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Math. Slovaca 41, 1991, No. 4. 337—349 

PERIODIC SOLUTIONS OF THE THIRD ORDER 
PARAMETRIC DIFFERENTIAL EQUATIONS 

INVOLVING LARGE NONLINEARITIES 

JAN ANDRES — VLADIMIR VLCEK 

ABSTRACT. Sufficient conditions are carried out for the existence of the periodic 
solutions to the triad of parametric third order equations. The main endeavour is 
that involved nonlinearities a(x") or b(x') or c(x) be not restricted too much. 
The uniqueness and the nonstability criteria are established in the special cases 
as well. 

Introduction 

This paper deals with the existence of periodic solutions to the following triad 
of differential equations 

x'" +L(t,x) = a(x"), (1) 

x'" +L(t,x) = b(x'), (2) 

x'" +L(t,x) = c(x), (3) 

where L(t, x) := f(t)x" + g(t)x' + h(x) + p(t) + q(t, x, x',x"). 
In the entire text we assume that the functions f(t) G C^R1), g(t) G C2(R2), 
p(t) G C(R!) and q(t,x,y,z) G C(R4) are u>-periodic in t. Furthermore, let 
h(x) G C^R1) and a(z),b(y),c(x) G C(R!). 

The main emphasis is focussed on the nonlinearities a(z) , b(y), c(x) in order 
to relax the conditions imposed on them as much as possible. Although several 
previous contributions, related usually to the equation x"' + L(t,x) = 0 with 
the constants f(t) = a, g(t) = b, are improved, extended or completed here, 
especially when b < 4n2/u2 (cf. e.g. [1]-[10]), this could not be performed so 
simply if the equations would comprise a t variable in the functions a, b, c; even 
when comparing the lesults established by the standard methods only (cf. e.g. 
[11], [12]). 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 34C25 
K e y w o r d s : Periodic solution, Leray-Schauder alternative, Large nonlinearities 
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Recently, mainly the equation x"' + ax" + bx' + h(t, x) = p(t) + q(t, x, x', x") 
has been treated (see e.g. [13]—[18]) with special respect to put the restrictions 
concerning the quotient h(t, x)/x more liberal. There are also known some ear­
lier results (see e.g. [19], [20]) for the third order equations with the general 
right-hand side, but the obtained criteria are not very explicit, and thus practi­
cally not comparable with ours. 

The existence of an u> -periodic solution of (1), (2), (3) is proved via the 
(Poincare) periodic boundary problem, i.e. in order that the solution x(t) of the 
given equations satisfies the conditions 

X «>(0) = i ( Л ( w ) , j = 0,1,2 (ш>0). (P) 

It is clear that such a solution can be extended on the whole real axis in the 
LO -periodic way. 

In order to perform this, we apply the following standard Leray-Schauder 
alternative (cf. [3, p. 103]). 

Proposition. If all u -periodic solutions of the one-parametric family of 
equations 

x" + nL(t, x) + (1 - fi)ex = nw(x, x',x"), ft e (0,1), (S) 

where w(x,y,z) denotes a(z) or b(y) or c(x) and e is a suitable nonzero real, 
are uniformly a priori bounded together with their first and second derivatives, 
independently of JJL £ (0,1) , and the linear equation, resulting from (S) for \i = 
0, has no nontrivial UJ -periodic solution, then the equation obtained from (S) 
for fi = 1 admits a harmonic. 

R e m a r k . One can readily check that the second requirement follows im­
mediately for every nonzero e, and consequently, we restrict ourselves to verify 
the first condition only. 

The main tool for proving the a priori estimates required in Proposition 
will be, besides the well-known Schwarz inequality, the following Wirtinger-type 
inequality (cf. e.g. [5], [10], [16] and the references included) 

u> u 

f[x(k)]2(t) dt < OJ2
0 J[x^k+1)]2(t) dt, k = 1,2, (W) 

0 0 

where x(t) G C 3 (0 ,CJ ) satisfies (P), LJ0 =UJ/2TV. 

Hence, we proceed by the standard method developed by V i 11 a r i in [2]. 
More concretely, the same technique is applied here to equation (3), similarly 
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as it was performed, e.g., in [3], [5], [10] and many other papers (see also the 
references included and survey article [6]) for much simpler equations than (3). 
For equations (1) and (2) the appropriate modification of such a manner is 
employed in the analogous way. 

