p ( ^ £ ) ' 

for allO ^t ^T and 0<s< oo. 
P r o o f of Lemma 6. First we have to show that uieLco(D) for any i = 

= 1, 2, ..., n. To prove this, it is sufficient to demonstrate that veU°(D) 
whenever FeU°(D) and g satisfies (H3_5) (see Proposition 1). We shall follow 
the idea from Kacur's paper [9]. 

Suppose the contrary, i.e. there exist a sequence {c,}, c, ̂  c,+ i, c,-> oo as 
j-» oo and a sequence of sets Kj = {xeD: \v(x)\ > c,} such that \Kj\ > 0. Put 

J (cySignt; xeKj . 

287 



We obtain the contradiction by showing that \(Vj) < l(v) for sufficiently largej, 
which contradicts the minimum property of v. In fact, veH\D) implies that 
VjSH\D) too and we can compute 

\(v)-\(vj)^c(m+ \)~]\ (\v\m + ] - c ™ + ])- J F(v-Cj) + 

+ f f G(r)dr ^ (Ccp - |F| J f (\v\ - Cj) > 0 
JT J Cj sign v JKj 

for sufficiently large j, as G(x, t, £)d£^0 if cy ^ IMIE*^ hence the 
, . Jc. sign v 

conclusion. J 

Now we can proceed to deriving the estimate (3.1). Putting (p = I*/,!*sign w, 
into a weak formulation of (2.6), where the positive integer k is arbitrarily large, 
we obtain 

f |W,|* + * + kh f |«,|*"' |VW/|
2 + /i f g{ih, u) \u\k sign W/ = 

JD JD Jr 

= h f (/((i - 1)A, u,_ ,) + tr-!P(t/,_ ,))|M/|*signi.,. 
JD 

Now, the last term on the left-hand side of the equality above can be estimated 
using (H4_5) as follows: 

- \(g(iK ud sign IO \u\k ^ - \g(ih, 0) \r(ih)\k, 

and using (H2) we obtain further 

(3.3) 1 N * + W ^ ° + ^afc>X>l*r*|ik^l^^-^^l^ -̂  l-XXC* — 1)*, O ^ A ^ k l * + 
+ te(^0)Ur|_nw.1|r(/A)|*. 

Next, due to Young's inequality, (3.3) yields 

(3.4) (1 - eh)\jul\
k + m ^ (1 - fi*)(l + t]h)\ N ' k ^ r + C,A, 

where TJ = (K + e)/(\ — eh) and 

C. = |g(îft, 0)Ц г\Пn-1 IHI W , + л) + - ^ - ( — ^ — ) |D| IIЛ0)lk«(cд 

m + k\є(m + k)J 

k/m 
(k + m)/m 
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Again, using Young's inequality in (3.4), we arrive at 

f |u,r m < 0 + Vhf + m)lm f k.,f + " + C2h, C2 =
 (m + fc)f', 

JD JD m(\ — £A) 

from which we obtain successively 

f N* + ™< ( i + r/Ay (-+*>*»([ | W o r + - + *% ), 
JD \JD ((1 + rih)im + k)/m - 1)/ 

and further (see (2.16)) 

(3 .5 ) J |w,|* + m ^ (1 + t]hfm + *)/,M ( J \u0\
k+ m + C2/^J. 

Now, taking the (k + ra)-th root of (3.5) and letting k -» oo, we obtain 

Moo < 0 + ^ " ( K l o o + IMIL«<SI + 4> + (^1|l/(0)llLx(^)),/m), 

and then (3.1), as t ^ I'A < t + A, proving Lemma 6. 

4. The case of fast diffusion 

We start this section by stating its result. 
Theorem 2. Let m > 1 and suppose that (H)* holds. Then Problem (LI) admits 

a unique solution u such that 

ueL\I;Hx(D))nL«(QT), r ' ^ e L ^ / ; H'(D)), 

t"2(Y(t.))feL2(Qr), 

the equation is satisfied in the sense that 

(4.2) JO((P(K(/))) .W + V«(/)Vw - / ( / , u(t))w) + ig(t, u(t))w = 0 

for any we H'(D) and a.e. on I, and u satisfies the "maximum"principle (3.2). 
If, in addition to (H)*, t/0eH '(D), then 

(4.3) ueL»(I;Hl(D))nL™(QT), (y(u)UL
2(Qr), 

and if we consider f(x, t, u) =f(x, u), g(x, t, u) = g(x, u) only, then the energy 
inequality (2.4) remains to hold. 
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The development of the proof which we present here is closely related to the 
one in Section 2. As this proof is even easier, we shall proceed briefly (see also 
[3], where the problem with homogeneous Dirichlet boundary conditions is 
discussed). First, let us recall that Proposition 1 and Lemmas 1—3 yield the 
following. 

