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PRECISE LOWER BOUND 

FOR THE NUMBER OF EDGES 

OF MINOR WEIGHT IN PLANAR MAPS 

O. V. BORODIN 

ABSTRACT. Let e., ; be the number of those edges in a planar map which 
join i -vertices with j -vertices. For each simplicial 3-polytope, it is proved that 
20e3 ,3 + 2 5 e 3 ) 4 + 16e3,5 + 10e3)6 + 6 | e 3 ) 7 + 5e3 ) 8 + 2 | e 3 ) 9 + 2<?3|io + 16§e4 ) 4 + 
llc4,5 + 5e4)6 + \\C4,7 + 5^e5)5 + 2^5,6 > 120 ; moreover, each coefficient is the 
best possible. Similar results are obtained for some other classes of planar maps, 
thus completely solving some problems raised by E. Jucovic in 1974. 

1. I n t r o d u c t i o n a n d s t a t e m e n t o f r e su l t s 

Let eij be the number of edges joining the vertices of degree i with the 
vertices of degree j in a planar map under consideration. K o t z i g [3] defined 
the weight of an edge to be the sum of degrees of its end-vertices and proved tha t 
in each 3-polytope there exists an edge of the weight at most 13; in other words, 

Y2 £i}j > 0 . (By the Steinitz Theorem [4], 3-polytopes are distinguished 
. + ><13 

among all p lanar maps by the proper ty tha t their graphs are 3-connected .) 
G r u n b a u m [5, p . 454] conjectured tha t the number of edges of the weight 
at most 13 is great enough, or, more specifically, tha t 

2 1 
20e3 ) 3 + 15e3,4 + 12e3,5 + 10e3)6 + 6 - e 3 j 7 + 5e3 ) 8 + 3 - e 3 ) 9 + 2e 3 , i 0 

2 2 
+ 12e4)4 + 7e4 ) 5 + 5e4 ) 6 + 4e4 ; 7 + 2 - e 4 ) 8 + - e 4 ) 9 

o o (1 j 

+ 4 e 5 j 5 + 2e5 ) 6 + - e 5 j 7 

+ 12e6)6 > 120. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. 
K e y w o r d s : Planar maps, Structure, Minor vertex, Edge weight. 
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J u c o v i c [2] proved for simplicial polytopes the bound 

2 1 
20c:,,3 + 25e3,4 + 16c3,5 + 10c3,r, + 6 - e 3 , 7 + 5e3,8 + 2 - e 3 , 9 + 2e 3 | 1 0 

o Z 
+20e 4 ) 4 + l l e 4 ) 5 + 5e4,6 + 5e4,7 + 5e4>8 + 3e4 j 9 ( 2) 

+8e5 ,5 + 2e5)6 + 2e5)7 + 2e5f8 > 120. 

As it is easily seen, the coefficients atJ at e M in (2) for i < j < 5 are worse 
than those in (1 ) . However, J u c o v i c [2] gives examples of 3-polytopes which 
imply tha t a3fc for k > 6 , as well as a4)6 and a5)e are the best possible, while 
«3,4 > 22 , a 3 5 > 15, a 4 4 > 12, and a4)5 > 7. 

One of the purposes of the present paper is the following final version of the 

theorem by Jucovic: 

T H E O R E M 1. For each simplicial 3 -polytope, there holds 

2 1 
20e3,3 + 25e3>4 + 16e3 j5 + 10e3)6 + 6 - e 3 ) 7 + 5e3 ) 8 + 2 - e 3 ) 9 + 2e 3 ) 1 0 

2 2 
+ 1 6 - e 4 ) 4 + l l e 4 ) 5 + 5e4,6 + l - e 4 | 7 (3) 

+ 5 ^ e 5 , 5 + 2 e 5 > 6 > 120; 

moreover, each coefficient of this inequality is the best possible. 

