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D-POSETS 

F R A N T I Š E K K O P K A — F E R D I N A N D CHOVANEC 

{Communicated by Anatolij Dvurečenskij) 

ABSTRACT. This paper deals with partially ordered sets for which a difference 
(as a partial binary operation) is introduced. These s tructures, so-called D-posets, 
are a natural generalization of quantum logics, real vector lattices, orthoalgebras, 
MV algebras. At the same time they give a new look at the fuzzy quantum logics. 

1. Introduction 

A usual mathematical description of the quantum mechanics is a quantum 
logic [12], [15]. Recently there appeared many structures generalizing quantum 
logics, for example, quasi-orthocomplemented posets [1], weakly complemented 
posets [4], or orthoalgebras [6]. 

The fundamental notions of the quantum logics theory are observables and 
states. 

If L is a quantum logic (a-orthomodular poset) [12], then an observable x 
is a cr-homomorphism of logics, that is, a mapping x from the cr-algebra B(M) 
of Borel sets of a separable Banach space M into a given logic L such that 

(i) x{M) = l-
(ii) x{M \ A) = x{A)^ for any A G B{M); 
(iii) if An , n £ N, is a countable set of Borel sets in M , then 

x[ \jAn\ = \/ x{An). 
\ n = l / n=l 

A .state on the logic L is a mapping rn\ L —> [0,1] such that 

(i) m( l ) = l ; 

ATMS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 03G12. Secondary 81P10. 
K e y w o r d s : D-poset, Observable, State. 
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(ii) if an , n G N, is a sequence of mutual ly or thogonal elements in L . 

then 

V a" = zLm^" 
"' 

There are also some al terna t ive models for cpiantum mechanics based on fuz/v 
sets ideas: fuzzy q u a n t u m logics [13]. F -quan tum spaces [11]. fuzzy logics S . and 
//-fuzzy q u a n t u m logics [9]. 

2. D - P O S E T S 

D E F I N I T I O N 1. Let (P, < ) be a non-empty partially ordered set (pos(t). .1 
partial binary operation \ is called a difference on P . and an (lenx nf b ^ a >> 
defined in P if and only if a <b, and the following conditions arc satisji(d: 

(1) b\a <b: 
(2) 6 \ ( O \ O ) = O; 

(3) if a < b < (\ then c \ b < c \ O and (c \ a) \ (c \ b) = b \ a . 

E x a m p l e 1. Let M+ be a set of all non-nega t ive real numbers . The dif

ference b — a of real numbers O, b (E M+ . a < b, satisfies the condit ions ( 1 ) (3) . 

E x a m p l e 2. Let F be a family of all real functions from non-empty set 
X into the interval [0, oo) . Let < he a par t ia l ordering on I such that / \ g 
if and only if f(t) < g(t) for every t G X . Let <F: [0. oc) -^ [0. oc) be a strongly 
increasing continuous function such tha t d}(0) = 0 . A part ial binary operat ion 
\ defined by the formula 

(ff\/)(0 = ^_1K9(l))-W))) 

for every / , g £ F, / < O, / £ N , is a difference on F . 

Specifically, if <P(.r) = x , then (g \ / ) ( / ) = g(t) - / ( i ) . if 0(./-) = ./•'- . then 

CO \ / ) ( / ) = ^m^p(t). etc 

If we restrict our considera t ions to the unit interval [(), 1] . F = 0. 1 A . 
<P: [0,1] —> [0, o c ) , ^ ( 1 ) = o c , then f,g G F are fuzzy subsets of X and 
the difference g \ / , 

(.9N/)(.)=<&-1(*(.9(0)-*(/(0)). 

coincides with a strict fuzzy difference in t roduced by W e b e r [Ki]. 
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K x a m p 1 e 3. If F is the system of all constant functions, F C [(), oo)A , 

then the difference from Example 2 gives other examples of differences on IR+ . 

PROPOSITION 1. Let (P, <) be a poset with the difference, and let O, b, c, d e P. 
Tin following assertions are true. 

(i) If a _ b < c. then b \ a < c \ a and (c \ a) \ (b \ O) = c \ b\ 

(h) if b < c and a < c \ b , then b < c \ a and (c \ b) \ a = (c \ O) \ b; 

( h i ) if a < b < c, then a < c \ (b \ O) and (c \ (b \ a)) \ O = c \ b; 

( i v ) // a < c and b < c, then c \ a = c \ b if and only if a = 6; 

(v) if d < a < c , d < b < c , then c\ a = b\d if and only if c\ b = O \ (/. 

l) r o o f . 