Corollary. 3. Under the hypotheses of Theorem 2 there exists the function u 
such that un-*u in L2(I; H\D)) asn->oo, 11/2|w„(0li, 2 < Cfor allO <t ^ Tand 
the sequence {tl/2(Un)t} is bounded in L2(QT). 

Next, similar arguments as in Lemma 4 prove (with the assistance of Lem
ma 6 and Corollary 3) 

Lemma 7. Let m > 1, and suppose that (H)* holds. Then for any s,0<s<T 
there exists a subsequence of {n} such that, by relabelling, we have 

Un->U in C([e/T]; L2(D)), 

(4.4) 0n-+U inL2(Q,T), 

(Un)t - Ut in L2(Q€^ T), as n-+ 00, 

and by the monotonicity argument U = y(u). Moreover, also 

Wn^$(u) in C([s, T], L2(D)), 

(4.5) Wn^$(u) inL2(Q£,T)and 

(Wn)t - ($(u))< in L2(Qe, T), as n -> 00, 

where Wn, Wn are constructed analogously to un, un (see (2.8), (2.25)) by means 

ofm. 
Proof of T h e o r e m 2. To prove (4.2), let us note that using our nota

tions, (2.7) may be rewritten in the form 

J \ w ( 0 ) , v v + Vun(t)Vw -fn(t - h, un(t - h))w) + ^gn(t, un(t))w = 0 

where tel and n is sufficiently large. Multiplying this identity by qeL00^ and 
integrating over (e, T) we obtain, after letting n -> 00, 

\ I ((P(")),w + VaVvv -f(u) w)q + I I %wq = 0, 
J JQ£ T J JS£t T 

where % e L2(ST) is such that gn(un) -*%'\n L2(ST). The fact that % = g(x, t, u) a.e. 
on ST can be demonstrated by the same way as the corresponding part in 
Section 2. So we arrive at (4.2). The rest of the proof follows easily and we omit 
further details. 
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5. Comparison, continuous dependence and local existence 

We begin by proving the comparison principle and the continuous depen
dence of solutions of (1.1) on initial data. For this purpose we will make the 
following assumptions: 

(A,) fe C(QTx R) and for any MeR+ there exists a constant K = K(T, M)e 
e R + such that 

| /(x , t, u) ~ / ( x , t, v)\ ^ K\$(u) - Hv)\ 

for all (x, t)eQT, \u\, \v\ ^ M. 
(A2) geC(STx R), nondecreasing in u, and for any MeR+ there exists a 

constant L = L(T, M)e R+ such that 

\g(x, t, u) - g(x, t, v)\ ^ L\u - v\ 

for all (x, t)eST, \u\, \v\ ^ M. 

Definition 1. By a weak solution of Problem (1.1) on I we mean a function 
ueL2(I; Hl(D))nL*(QT) such that 

(5.1) 

f P(W(t))cp(0 - f f (P(a)cp, - VaVcp +/(w)q>) + f f g(u)q> = f P(%)(p(0) 
JD J JQ( J Jst JD 

for all (peC2,1 (QT) and each teI. 
A function u is a weak subsolution (supersolution) if ^ ($*) replaces the 

equality in (5.1) whenever q> ^ 0. 
Clearly, the solution u of (1.1) in the sense of Theorem 1 or 2, provided that 

(H)* holds, is also a weak solution of (1.1). 
Theorem 3. Suppose that (A,) and (A2) are satisfied, and u0, v0eL"°(D). 
(i) Let u, v be weak solutions of Problem (1.1) with initial data u0, v0, respec

tively. Put M = rnax(||w||LX(£r), IMIL*<or))- Then 

(5.2) |p(W(0) - PO(0)h ^ IP(«b) - P(%>li exp(#t), tel. 

(ii) Let u be a subsolution and v a supersolution of Problem (1.1) with initial 
data u0 and v0, respectively. Then u0 ^ v0 implies that u ^ v a.e. on QT. 

Proof. We consider two cases. First suppose that P"1 is locally Lipschitz 
continuous (0 < m ^ 1). 

We start with (ii). For u and v, (5.1) gives 

(5.3) f (P(w(r)) - P(y(t)))cp(t) - f f (P(W) - P(D))(cpf + aAcp) + 
JD J Jot 

291 



+ ÍI ("" Ч ô ф + ә^) ̂  l ( ß ( M o ) ~ß(l,o))ф(0) + íí (/(м) "/(t;))(f) 

where 0 ^ t ^ Tis arbitrary but now fixed, a(= a(x, t)) = (u — u)/(P(w) — P(t>)) 
and b(= b(x, t)) = (g(x, t, w) — g(x, t, v))/(u — D). It is not difficult to see that 
both functions a and b are non-negative and bounded. Now we choose a 
sequence an of smooth functions such that 

(5.4) I < a ^ | | a | | + 1 , <&LZA-+0 in L2(Qr) as «-» OO 

n n Ja„ 

(see [1]), and for arbitrary £, 0 < s < 1 we choose a function be, say bge C2(ST) 
such that 

(5.5) 0 < b < HbllLx^ + 1, ||b£ - b\\Lii5i) < e. 