As remarked by J u c o v i c [2], for arbi trary 3-polytopes the proof of (2) 
in [2] does not work, and one may only prove ^ etJ > 3 . 

i + j<13 

A question natural ly arises as to what the widest classes of p lanar maps are 
which allow a bound for the number of edges of minor weight similar to (1) - ( 3 ) . 
Trivial examples of complete bipar t i te graphs K\}U and A ^ n and of maps dual 
to A'i,„ and a cycle Cn show that the vertices and faces incident with less than 
three edges must be avoided; i.e., we should restrict ourselves to normal maps . 
Recently, the au thor extended [1] to all normal planar maps Kotzig's relation 

£ ei,i>0. 
i+J<13 

The main result of the present paper is 

T H E O R E M 2 . For each normal planar map there holds 

2 1 
40e3 ,3 + 25e3 ,4 + 16e3,5 + 10e3,6 + 6 - e 3 , 7 + 5e3 ) 8 + 2 - e 3 , 9 + 2e3 , i0 

o Z 
2 2 

+ 1 6 - e 4 , 4 + l l e 4 , 5 + 5e4,6 + l - e 4 , 7 (4) 

+ 5 -e 5 , 5 + 2e5 i 6 > 120; 
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moreover, each coefficient of this inequality is the best possible. 

This is a further generalization of [1-3] and a complete solution to the problem 

raised by J u c o v i c in [2]. Other two problems posed in [2] were to find relations 

similar to our (3) for simplicial 3-polytopes without 3-vertices and also for 

those wi thout 3- or 5-vertices. Complete answers to these questions follow easily 

from (4) and considerations in Sections 2: 

T H E O R E M 3 . For each normal planar map without 3 -vertices, 

2 2 1 
1 6 - e 4 j 4 + He 4,5 + 5 e 4 i 6 + l-e4,7 + 5 - e 5 , 5 + 2 e 5 ) 6 > 120; 

O o o 

moreover, each coefficient is the best possible even in the subclass of simplicial 

3 -polytopes. 

T H E O R E M 4. FOT each normal planar map without 3 - OT 5 -vertices, there 

holds 
2 2 

1 6 - e 4 , 4 + 5e 4 , 6 + l«e 4 > 7 > 120; 
•J o 

with all the coefficients being the best possible even for the simplicial 3 -polytopes. 

Observe t h a t the inequality (3) in Theorem 1 follows easily from T h e o r e m 2: 

it suffices to note tha t e$j = 0 for each simplicial 3-polytope with five or more 

vertices, whereas e%^ = 6 for complete graph K4 . Thus , to prove T h e o r e m s 

1 and 2, it remains to prove (4) and to give optimal construct ions for the 

coefficients in (3) and ( 4 ) . 

2. U n i m p r o v a b i l i t y of t h e coeff icients in T h e o r e m s 1 a n d 2 

All dij but O33 are evidently the same in (3) and ( 4 ) . We must show 

t h a t neither of ciij in (3) or (4) may be decreased, keeping all the other atj 

constant , wi thout violating the correspondent relation. 

R e m a r k t h a t for j > 6 (we everywhere assume 1 < J ), a stronger assertion 

is valid: each of a l ) ? is the minimal among all the relations of the type 

У ai,JЄг,J — 1 2 0 . 
г < 5 

For a4j , this follows from Fig. 1: we here have e 4 j = 72, while all the other 

eij vanish; therefore, each of (3) , (4) implies a4j > 120/72 = 5 / 3 . For all a3,fc 

with 6 < k < 10, for a 4 i 6 , and a 5 ) 6 , similar homogeneous opt imal construct ions 

were given by J u c o v i c [2]. 
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Figure 1. 

Figure 2. 

From now on, let j < 5 . The graph represented in Fig. 2 has e ^ 
e4.7 = 4 , e5?5 = 1, and e5>6 = 4, hence 

20, 

05,5 > 1 2 0 - 2 0 X 5 - 4 X 1; 4 X 2 = 5 Ì . 
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Figure 3. 

Figure 4. Figure 5. 