Concerning the notation, we use for the sake of brevity the symbol q[t] for 
the composed function q(t,x(t),x'(t),x"(t)). At last, the "plus" constant, say 
M + , means the following 

4 . , M for M > 0 
M+ : = ł 

0 for M < 0. 

1. Equation (1) 

T h e o r e m 1. Let the following assumptions be satisfied: 

(i) Jp(t)dt = 0, 
0 

(ii) 3H' (a nonnegative constant): \h'(x)\ < H' for all x, 
(iii) 3a,/?,7 (nonnegative constants): \q(t,x,y, z)\ < a\z\ + f3\y\ + 7 , 

uniformly for all t,x, where (UJQ :=U/27T) 

í ì : = l - au-o + {P + M+)u>l + H'ul + \G2^\ > 0 , 

M:= max lf'(t) + g(t) , G2 := mex\-g'\t)\, 
tG(0,u;)L2 J t€(0,cv) 

(iv) 3 R (a positive constant): ft(x)sgnx > h or ft(x)sgnx < —h 
for \x\> R, where h := A + 7 + (N + j3)D' + aD" , 
A:= max \a(z)\, D" := u(P + 7 ) / f i , D' := u>0D" , 

\z\<D" ' V ' V H 

P := max \p(t)\, N := max \f'(t) - g(t)\. 
*e(o,u;) te(o,u>) 

Then equation (1) admits an UJ -periodic solution. 

P r o o f . Consider 

x" + fj.L(t,x) + (1 - n)ex = fia(x"), (Si) 

where //G (0,1) is a parameter and e 7-- 0 is a suitable constant. Let x(t) be a 
solution of (Si )-(P) . 

Substituting x(t) into ( S i ) , multiplying it by x"'(t) and integrating the 
obtained identity from 0 to w, we obtain 

UJ UJ 

Ax'"]2(') f" -- /' I Lit, ~{t))x'"{t) At - 0. 
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Integrating the first, the second and the third term in L(t,x(t))x'"(t) by parts, 
we get by means of (W) and the Schwarz inequality that [cf. (ii)-(iv)] 

J[x'"}\t) dt < У2G2Wo + M+wo + Я ' w o + (awo + ßш%) 

u/ u/ 

J[x"f(t) dt + (P + 1 ) ^ J[x'"}2(t) dí, 
o \ o 

i.e. [see (iii)] 

f[x'"]2(t)dt < u(P + ~f)2/n2 := Dj. 
0 

Applying (W) again, we come to 

r[x"?(t)dt<u>lDl:=Dl, 
JO 

r\X>nt)dt<J$D\:=Dl 
JO 

Since (according to Rolle's theorem) there exist points ii , i2 £ (0,u;), such that 
x'(t\) = 0 = xn(t2), ^e arrive at the inequalities 

\x'(t)\ < í \x"(t)\ dt< LO í[x"}2(t) elf = v ^ o 2 : D\ (4) 
o \ o 

U-' U/ 

k"(OI < [\x"'(t)\dt< u> f[x'"]2(t)dt- y/^Ds : F>". (5 
0 \ 0 

Now, substituting x(t) into (Si ) and integr, ting from 0 to w, we obtain 
[cf. (i)] 

J[iih(x(t)) + (1 - »)ex(t)} dt = fij{a(x"(t)) - [g(t) - f'(t)}x'(t) - q[t}} dt. 
o 
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If min \x(t)\ > i? , then choosing e ^ 0 in order to be [see (iv)] eh(x)x > 0, 
t€(0,u;) 

we get by means of (iii), (iv), (4), (5) that 

Idr < hu, J\h(*(t))\< 

when multiplying the foregoing identity by sgn ear. This, however, leads to the 
contradiction with (iv). Therefore 

min \x(t)\ < R, 

and consequently 

\x(t)\ < R+ f \x'(t)\dt <R + yfaDx :=D for t £ (0,o;). (6) 

2 
It follows from (4), (5), (6) that £ \x{j)(t)\ < D + D' + D" holds for every 

i=o 
a;-periodic solution of (Si ), independently of it £ (0,1) • 

Hence, applying Proposition, the proof is completed. 

