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SIMPLE 3-POLYTOPAL GRAPHS 

WITH EDGES OF ONLY TWO TYPES 

AND SHORTNESS COEFFICIENTS 

MICHAL TKAC 

ABSTRACT. It is shown that the class of simple 3-polytopal graphs whose 
edges are incident with either two 7-gons or a 7-gon and a 4-gon, contains non-
Hamiltonian members and even has shortness coefficient less then unity. 

1. I n t r o d u c t i o n 

In this paper we mean by a graph a finite connected undirected graph with 
no loops or mult iple edges. 

For any graph G let v(G) denote the number of vertices and h(G) the 
length of a maximum cycle. Thus G is non-Hamiltonian if and only if h(G) is 
less t han v(G). The shortness coefficient g(G) of an infinite class G of graphs 
is defined by 

p(G) — l iminf —-—— , see [6 or 71. 
J Geo v(G) L J 

An edge of a trivalent planar graph is of type (p, q) if the faces containing it 

are a p -gon and a <l-gon. The present paper deals with 3-connected trivalent 

p lanar graphs , i.e. simple 3-polytopal graphs, with only two types of edges. 

Evident ly such graphs can exist only if its edges are of the type (p,p) or (p, q), 

p + q, p , q > 3 . 
Let S(p,q) denote the class of simple 3-polytopal graphs in which all the 

edges are incident with two p-gons or a p-gon and a q -gon, p / q , p , q > 3 . 

So S(p,q) is the class of simple 3-polytopal graphs the edges of which are 
of the type (p,p) or (p,q). 

In the papers [5 and 7] it has been shown tha t the class S(p,q) is infinite 
only for 6 < p < 10 and q = 3 , 6 < p < 7 and q = 4 , p = 6 and q = 5 , 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C38. Secondary 52B05, 52B10. 
K e y w o r d s : Polytopal graph, Cycles, Shortness coefficient. 
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or p = 5 and q > 12. According to G o o d e y , every member of 5(6, q) is 
Haiiiiltoiiian, for q = 3 [3] and q — 4 [2]. The same property has been shown by 
J e n d r o 1' and M i h 6 k for the class 5(5,12) [4]. In [7] O w e n s deals with 
the shortness coefficients of the classes 5(5, q). He proved that each class 5(5, q) 
has shortness coefficient less than one for all q > 28 and he also asked whether 
there are some non-Hamiltonian members in the classes 5(5, q) for 12 < q < 23 , 
or q = 27, and whether g(S(5,q)) < 1 for q = 24, 25, 26. 

This problem evoked an interest in this subject. In [8] O w e n s has shown 
that g(S(p, 3)) < 1 for p = 8,9 and 10. The same inequality has been proved 
by the present author for D(S(5,g)j , q = 26, 27 [9] and for ^(5(7,3)) [10]. 

The following theorem supplements these results: 

T H E O R E M . 

(1) There is a non-Hamiltonian member of 5(7,4) with 1628 vertices. 
(2) £>(S(7,4)) < 1295/1296 < 1. 

2. Constructions and proof of the theorem 

We begin to describe our constructions. Similarly as in [8] certain graphs 
which occur repeatedly as subgraphs will be denoted by capital letters and rep
resented in diagrams by labelled circles. Numbers placed round such a circle show 
how many vertices the subgraph supplies to the adjoining faces of any graph in 
which it occurs. As the first example Fig. 1 shows the well-known Tutte "trian
gle" subgraph T [1, p. 165]. The "dangling" edges are not a part of the subgraph 
but show how it is to be joined into a graph. By a path through a subgraph we 
mean a path whose ends are not in the subgraph. By a path of type Pxj we 
mean a path through a subgraph that contains linking edges with the numerical 
labels i and j . The essential property of subgraph T is that every spanning 
path through it is of type P\2 or Pi3 , not of type P23 . In other words, edge 1 
is an a-edge. 

Let A and B denote the subgraphs shown in Fig. 2. Small unlabelled circles 
in diagram A represent quadrangular faces. It is easily verified that every face 
within A (or B ) is a quadrangle or a 7-gon and that v(A) = 163, v(B) = 169. 
Let U denote the subgraph formed from T by the two substitutions (v —* B 
and f —> F) shown in Fig. 3, where v and / refer to labels in Fig. 1 and F is 
a subgraph defined in terms of two copies of B. The dangling edges of F are 
numbered to fix its orientation. Every interior face of U is either a quadrangle 
or a 7-gon and the outer boundary of U does not differ from that of T . 