(i) From (3) and (1) we get that (c \ a) \ (c \ b) = b \ a < c \ a and 

(c \ a) \ (b \ O) = (c \ O) \ ((c \ O) \ (c \ b)) = c \ b . 

(ii) From the assumptions it follows that a < c• \ b < c, and from (3) w(̂  

obtain 

c \ (c \ b) < c \ a , i.e. b < c \ a . 

Because, by (i), (c \ b) \ a < c \ a,, we get from (i) (c \ O) \ ((c \ b) \ a) 

c \ (c \ />) = b, therefore 

(c \ O) \ b = (a \ a) \ ((c \ a) \ ((c \ b) \ a)) = (c \ b) \ a . 

(iii) According to (i), we have b \ a < c \ a < c and, by (3), we obtain 

c \ (c \ a) < c \ (b \ a) , i.e. O < c \ (b \ O) < c. 

Using (ii) and (i), we get 

(c \ (b \ O)) \ a = (c \ a) \ (b \ O) = c \ b. 

(iv) If c \ a = c \ b, then b = c \ (c \ b) = c \ (c \ O) = O . 
"lie converse assertion is evident. 

(v) If c \ O = b \ d , then c \ b = (c \ d) \(b\d) = (c \ d) \ (c \ a) = a, \ d . 
'he converse assertion can be proved by analogy. • 
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DEFINITION 2. Let (P, < , \ ) be a poset with a difference, and let 1 be. the 
greatest element in P. The structure (P, <, \ , 1) is called a D-poset. 

A D-poset (P, < , \ , 1 ) satisfying the condition: 

oc 

(4) if (an)n
c
=1 C P . an< an+i for any n e N , then V a„ G P . 

is called a D-a-poset. 

E x a m p l e 4. Let X be a non-empty set, and let S(X) be the set of 
all subsets of X. Let Q be a subset of S(X) containing X and closed with 
respect to the formation of the set-theoretic difference of sets which are in the 
inclusion relation. Then Q with < , being the inclusion relation, and \ , being 
the set-theoretic difference, forms a D-poset. 

E x a m p l e 5. Let (L, <,_]_, 1,0) be an orthomodular poset (see e.g. [12]). 
We put b \ a = b A a1- for every a, b G L, a < b. Then L is a D-poset. 

E x a m p l e 6. Let T be a vector lattice (a real vector space which is a 
lattice). Let e GT, e > 0 , V = {a G T : 0 < a < e } . The system V with 
usual difference of vectors is a D-poset. 

E x a m p l e 7. Let H be a Hilbert space. A positive Hermitian operator A 
on H such that O < A < L, where O and I are operators on H defined by 
the formulas Ox = 0, Lx = x for any x E H, is said to be an effect ([3]). 

A system E(H) of effects closed with respect to the difference B — A of 
operators A, B G E(H), A < B , is a D-poset. 

E x a m p l e 8. Let X be a non-empty set and let F be a system of all 
real functions / : X —> [0,1]. Let <L>: [0,1] —> [0, oo) be a strongly increasing-
continuous function such that ^(0) = 0. If we put 

(g^m)=*-1($(g(t))-*(f(t))) 

for every / , g G F, / < g, and for any £ G X (see Example 2), then F becomes 
a D-poset (a D-poset of fuzzy sets, see [7]). 

Note that, in this case, g \ / coincides with a nilpotent fuzzy difference of 
W e b e r [16]. 
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E x a m p l e 9. A set A containing two special elements 0, 1 with 0 7- 1 on 

which there is a partially defined binary operation 0 satisfying for all elements 

p, (/, r G A the following four conditions: 

(i) if p 0 q is defined, then q ® p is defined and p® q = q® p 

(commutativity); 

(ii) if p®q is defined and (p®q)®r is defined, then q®r and p®(q®r) 

are defined, and (p 0 q) ® r = p 0 (q 0 r) (associativity); 

(iii) for each p £ A there is a unique q E A such that p ® q is defined and 

i) 0 q = 1 (orthocomplementation); 

(iv) if p®p is defined, then p = 0 (consistency) 

is called an orthoalgebra ([6]). 