Similarly, 

Fig. 3: e4j5 = 1, e4)6 = 17, e4)7 = 6, e5)6 = 7, hence 

<U,5 > 120 - 17 x 5 - 6 x 1 - - 7 x 2 = 11; 
ö 

Fig. 4: e4>4 = 1, e4)6 = 18, e 4 j = 8, hence 

2 2 
Û4,4 > 120 - 18 x 5 - 8 x 1 - = 16- ; 

133 



O. V. BORODIN 

Fig. 5: e 3 ) 5 = 1, e 3 ) 7 = 2, e 4 ) 6 = 1G, e 4 | 7 = 4, e5,6 = 2, hence 

2 2 
«3,5 > 120 - 2 x 6 - - 16 x 5 - 4 x 1 - - 2 x 2 = 1G; 

Fig. G: e 3 4 = 1, e3 ) 8 — 15, e 3 ) 9 = 8, hence 

a.з,4 > 120 - 15 x 5 - 8 x 2 - = 25. 

Figure 6. Figure 7. 

As already mentioned, the relation a 3 ) 3 > 20 for (3) follows from K4 , which 
has e3;3 — 6 . Examine the map in Fig. 7. It fails to be a poly tope since it contains 
a two-vertex separating set and has e 3 3 = 1, e^^ = 16. Hence 

a3,3 > 1 2 0 - 1 6 x 5 - 4 0 for (4). 

3. Completing the proof of Theorem 2 

The validity of (4) remains to be proved. Denote the left part of (4) by ]T . 
Suppose, there exists a normal planar map M for which ]P < 120. First, we 
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shall construct , s tar t ing from M , a simplicial normal map M* for which also 
£ < 1 2 0 . 

Suppose tha t our M is not simplicial. A diagonal is defined to be such an 
edge, d, tha t M + d is also planar and normal. The end-vertices of the considered 
diagonal are hereafter denoted by x and y . Let s(v) be the degree of a. vertex 
v , i.e., the number of edges incident with v (loops are counted twice). We shall 
assume below tha t s(x) < s(y). A diagonal is called checked if s(x) + s(y) < 9 
(in M ) . 

If there exists a non-checked diagonal, a7, for M , then Y < 120 for M + d 
as well, since at}J in (4) are non-increasing in each subscript. 

Let all the diagonals for M be checked. For any diagonal, a1, of a face / , 
denote by d! a diagonal which cuts from / a 3-face with x in its boundary. 
(To define d' more specifically, introduce the left- and the r ight-hand clock-wise 
neighbours, e.\ and e2 , of d in the set of those edges incident with x , and say 
tha t d' joins the second end-vertices of c\ , e-i by "approximat ing" the chain 
[eiTe^].) A similar diagonal, defined by y , is denoted by d" . 

We are looking for such a diagonal whose adding to M does not increase Y . 

Suppose first tha t there exists a diagonal, do , having s(x) — 4 . When do is 

added in M , Y may increase by at most a^^ = 5 | due to increasing either 

e5)5 , or e*)^ by 1 (recall tha t s(x) < s(y)). On the other hand, at least one 

of the end-vertices of do has in M the degree at most 4 as all the diagonals 

are checked. It follows tha t do being added in, either some (3 ,4) -edge tu rns 

into a (3, 5)-edge, or some (4,4)-edge becomes a (4, 5)-edge. This results in 

decreasing Y by at least a 4 4 — 04,5 = 5 | . Therefore, adding do in M does 

not increase Y in the end. 

Let us assume from now on that each diagonal is incident with a 3-vertex; 
tha t is, s(x) = 3 . A diagonal with the minimal s(y) is denoted by d* . 

If s(y) — 3 , then adding d* in M increases Y °y a 4A ~ 16^ due to 

increasing 64̂ 4 by 1, but decreases Y by at least 4(03^3 — 03,4) = 20 since 

four (3, 3)-edges incident with a7* turn into (3,4)-edges. This results in a total 

decreasing of Y • 

If 4 < s(y) < 6 , then similarly, Y increases by at most 04,5 = 1 1 , while it 
decreases by 15 due to turning a (3, 3)-edge incident with x into a (3, 4)-edge, 
i.e., decreases totally. 

Thus any non-simplicial normal map may be augmented by a diagonal so 
tha t Y does not increase. Hence, in a finite number of steps, a simplicial normal 
p lanar m a p , M* , will be constructed which has Y < 120. 
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The Euler formula |V| — |JE71 -f | F | = 2 for M* may be rewri t ten as follows: 

£(a(t , )-6) = -12. 
vev 

We shall say tha t each vertex v has a charge H(v) = s(v) — 6. 