Next, let cpn be a solution of the backward problem 

(qO, + artA<p„ = Aq>n xe A se[0, t), A > 0, 

(p„(x, t) = jr(x) xeD, 
(5.6) 

^ + 6£ф„ = 0 xeГ, sє[0, t), 
дv 

where #(x)e C0

X(Z)), 0 ^ j ^ 1. Putting s = t — r, one can obtain the following 
result: 

(i) Problem (5.6) has an unique solution <pweC2, ](Qt) 
for any n = 1, 2, ... (see [11, Theorem 7.4, p. 560]). 

(ii) 0 ^ (p„(x, s) ^ exp( —A(t — s)) on D, 0 < s < t 
^ 5 J ) (see [11, Theorem 7.3, p. 556]). 

(iii) J J an(A<pn)
2 < C(£, x) for all n =1,2,.... 

To prove (5.7) (iii) we multiply the equation in (5.6) by A<pn and integrate it over 
Qn and one can then find that 

ľ ľ (aл(AФй)
2 + Л|VФл|

2) + ľ ľ M + i ľ |VФn(0)|2 = i ľ |V*|2 + 
J Jçt J Jst JD JD 

ШtWnit) - KфWnШ - ï\\s ҹlФòs-

(5.8) 

AS the left hand side of (5.8) is a sum of positive terms and with the help of 
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(/(и)-Л«) + A(ß(M)-ß(»)))фи. 
Q, 

(5.7) (ii), the right-hand side may be estimated indepedently of n, (5.7) (iii) 
follows. 

Now, if we put (p = (p„ into (5.3), we obtain 

f (P("(0) - PMO))* ^ f (P("o) - P(i>o))<P„(0) + f f (u - v)(be - 6)9. + 
J D JD J Jst 

+ \\ (^(u)-fi(v))(a-a„)A^ + j 

Next, with the assistance of (5.4), (5.7) (ii), (iii), and letting n -> oo, we arrive at 

f (P(«(0) - P(t>(0))* < [ (P("o) - Hv0)
+ exp(-At) + 

JD JD 

(5.9) f f 

+ J J (/OO -/OO + *(P00 - P00))+ exp(A(s - 0) + C||b - bJL2(5/), 

where £ + = max (£, 0) and the constant C does not depend on n. As the last term 
on the right-hand side of (5.9) may be arbitrarily small by the choice of be 

(c.f. (5.5)), it can be omitted. 
The proof of our assertions now may proceed by the same way as in the 

corresponding part of [1] and we leave it out here. The case of m > \ (see [3]) 
is similar and is left to the reader. 

From now on, let us takef(x, t, u) = f(u) and g(x, t, u) = g(u) only so that 
the problem is 

(P(M)), = AM+/ (M) xeD, t>0 

(5.10) -7 + g(u) = 0 xer, t > 0 
ov 
u(x, 0) = u0(x)eLco(D). 

Define E(M)=/(p-'(w)). 
We will use the following hypothesis: 
(B) E, geC ' (R) , g(-) is nondecreasing on R and there exists reR such that 

g(r) = 0. 
The following theorem is a relatively simple consequence of the results discussed 
above, but may be useful in the study of (5.10). 

Theorem 4. Let (B) be satisfied, and suppose that 0 < m < oo and u0eLx(D). 
Then there exists a time tmax, 0 < tmax ^ oo such that Problem (5.10) has a unique 
weak solution (in the sense of Definition 1) on any [0, T\9 0 < T < tmax. Moreover, 

t1/2t/eL°°(0, T; Hl(D)\ t]'2(y(u))teL2(QT) 
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and the energy inequality (2.4) remains to hold for allO < s ^ t < tmax. In the case 
'max < °° we have 

(5.11) lim |t/( t) |x= +00. 
' - 'max 

Besides, if f satisfies 

(5.12) (f(u) - f(0)) signu ^ K\$(u)\ for all i/e R, 

where K is a nonnegative constant, then tmax = oo, i.e. there exists a global solution 
of (5.10). 

R e m a r k s , (i) The preceding theorem can be easily extended to the case 
when the functions f and g depend also on x, 

(ii) We shall denote the solution u of Problem (5.10) with the initial function 
u0 at time t by u(t, u0). 

The p roo f of T h e o r e m 4 proceeds in a standard way: Put M = 
= |w0|x + r + (f(0))1 m and define 

f (u) = Sf(») for \u\^M+\, 
\f(M+ 1) otherwise. 