The unique element q G A satisfying the conditions in (iii) is denoted by 

q = p' and called the orthocomplement of p. 

If p, q £ A, we define p < g to mean that there exists r £ A such that 

p CD r is defined and p®r = q. It is not difficult to check that this element r is 

defined uniquely. Indeed, if there are r , s E / l such that p®r = q = p®s, then 

1 = (p0 r) 0 q' = r ® (p® q'), which implies that r' =p®q' and r = ( p 0 q')'. 

Similarly, s = (p 0 q')1 , therefore r = 5 . 

We put a: \ p = (p ® q')' for p,gG A, p < q • 

We prove that the partial binary operation \ is the difference on the 

orthoalgebra A (in the sense of Definition 1). 

(a) If p < q, then there exists EGA, r = (p ® q')', such that q = p 0 r = 

p © (p 0 <1')', which gives (p 0 O7)' < q , i.e. g \ p < g . 

(b) Let p < g. Because 1 = (p0 g7) 0 (p0 q')' =p®(q'®(p® q')') , we have 

p' = q'' ®(p®q')', which implies that g \ (<I\p) = ((p0 g')' 0 g')' = (p')' = p . 

(c) If p < g < w, then there exists s G j4 such that q = s ® p. From the 

equalities 1 = (q®w')®(q®w'')' = ((s®p)®w') ®(q®w')' = (s®(p®w')) 0 

(q®w')' = (p®w')®(s®(q®w')f) it follows that (p®w')' = s0(<70H/y , which 

is equivalent with the inequality (q ® w')' < (p 0 w')', that is w \ g < Hj \ p . 

Calculate, 

(u>\p)\(Hj\g) = ((geiy ')7©^©^)) ' = (((q®™f)'®™')®P)' = ( ^ © P ) ' = g \ p . 

We have proved that every orthoalgebra is a D-poset. 

Wre note that the connection between D-posets and orthoalgebras was noticed 

firstly by N a v a r a and P t a k [11] 1} . 

L) The authors are indebted to Dr. Navara who after the first version of the present paper 
called our attention to this fact. 
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E x a m p l e 10. In [10], an MV algebra is defined as follows: 

An MV algebra is an algebra (M, ©, ©, • , 0, 1 ) , where M is a non-empty sei. 

0 and 1 are cons tan t elemen ts of A / , © and © are binary operat ions , and 

• is a unary opera t ion such that for all x, y, z £ M the following axioms are 

satisfied: 

(A l ) ( x © y ) = ( y © x ) , 
(A2) (x © y) © z = x © (y © z), 
(A3) x © 0 = x , 
(A4) £ © 1 = 1, 

(A5) (x*)* = x , 

(A6) 0* = 1, 

(A7) x®x* = l, 

(A8) (x* © y)* © y = (x © y*)* © x , 
(A9) x © y = ( x * © y * ) * . 

The la t t ice opera t ions V and A are defined by the formulas 

x V y = (x © H*) © y and x Ay = (x (By*) 0 y . 

We wri te x < y if and only if x\/ y = y. T h e rela t ion < is a par t ia l ordering 
over M and 0 < x < 1 for every x £ M. 

An MV algebra is a dis tr ibu t ive la t t ice wdth respec t to the opera t ions V , A . 
We pu t 

y \ x = (x © y* )* for x, y G A/ , x < y . 

The par t ia l b inary opera t ion \ is the difference on A/ . Indeed: 

(a) Let x < y. T h e n 

(2/ \ .x) V y = (x © 2/*)* V H = ((a, © y*)* © i/*) © y = ((x © y*) © t/)* © y 

= (x © (2/* © y) )* © 2/ = (x © 1)* © y = 0 © y = y . 

therefore y \ x < y. 

(b) Le t x < y . We calcula te 

y \ (y \ x) - ((y \ x) © y*)* = ((x © y*)* © y*)* = (x © y*) ;• y = x A y = x • 

(c) Let x < y < z . By a simple calcula t ion, we get z* < y* <•/"*. .r* y - 1 
and y* (1) 2 = 1. 