T h u s 

Y,H(v) = -12. 
vev 

Let also H(e) = 0 for each edge e , and initially all the edges are not labelled. 
Redis t r ibu te the charges of the vertices and edges (keeping the sum of the charges 
cons tan t ) and label some of the edges according to the following Rules 1 - 4 : 

R U L E 1. If s(w) < 6 . then the vertex w transfers to each incident edge a 

charge (s(w) — 6)/s(w). 

R U L E 2 . Let an edge e = (u,v) be in the boundary of a face [uvw] . Then e 

transfers to w : 

1/3 if s(u) = s(v) = 4 and s(w) > 7 ; 
1/15 if s(u) = s(v) — 5 and s(w) > 7 . 

R U L E 3 . Let an edge e = (u,v), where s(u) < s(v) < 5 , share a face, f, 
with a vertex w, where s(w) > 7. Let also s(u) < s(v); we denote by e' that 
boundary edge of f which joins w with v . Then e' is declared to be labelled, 
and e transfers to e' a charge: 

1 if s(u) = s(v) — 3 ; 
1/2 if s(u) = 3, s(v) = 4 ; 
1/3 if's(u) = s(v) = 4 , s(w) = 7 ; 
1/5 if 3 <s(u) < 4 , s(v) = 5 . 

(Observe that some edge m,ay be labelled twice.) 

R U L E 4 . If s(w) > 7, s(v) < 5 , and an edge e = (iv,v) is non-labelled, then 

w transfers to e a charge 

mi n in{(s{w) - 6)/[s{w)/2\, (6 - s(v))/s(v)Y 

The resulting charge of any vertex or edge is denoted by the function H* 

From (5), 

£ ff>) + ]T/T(f) =-12. (6) 
v£V e£E 
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Almost all the remainder of our proof consist in verifying H*(w) > 0 for 
each vertex w . This will easily yield a concluding contradiction. 

If s(w) < 6 , then Rule 1 implies H*(w) = 0 . Let s(w) > 7 . We need 
a few definitions. A face will be called labelled if it is incident with at least 
one labelled edge. The number of non-labelled faces of the type [UPI/'] , where 
s(u) = ,s(e) = 4 , will be denoted by U • The number /5 is defined similarly. 
The edges ( = (u,v) incident with at least one non-labelled face [HUH'] , where 
s(u) = s(v) = 4 , will be called special and their number denoted by L\ . Define 
the number L 5 similarly. It is evident that l.\ < L\ < 2l\ and /5 < K5 < 2/5 . 
Observe tha t due to Rules 1 4 w cannot transfer to two consecutive (i.e., 
sharing a, face [Hme] ) edges c\ = (w,a.) and c2 = (iv,v) at once, except for the 
cases when both (\ and e2 are either 4-special or 5-special. Denote by k the 
number of non-special edges which are transferred to by the vertex w ; by the just 
above remark, k < l.s(?D)/2J . It is also easily seen that L.\ + L5 < s(w) — 2k — 1 
with the only exception of s(w) = 2k . 

C a s e 1: s(w) = 7. R(M-all that according to the item 3 of Rule 3, we have here 

U = L4 = 0 . 
A: = 3 : Clearly, L5 = 0; therefore 

H*(w) > s(w) - 6 - 3mhi{(.s0<.) - 6) / [ . s ( in) /2 j , (6 - ;s(U)) / .s(U)} 

= 1 - 3 m i i i { l / 3 , ( 0 - . s ( D ) ) / ^ ( i ' ) } > 1 - 3 x 1/3 = 0 . 

k = 2 : At most 2 /3 were transferred to non-special edges, but as one easily 

sees, /5 < 1 , i.e., LTi < 2 . If /5 = 0, then 

H*(w) > 1 - 2 / 3 = 1/3 . 