2. Equation (2) 

Theorem 2. Let the following assumptions be satisfied: 

(i) Jp(t)dt = 0, 
0 

(ii) 3e (a positive constant): \f(t)\ > e for t £ (0,o;), 
(iii) 3 Hi (a constant): h'(x) sgn f(t) < H\ for all x, 
(iv) 3o;,/3,7 (nonnegative constants): \q(t,x,y,z)\ < a\z\ +j3\y\+*y, 

uniformly for all r,.r, where (LOQ :=OJ/2TT) 

•= £ - "l (\G+ + Я + ) - (a + ßШo) > 0, n . - - V 2 . 
C7i := max \g'(t) sgn f(t)], 

te{o,u) 
(v) 3R (a positive constant): h(x)sgnxsgn/(r) < —/i /or |x| > i?, where 

h:=B + ~y + (p + N)D' + ocD2/^} 

N:= max \f'(t) - g(t)\, B := max |6(y)|, 
«6<o,cv) | y | < D ' 

F>'=^P2. n , : = v ^ ( - P + 7)/n, P'= maxJp(r)|. 
«6(0,u>) 
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Then equation (2) admits an LO -periodic solution. 

P r o o f . Consider 

x" -f fiL(t, x) -f (1 — n)ex = fib(x'), ( s 2 ) 

where /i G (0,1) is a parameter and e^-O is a suitable constant again. Let x(t) 
be a solution of (S2 )~(P)-

Substituting x(t) into (S2), multiplying it by x"(t) and integrating the 
obtained identity from 0 to u, we have 

u> u> 

li f L(t,x(t))x"(t)dt = (l-fi)e f[x']2(t)dt. 

0 0 

Integrating the second and the third terms in L(t, x(t))x"(t) by parts, we get 

f ut u> u> \ 

/* J ff(t)[x"f(t) dt -f[\g'(t) + h'(x(t))} [x']2(t) dt +J [p(t) + q[t]] x"(t) dt 

lo 0 0 
Ш 

= (l-џ)ej[x']2(t)dt. 

Choosing e in order to be ef{t) < 0, we get furthermore by means of (W) and 
the Schwarz inequality, when multiplying the last relation by sgn/(r) that [cf. 
(ii)-(iv)] 

U> U> 

ej[x"]2(t)dt< J\f(t)\[x"]2(t)dt 

0 0 

u> u> 

< sgn f(t) J [±g'(t) + h'(x(t))} [x']2(t) dt + J \p(t) + q[t]\\x"(t)\ dt 

0 0 

u> 

< ["1(^0+ + H+) +(a + /3u,0)] J[x"]2(t)dt + (P + j)^ 

0 

i.e. [see (iv)] 

N 
J[x"]' (t)dt, 

f[г"]2(t)dt <w P + f)2/U — D 
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Applying (W) again, we come to 

u> 

J\x'\\t)te<ulD\x=D\, 
0 

and consequently 

u 

\x'(t)\ < J \x"(t)\ dt < yfrD2 := D\ (7) 

0 

with respect to the existence of a point t\ € (0,u>) such that x'(t\) = 0, implied 
by Rolle's theorem. 

Now, substituting x(t) into (S 2 ) and integrating from 0 to w , w e obtain 
[cf. (i)] 

U> Uf 

J[l*h(x(t)) + (1 - fi)ex(t)} dt = fij{b(x'(t)) - [g(t) - f(t)]x'(t) - q[t]} dt. 

Because of ef(t) < 0, we would get for min \x(t)\ > R that [see (iv), (v), (7)] 
te(o,u>) 

u> 

f\h(x(t))\dt<hu, 

when multiplying the foregoing identity by sgnx and sgnf(t), a contradiction 
to (v). Therefore 

min \x(t)\ < R« 
te(o,u>)] 

and consequently 

\x(t)\<R+ j\x'(t)\dt<R + y/^Dx~D for t e (0,a;). (8) 

o 

At last, substituting x(t) into ( S2 ), multiplying it by x"'(t) and integrating 
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from 0 t o u, we obtain in a similar way as above t h a t [cf. (iv), (v)] 