LEMMA 1. No spanning path through F is of type P46 . 

P r o o f . Let Q be (if possible) a spanning path of type P46 through F. 
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Then it can be shown tha t all "heavy" edges of Fig. 3 must be in Q . Now we 
consider two cases. 

Case 1: Edge 8 is in Q. Then the edges 9 and 12 are not in Q and the 
edges 11, 10 and 15 must be in Q. The intersection of Q with the quadrangle 
a is a p a t h of type Fio n , which is impossible, because pa th Q cannot contain 
a cycle. 

Case 2: Edge 8 is not in Q. Then the edges 9 and 12 are in Q and the 
edge 10 is not in Q. Thus the edges 13 and 14 are in Q. So the intersection 
of Q with the quadrangle g is a pa th of type P\2 ] 3 , which is impossible, too. 
Since in each case we get a contradiction, no such pa th Q exists and the lemma 
follows. 

The following lemma shows the property of U which makes it useful to us. 

L E M M A 2 . FOT every spanning path through U there exists a spanning path 
through T which is of the name type. 

P r o o f . Since there is a spanning pa th through the vertex v tha t contains 
any two of its three incident edges, only the subst i tut ion / -—> F need ho con
sidered. The nonempty intersection of F with a pa th through U is of the type 

Ar>, A s , ^47, -P45 U Piu or P47 U A G 

only, allowing for symmetry. The nonempty intersection of / with a pa th through 
T has the same property. It is easy to find in / a spanning path (or pair of 
pa ths ) of each type except P^c^ . By Lemma 1, no such spanning pa th exists in 
F , either. This completes the proof of the lemma. 

Now let W be defined in terms of U as in Fig. 4. The three interior faces of 
W t ha t do not lie in U are 7-gons. 

L E M M A 3 . W has an a-edge. 

P r o o f . We first show that the subgraph U has an a-edge. Let Q he (if 
possible) a spanning pa th through U which does not contain edge 1 (see Fig. 1). 
Then Q is of type P23 • Thus , by Lemma 2, there exists a spanning pa th through 
T which is of type P23 , but it leads to a contradiction with the existence of an 
a-edge in T . So every spanning pa th through W contains the a-edge of U 
and the six vertices of W — U . It is easy to check tha t such a pa th necessarily 
includes the linking edge labelled 1 in Fig. 4. 

Let Ji be as shown in Fig. 4. Evidently J\ E 5 (7 ,4 ) and J\ is non-
Hamil tonian, because it contains three copies of the subgraph W , the a-edges 
of which are concurrent. So every cycle in J\ omits at least one of them and 
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therefore onrits at least one vertex of the corresponding copy of the subgraph 
W . This completes the proof of Theorem (1). 

T h e graph J\ contains nine copies of the subgraph A. We denote by X the 
subgraph of J\ tha t remains when one copy of A is deleted. By inspection, 
v{J\) = 1628 and v(X) = 1465. Since X and B each contr ibute three vertices 
to the three adjoining faces of any graph in which either occurs, 5 (7 , 4) is closed 
under the replacement of the copies of B by copies of X . It is easy to verify 
tha t no p a t h through X spans X . 

We now use the fact that X contains eight copies of B to construct an 

infinite* sequence (Jn) of rion-Hamiltonian members of 5 ( 7 , 4 ) , s tar t ing with 

J\ . For n > 1 , let Jn+\ be the graph obtained from Jn when one copy of B in 

one (any one) of its subgraphs of type X is replaced by the new copy of X . So 

h{Jn) < v(Jn)-n and, since v(Jn) = v{J\)+(n-l){v{X)-v(B)) = 332-fl296n, 
we obta in # ( 5 ( 7 , 4 ) ) < 1295/1296 < 1 and this completes the proof of Theorem. 

4 I 4 

4 

Figure 2. The subgraphs A and B. 
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в 

F 

Figure 3. Two substitutions. 

П • 

Figure 4. 
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Figure 1. The Tuttetriangle. 
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