Else if /5 = 1 , then 

H*(w) > 1/3 + 1/15 - 2 x 1 / 5 = 0 . 

k = 1 : At least 2 /3 belong to special edges, therefore it is nothing to prove 

if L5 < 3 (since 2 /3 > 3 X 1/5). But on the other hand, one may easily verify 

tha t L 5 < 4 . However, /5 = 3 when L 5 = 4 , so that 

H*(w) > 2 /3 + 3 x 1 / 1 5 - 4 x 1/5 > 0 . 

k = 0 : It is nothing to prove if L5 < 5; if ^6 = 6 , we have /5 = 5 , and 

H*(w) > l + 5 x 1 / 1 5 - 6 x 1/5 > 0 . 

Let finally F5 = 7, then h ^ 7 and 

H*(w) > l + 7 x 1 / 1 5 - 7 x 1/5 > 0 . 
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C a s e 2 : s(w) = 8. 

3 < k < 4 : Evidently, L4 + Lh = 0 , that is 

H*(w) > 2 - 4 x 1/2 = 0 . 

k = 2 : Now L4 + L5 > 3 , but since each edge receives at most 1/2 from 
w , the only possibility to be considered is L4 + L5 = 3 . But then either L4 = 3 
or F5 = 3 ; respectively, either I4 = 2 or /5 = 2 . We have 

H*(w) > 1 + 2 x 1 / 3 - 3 x 1/2 > 0 

in the first case and 

H*(w) > 1 + 2 x 1/15 - 3 x 1/5 > 0 

otherwise. 

k --- 1 : Now F4 + F5 < 5; since at least 3/2 remains for non-special edges, 
the only subcases to be considered are L4 + L$ = 4 and L4 + F5 = 5 . In the 
first of them, 14 + /5 > 2 ; therefore if /s > 1, then 

H*(w) > 2 - 2 x 1/5 - 3 x 1/2 > 0, 

else if /s = 0 , then 

H*(w) > 2 + 2 x 1/3 - 5 x 1/2 > 0 . 

In the second subcase, I4 + h = 4 ; moreover, either U = 0 and then 

H*(w) > 2 + 4 x 1/15 - 1/2 - 5 x 1/5 > 0 , 

or /s = 0 and then 

H*(w) > 2 + 4 x 1 / 3 - 5 / 2 > 0 . 

k = 0 : One should analyse the situations when L4 + L$ > 5 . If L4 + F 5 = 5 , 

then I4 + /5 > 3 ; therefore for /4 > 2 we have 

H*(w) > 2 + 2 x 1 / 3 - 5 / 2 > 0 , 

while for I4 < 1 there holds L4 < 2 , which yields 

H*(w) > 2 - 2 x 1/2 - 3 x 1/5 > 0 . 
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If L4 + K5 = 6 , then obviously, 14 + /5 > 4 , so that for 14 > 3 we have 

H*(w) > 2 + 3 x 1 / 3 - 6 x 1/2 - 0 ; 

for I4 = 2 one has L4 < 4 , which implies 

H*(w) > 2 + 2 x 1/3 - 4 x 1/2 - 2 x 1/5 > 0 , 

and for 14 < 1 we have L 4 < 2 with an immediate consequence of 

H*(w) > 2 - 2 x 1/2 - 4 x 1/5 > 0 . 

Let finally L 4 + L 5 > 7; then as it is easily seen, either L4 = 0 or L5 = 0 , and 
we have either 

H*(w) > 2 - 8 x 1/15 > 0 or H*(w) > 2 + 6 x 1/3 - 8 x 1/2 - 0 , 

respectively . 

C a s e 3 : s(w) = 9 . 

k = 4 : H*(w) > 3 - 4 x 3 / 4 = 0 . 

k = 3 : Now L4 + £5 < 2 ; if l4 = 0 , then 

H*(w) > 3 - 3 x 3/4 - 2 x 1/5 > 0 , 

otherwise if /4 = 1, then 

H*(w) > 3 + 1/3 - 3 x 3/4 - 2 x 1/2 > 0. 

k -= 2 : Now L4 + L5 < 4 , but since the special edges receive at least 
3 — 2 x 3 /4 = 3/2 totally while each of them receives at most 1/2, the only 
subcase to be analyzed is L4 + L 5 = 4 . However, we then have also either I4 = 0 
which implies 

H*(w) > 3 / 2 - 4 x 1/15 > 0 , 

or I4 = 3 with 
H*(w) > 3/2 + 3 x 1/3 - 4 x 1/2 > 0 . 

k — 1 : One should analyse the subcases L4 + L5 = 5 and L4 + L 5 = 6 . In 
the first subcase, if /4 > 1, then 

H*(w) > 3 + 1/3 - 3/4 - 5 x 1/2 > 0 , 
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otherwise if /4 = 0, then 

H*(w) > 3 - 3 / 4 - 5 x 1/5 > 0 . 