U> UJ 

j[x"']2(t)dt < J \x"'(t)\{[a + |/(0I] |x"(0l + E] dt 

f U/ U/ 1 1 U/ 

<lj[x'"]2(t)dtj[a + \f(t)\]2[x"]2(t)dt\ +V^E \J[x»']*(t)dt 
l o o J \ o 

< [(a + F)D2 + V^E] 

V 

u> 

J[x»']Ңt)dt, 

where E := B + j + H + P + (G + p)D', F := m a x | / ( * ) | , G := m a x \g(t)\, 
t€(0,u;> <€<0,u;) 

H := max |ft(ar)|. 
\*\<D 

Hence, J[x"'}2(t)dt < [(a + F)D2 + ^JE]2 := D\ , 
o 

and consequently 

U/ 

V"(t)\ < f \x'"(t)\ dt < y/ZD3 := U", (9) 

with respect to the existence of a point t2 G (0,u->) such tha t x" (t2) = 0 , implied 
by Rolle's theorem. 

Summarizing (7), (8), (9), we arrive at the same conclusion as in the proof 

of Theorem 1, when applying Proposit ion. 

3 . E q u a t i o n (3) 

T h e o r e m 3 . Let the following assumptions be satisfied: 

(i) Jp(t)dt = 0, 
0 

(ii) 3 a , / ? , 7 (nonnegative constants): \q(t, x ,y , z)\ < a\z\ + /3\y\ + 7 , 
uniformly for all t. x, where (LJQ :=U)J2TT) 

fi := 1 - auj0 - ( A + + /3)^2 > 0 , 
1 

K := m а x 
tЄ<0,u;)L 

g(t) - Ђľ(t) 
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(iii) 3R (a positive constant): h(x)sgnx > h or h(x)sgnx < —h 
for R< \x\ <D, 
h:=C + ~i + (p + N)D' + aD2/^, 
N := max \f'(t) - g(t)\, C := max |c(x)|, 

t(E(0,u;) | x | < D 

D:=R+y/u3u>0D2, D2 := LOLJ2(P + 7 ) 2 / f t 2 , D' := ^D2 , 
P := max \p(t)\. 

Then equation (3) admits an to -periodic solution. 

P r o o f . Instead of x"' + fiL(t, x) + (1 — /i)ex = Lfc(x), consider 

xm +fi[f(t)x" +g(t)x' + h*(x)+p(t) + q(t,x,x',x")]+(\-fi)ex = Lzc*(x), (S*) 

where 

h(x) for \x\ < D mf f c(x) for |x| < D 

sgnx) for |x| > D, 
= f h(x) for |x| < D = | c(x) 

V \ /i(Z)sgnx) f o r | x | > £ ) , y>' \ c(D 

/i G (0,1) is a parameter and e ^ 0 is a suitable constant. Let x(t) be a solution 
o f ( s ; ) - ( P ) . 

Substituting x(t) into (S3 ), multiplying it by x'(t) and integrating the ob­
tained identity from 0 to w, we get 

Lj <jj 

J[x")2(t) dt = ^J [f(t)x"(t) + g(t)x'(t) + p(t) + q[t]]x'(t) dt. 

0 0 

Integrating the first term on the right-hand side of the last relation by parts, we 
get by means of (W) and the Schwarz inequality that [cf. (ii), (iii)] 

W LJ LJ 

J[x")2(t) dt<J [g(t) - l-f'(t)] [x')2(t) dt + J\p(t) + q[t]\\x'(t)\ dt 

< [au0 + (K + + (3)LU2} J[x"]2(t)dt + yfiu,0(P + l) \ J[x"}2(t)dt, 

0 \\ 0 

i.e. [see (ii)] 
LJ 

i[x"]2(t)dt<Looj2(P + 1)
2/Q2 :=D\. 
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Applying (W) again, we obtain 

u/ 

j[x'}2(t)dt<u:2D2:=D2, 

0 

and consequently 
\x'(t)\ < v ^ D 2 := D' (10) 

with respect to the existence of a point t\ G (0,u;) such that x'(t\) = 0, implied 
by Rolle's theorem. 

