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SOLID SUMMABILITY FIELDS 

IVOR J. MADDOX 

ABSTRACT. In the paper we investigate Kothe-Toeplitz solidity of the summa
bility field of an infinite matrix of operators in Banach spaces. 

1. I n t r o d u c t i o n 

Let X and Y be Banach spaces over the complex field C , and denote by 

B(X,Y) the space of bounded linear operators on X into } r . Following the 

nota t ion of Maddox [3, pp. 4, 5] we denote by s(X) the linear space of all 

X -valued sequences, and by c(X) the subspace of all norm convergent X -valued 

sequences. 

We shall be concerned with a generalized notion of solid sequence space in 
the vector-valued setting, and we shall determine the conditions for solidity of 
certain general summabil i ty fields. 

2. Bas ic def in i t ions 

Generalizing the idea of solid (or normal) scalar sequence space due to 

K o t h e and T o e p 1 i t z [2], we say that a subspace E of s(X) is solid if 

x = (xn) G E and \\yn\\ < || ; rn|| f ° r a i - n > 1 imply y G E. For example, s(X) 

is solid bu t c(X) is not. 

If A = (-4„fc), n, k = 1, 2 , . . . , is an infinite matr ix of operators Ank 6 B(X, Y) 

and x = (xk) G s(X), then we say that x is suinmable A to z G Y if and only 

if 

An(x) = )AnкXк 

k=\ 

converges in the n o r m of Y for each n and An(x) —+ z as u —> oo . We define 

the summabi l i ty field of A to be 

c^ = {x£s(X):(An(x))ec(Y)}. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 40D09. 
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In the present work we shall be concerned with the case in which Y = C, 
the complex field, and with A a diagonal matr ix , tha t is Ank = 0 for n 7̂  k. 
W i t h these assumpt ions , writing An = Ann we see tha t x G CA if and only if 
An(xn) —•» z as n —• 00 , where each A n is a continuous linear functional on X . 

We shall de termine necessary and sufficient conditions for the solidity of CA 
for the two Banach spaces X = C and X = c0 , where c0 denotes the scalar 
null sequences. 

3 . T h e m a i n resu l t s 

First we obta in a necessary condition for the solidity of CA for an a rb i t ra ry 
Banach space X. 

T H E O R E M 3 . 1 . If CA is solid, then {n : An = 0} -is an infinite set. 

P r o o f . Suppose if possible tha t {n : An = 0} is finite. Then there exists p 
such tha t An ^ 0 for all n > p , whence there exists zn e X with An(zn) ^ 0 . 
Now define xn = zn/An(zn) for n > p ; yn = (-l)nxn for n > p and xn = 
yn — 0 for n < p. Then \\yn\\ = \\xn\\ for all n > 1 and An(xn) = 1 for n > p , 
so tha t x G CA . Since c^ is solid we must have y G c ^ , contrary to the fact 
t ha t ./!„({/„) = ( - l ) n for n > p . This proves the theorem . 

Next we show tha t the condition {n : An = 0} infinite is not generally 

sufficient for CA to be solid. 

P R O P O S I T I O N 3 . 2 . Let X = c0 , the space of all null scalar sequences with 

\\x\\ = sup \sk\ for each x = (sk) G c0 . Define An = 0 for n odd and Anx = sn 

k 

for n even. Then CA is not solid. 

P r o o f . 

If we wri te xn = (snk) = (sni, 5 n 2 , . . . ) and yn = (tnk) = (tni, tn2,...), let 
us define .sni = 1 and snn = n~l , with snk = 0 otherwise, and tnn = 1 , with 
tnk = 0 otherwise . Then xn and yn are in CQ and | |yn | | = | |^n| | for all n > 1 . 

Hence An(xn) = 0 or An(xn) = n~1 as n is odd or even, whence x = 

(xn) € CA . But An(yn) = 0 or An(yn) = 1 as n is odd or even, and so y ^ CA . 
T h u s c^ is not solid even though {n: An = 0} is infinite. This completes the 
proof. 

Now let us take X = C and identify the An with complex numbers an , so 
t ha t Anz = anz for each z G C. In this case the condition of Theorem 3.1 is 
necessary and sufficient: 
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T H E O R E M 3 . 3 . In the case X = C we have that CA is solid if and only if 
{n : An = 0} is infimte. 

P r o o f . In view of Theorem 3.1 we need only consider the sufficiency. Sup
posing tha t an = 0 for n = n i , r i 2 , . . . with n\ < 7i2 < . . . , let (xn) E CA and 
\yn\ < |^nI for all n > 1. The anxn —> I implies aUixni —> <£, and so 0 = t. 
Hence for all n > 1 , | a n y n | < | a n | | x n | , which implies anyn —> 0 , so (yn) E CA , 
as required . 

We next consider the case in which X = CQ the space ol scalar null sequences . 
Here we shall show tha t a stronger condition on (An) is required for solidity: 

T H E O R E M 3 .4 . In case X = Co we have that CA is solid if and only if An = 0 
eventually in n . 

P r o o f . The sufficiency is trivial, since if An = 0 eventually in n, then CA 

is the space .s(co), which is certainly solid. 

Conversely, let CA be solid but assume tha t An ^ 0 for n = n i , n 2 , . . . with 

n\ < n2 < . . . , and An = 0 for n ^ n ; . 

Since An is a continuous linear functional in en we may write 

An(x) = y f̂lnfcSfc 
k=\ 

oo 
for each x = (sk) E c0 , with J^ |anifc| < ° ° f ° r each n > 1. For this represen-

k=\ 
ta t ion of An see B a n a c h [1] or M a d d o x [4]. 

Now for each n , there exists ki such tha t aniki ^ 0 . Take any n , . Then 
from 

oo 

]T|an,*| < oo 
k=l 

it follows tha t there exists r, > kt such tha t 

\aniri\ < \aniki\i~} • 

Now write xn = (snk) = (snU 5 n 2 , . . . ) and yn = (tnk) = ( i n l , ^ n 2 , . . . ) . Define 
xn = yn = 0 for n ^fi ni, and for n = n t define 

5n j t = i~la~l when fc = fc, 

when A: = r t 

(otherwise) 

when k = ki 

(otherwise) . 
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Then it is clear tha t \\xn\\ = \\yn\\ for all n > 1, and for n = nt we have 

\An(xn)\ = \i~l +anria~l.\ < 2z _ 1 

An(yn) = 1. 

Since An(xn) = An(yn) = 0 for n ^ n% we see tha t x £ c& bu t y £ c& , 

contrary to the fact tha t CA is solid. This proves the theorem . 
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