In the second subcase, either l4 = 0 and then 

H*(w) > 3 - 3 / 4 - 6 x 1/5 > 0 , 

or !4 = 5 and then 

H*(w) > 3 + 5 x 1/3 - 3/4 - 6 x 1/2 > 0. 

k = 0 : We should consider the subcases L4 + L5 = 7 and L4 + L$ > 8. In 
the first subcase, if l4 > 2, then 

H*(w) > 3 + 2 x 1/3 - 7 x 1/2 > 0, 

or if l4 < 1, then L4 < 2 and 

H*(w) > 3 - 2 x 1/2 - 5 x 1/5 > 0. 

In the second subcase, either l4 = 0 and then 

H*(w)> 3 - 9 x 1/5 > 0, 

or !5 = 0 and 
H*(iv) > 3 + 7 x 1/3 - 9 x 1/2 > 0. 

Case 4: ,s(u>) = 10. 

4 < fc < 5 : L4 + L5 = 0 and 

#*(«>)> 4 - 5 x 4 / 5 = 0. 

A: = 3 : 1-4 + L5 < 3 and 

JH*(r*j) > 4 - 3 x 4/5 - 3 x 1/2 > 0. 

k = 2 : L4 + Z-5 < 5, but since 4 - 2 x 4/5 > 4 x 1/2, there remains the 
possibility L4 + L5 = 5 to be considered. Then l4 + /5 = 4 and 

#*(u>) > 4 + 4 x 1/15 - 2 x 4/5 - 5 x 1/2 > 0. 

k = 1 : Similarly, L4 + L5 = 7, /4 + /5 = 6, and 

#*(u>) > 4 + 6 x 1/15 - 4/5 - 7 x 1/2 > 0. 

k = 0 : We have L4 + Z5 > 9. If /5 = 0, then 

H*(w) > 4 + 8 x 1/3 - 10 x 1/2 > 0 , 

otherwise if l4 = 0, then 

H*(w) >A~ 10 x 1/5 > 0 . 
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C a s e 5: .«(«.) > 11 . If s(w) = 2A-, then 

H*(w) > 2 A - - 6 - k > 0 . 

otherwise, since L4 + L 5 < .S(IO) — 2A- — 1 , one has 

H*(u>) > .S(H-) - C - k - (.s(tr) - 2A- - l ) / 2 

= *(«».) - 6 - k - .s(«.)/2 + k + 1/2 = (.s(to) - l l ) / 2 > 0 . 

We have thus proved that H*(u>) > 0 for each vertex to. Now (G) implies 

£ B » < - 1 2 . 
c G E 

Define E' as the set of those (?',j)-edges, i < j ' , from JE where either t = 3 , 
J < 10, or i: = 4 , j ' < 7 , or else z = 5 , j < G. In other words, E' is just 
the set of those edges which part icipate in (4) . Observe tha t due to Rules 1 4, 
the resulting charges of (i,j) -edges from E — E' (and of no other edges) are 
non-negative, since all of them have (j — 6 ) / [ i / 6 j > (6 — i)/i. It follows tha t 

] T H * ( e ) < - 1 2 . (7) 
eGE' 

But according to Rules 1 4, the resulting charge of each (i, j )-edge from E' 
is precisely — a 2 ) J / 1 0 , where alJ is the coefficient at et)J in (4 ) . Consequently , 
mult iply ing each term of (7) by —10, we obtain (4) . Thus , (4) holds for our 
m a p M * , which contradicts the property ^ < 120 of M* proved earlier. 

This complete the proof of Theorem 2. 

A c k n o w l e d g e m e n t 

The au thor is indebted to the referee for pointing out tha t Theorem 4 im
proves Theorem 2.10 on p. 40 of E. Jucovic's book "Convex 3-poly topes" (in 
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