Now, substituting x(t) into (S3 ) and integrating from 0 to J , we obtain 
[cf. (i)] 

Ш <jj 

J [џh* (x(t)) + (1 - џ)ex(t)} dt = fij{ [f'(t) - g(t)} x'(t) + c' (x(t)) - q[t]} dí 

If min \x(t)\ > R, then choosing e ^ O in older to be [see (iii)] eh*(x)x > 0, 
t£(0,u;) 

we get by means of (ii), (iii), (10) that 

LJ 

f\h*(x(t))\dt<h*>, 

0 

when multiplying th fore oing identity by sgn x . This, however, leads to the 
contradiction with (iii). Tl iefore, 

min \x(t)\ < R, 

and consequently 

\x(t)\<R+y/^Dx:=D for t e (0,u). (11) 

Finally, substituting x(t) into (S3 ), multiplying it by x'"(t) and integrating 
from 0 to u>, we obtain in a similar vay as above th i t [cf. (ii), (iii)], 

UJ 

f[x'"}2(t)dt < [(a + F)D2 + /^E}2 : - D\, 

0 

wh re E := C* + -, + H* + P + (G + /?)£>', F - max | / (*) | , 
e(o u>) 

G := max \g(t)l C* :- C, H* := max \h*(x)\. 
t6(0,u;) \A-D 

34G 



Since a point t2 G (0,ct?) exists such that x"(t2) = 0, according to Rolle's 
theorem, we arrive at 

\x"(t)\ < V^D3 := D". (12) 

Hence, applying Proposition to the equation resulting from ( S3 ) for \x = 
1, an u;-periodic solution x(t) exists with respect to (10), (11), (12), which 
obviously satisfies (3) as well, because of \x(t)\ < D for t G (0 ,u ) . 

This completes the proof. 

4. Uniqueness and stability result 

Let us conclude by the consideration of the special cases of (1), (2), (3), 
namely 

x"' +a(x") + b x +cx =p ( r ) , (10) 

x" + a x" +b(x') + cx =p(t), (20) 

x'" + ax" +b x' +c(x)=p(t), (30) 

where p(t) is LJ -periodic again. 

These equations have been treated by G. V i 11 a r i [1], who has found (be­
sides the uniqueness and nonstability criteria), with the superfluous requirement 
concerning the existence of a bounded solution, sufficient conditions for an u>-
periodic solution as follows 

6 < 0 A c > 0 A [«(-?!) - a(z2)](Zl - z2) < 0 for zx ^ z2, (I) 

a < 0 A c > 0 A [b(yi) - b(y2)](yi - y2) < 0 for yx ^ y2, (II) 

a < 0 A b < 0 A [c(xx) - c(x2)](xx - x2) > 0 for xx ^ x2, (III) 

respectively. 

Since a point x G R,1 exists necessarily such that c(x) = p = — I p(t) dt for 
-̂  J 

0 

(3o ) under (III) related to c(x) [otherwise there would be a contradiction after 
the integration of (3o )], it is clear that the assumption imposed on c(x) in (III) 
can be regarded as a special case of the condition 

3R (a positive constant): [c(x) — p]x > 0 for \x\ > R. 

Therefore, the following assertion represents the essential generalization of Vil-
lari's result in [1]. 
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T h e o r e m 4 . Let for (10) or (2 0 ) or (3 0) the conditions 

b < UQ2 A C / 0 or ac < 0 or 

b < LV~2 A 3R > 0 : [c(x) - p]x > 0 or [c(x) - p]x < 0 / o r |x | > R, 

1 / 
where p = - / p( i ) d£ Þ=ljp{t)< 

be satisfied, respectively. 

Then equation (1 0 ) or (20) or ( 3 0 ) , respectively, admits an to -periodic solution. 

If (I) or (II) or (III) is valid, moreover, then there exists exactly one nonstable (in 

the sense of Liapunov) u -periodic solution of the above equations, while every 

bounded solution tends to it. 

P r o o f . T h e first par t of our assertion can be proved jus t in the same way 

as in the theorems above, bu t with system (S) replaced by 

x" + fi[a(x") -f b x ] + c x = fip(t), 

x" + fi[a x" + b(x')] + c x = /iP(t), 

x'" + fi[a x" + b x + c(x)] + (1 — fi)ex = /ip(r), respectively, 

using the same approach (some criteria are simplified here) . T h e second par t 

follows immediately from Villari 's result in [1]. 
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