Then Problem (5.10) with f replaced by fM has a unique global solution uM 

(Theorem 1—2, Corollary 2), and it satisfies 

kv/C, w0)lx < M exp((K: + 1) t/m) for all 0 ^ t < oo, 

whereK= max F(B(r)). Now wetake t, = — — ln(l + — jandonecan see 

that uM(t, u0) is a solution of the original Problem (5.10) on [0, t,]. By using the 
continuation procedure we obtain tmax, 0 < tmax ^ x so that (5.10) has a unique 
maximally defined solution u(t, u0) on [0, tmax). 

To prove the energy inequality (2.4) for all 0 < s ^ t < tmax, let now 0 < 
< s < t < tmax be arbitrary but fixed. We have already evidenced that u(s, u0)e 
e H\D) n U (D) and denote u0 = u(s, u0). By Theorems 1 and 2 we immediately 
obtain 

í (y(м(-, ûo)))? + Äu(t - 5, щ)) ^ Ąщ), 

but as u(x, u(s, u0)) = u(r + s, u0) for all 0 ^ r < t - s, the energy inequality 
(2.4) follows easily. 
Now let tmax < x . First, we show that 

(5.13) lim sup|w(t, u0)\y = x . 
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If it does not hold, then \u(t, uQ)\^ ^ C for all 0 ^ t < tmM and (2.4) yields 
/•'max /» 

(y(u)ft ^ C for fixed 0 < s0 < tmax. So we have \y(u(t)) - Y(w(s))|2 ^ 
Js0 JD 

^ C\t - s|1/2 for all t, se[s0, tmax), which implies that lim y(u(t, u0)) exists in 

L2(D). Let us denote it by V. Next, (2.4) gives that w(t, w0)-- y in H\D) as 
-̂̂ ^max a n - from the monotonicity of y, that V = y(v). Then we have i;e 

eH\D) n L°°(Z)) contradicting the maximality of tmax. Now suppose that (5.11) 
does not hold. Then there exists a sequence {t„}, tn -» t~ax as n -> oo with 
\u(tn, w0)L ^ C. Let A: be a Lipschitz constant o f / o n [0, M + 1], where M = 
= C + r + (/(0)),/m. Then for all n we have by (3.2) 

\u(tn + t, w0)|x = K t , u(tn, w0))|x ^ M exp(0K + l)t/m) 

for O ^ t ^ t * , where M exp((K+l) t*/m) = M + 1. So \u(tn + t, i/0)|x ^ 
^ M + 1 for all n, 0 ^ t ^ /*. But for sufficiently large n we have tmax < tn + t*, 
therefore |w(r, w^L ^ M + 1 for tn ^ r < tmax, which contradicts (5.13). 

Now let /satisfy (5.12). Define 

fU , {max(/(0),0) + *_V" f o r ^ O ^ f , _ { 0 for W ^ r 
7 ( W ) ~ jmax( / (0 ) , 0 ) f o r W < 0 ' g {u) ~ \g(u) for u < r a n d 

. _ , , fmin(/(0), 0 ) - ^ ( - t / r f o r t / ^ 0 - f 0 ) = to for W ^ r 
7 W lmin(/(0), 0) f o n / > 0 ' g w [0 for u<r' 

Then Problem (5.10) with/, g and w0 replaced b y / + , g+ and w0
+(= max(w0, 0)), 

respectively, has a unique global solution u+ (Theorem 1—2, Corollary 2), and 
it is not difficult to check that it satisfies 

0 ^ u + (U u+) ^ (|i#oloo + r + (f(0))llm) exp((K+ l)t/m) 

for all 0 ^ t < oo, and analogously, 

- (Woo + ' + (/(0)),/w) exp((K + l)t/m) ^ u~(U u0~) ^ 0 

for all 0 ^ t < oo. Now, it can be seen from the construction of/+ , g+ and 
/ " , g~ above that u+ is a supersolution and u~ is a subsolution of Problem 
(5.10). Hence 

u~(t, u0~) ^ w(t, w0) ^ W + (t, W0
+) 

and the solution u exists globally. 
The proof of Theorem 4 is complete. 
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НЕЛИНЕЙНОЕ ДИФУЗНОЕ УРАВНЕНИЕ С НЕЛИНЕЙНЫМИ 
КРАЕВЫМИ УСЛОВИЯМИ: МЕТОД ПРЯМЫХ 

5кп ЕЛ о 

Р е з ю м е 

В работе рассматривается возмущенное уравнение типа нестапионархой фильтрации газа 
и возмущенное уравнение типа быстрой дифузии с многими пространственными перемен
ными в ограниченой области с нелинейными граничными условиями (1.1). 

В статье доказано существование, единственность и некоторые особенности обобщен-
ныцх решений. 

296 


		webmaster@dml.cz
	2012-08-01T04:39:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