2() 
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Further , 

(.: \ y) V (z \ x) = ((y 0 z*) 0 (x 0 z*)*)* 0 (z \ x) 

= (?/ CD (2:* (D (z CI) 2*)*))* CD (z \ -r) 

= (y © (x* O (x* (D z)*))* 0 (z \ x) 

= ((y 0 x*) 0 1*)* 0 (z \ x) = ( 1 0 0)* 0 (z\x) = z \ x , 

t herefore z \ y < z \ a;, and 

(c \ .r) \ (z \ y) = (x 0 z*)* \ (H 0 z*)* = ((y 0 z*)* 0 (:L 0 2*))* 

= (((y* 0 * )* 0 y*) Qx)* = ((1* 0 2,*) 0 x)* 

= (y* (0 x)* = y \ x . 

We have j^roved t h a t every MV algebra is a D-poset . 

P R O P O S I T I O N 2. Every D-poset contains the least element 0 , and 0 = 1 \ 1 . 

P r o o f . Let a G P . T h e n 1 \ a G P , 1 \ a < 1 < 1, and, by ( 3 ) , we have 
1 \ 1 < a , which implies t h a t 1 \ 1 is the least element in P , and ŵ e denote it 
by 0 . • 

P R O P O S I T I O N 3 . Let P be a D-poset. Then the following assertions are true. 

(i) tt \ 0 = a for any a E. P'; 

(ii) a \ a = 0 for any a G P ; 

(iii) // a,b € P, a < b, then b \ a = 0 i / ana7 On/H if b = a ; 

(iv) i/ a,b € P, a <b, then b \ a = b if and only if a = 0 . 

P r o o f . 

(i) For every a G P we have 0 < a \ tt < a. From (2) and (3) we get 

a = a \ (a \ a) < a \ 0 < a , 

which implies a \ 0 = a. 

(ii) From the above we have tt\a = a \ (a \ 0 ) = 0 . 
The proof of (iii) and (iv) is evident . • 

3 . O b s e r v a b l e s a n d s t a t e s o n D - cr -pose t s 

D E F I N I T I O N 3 . Let P and T be two D-cr-posets. A mapping w: P —-> T is 
called a morphism (of D-cr-poscis) if the following conditions are satisfied: 

(7) «•(!,.) = 1 T ; 
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(8) if (an)™=1 C P, a _ P, an / a (an < an+i for any n _ N and 
OC 

« — \l an), then w(an) / w(a); 
ra-l 

(9) if a,b G P, a < b, then w(b \ a) = iv(b) \ uj(a) . 

If P is the a-algebra of Borel sets of the real line R, then the morphisin 
x: £»(R) —> T is called an observable (on T). 

If T is a D-poset of all real numbers from the interval [0, 1] with usual 
difference (and sum) of real numbers, then the morphism m: P —> [0,1] is 
called a state (on P). 

If m: P —> [0,1] is a state, then the conditions (8) and (9) are equivalent 
to the condition 

(10) if (an)£°=1 C P , a G P , On / a, then 

oc 

m(a) = m(ai) + ^ m(an \ a n _i ) . 
n=2 

Let us note that, if x is an observable and m is a state on a cr-orthomodular 
poset, then x is a a-homomorphism and m is a a-additive mapping. 

E x a m p l e 11. Let P be a D-a-poset, a _ P. A mapping xa : B(M) —̂  P 
defined via 

1 if { 0 , l } n _ - {0 ,1} , 

a if { 0 , l } n £ = { l } , 

* a l ] M \ a if {o,i}nF; = {o}, 
o if {o,i}nF = 0 

is an observable on P. The observable xa is called an indicator of a. 

The set lZ(x) = {#(_?) : E1 G £>(R)} is said to be a range of an observable 
x . In general, the range of an observable on a D-poset is not closed with respect 
to the difference of its elements (see the next example). 

E x a m p l e 12. Let F be the D-poset of fuzzy sets (see Example 8), where 
_>(£) = t for every t _ [0, 1] . Let x be the observable on F defined as that 
in Example 10, where a _ F is the constant function, a = 0 ,8 . Then IZ(x) == 
{0; 0, 2; 0, 8; 1} , but 0, 8 \ 0, 2 = 0, 6 is not contained in IZ(x). 

28 



D-POSETS 

E x a m p 1 e 13. Every probability measure p: B(R) —> [0,1] is arr observ-
able on a D-poset of ail real rшmbers frorn the interval [0,1] with usual differ-
ence of real rшmbers. More specifically, if (fì,S,p) is a probability space, then 
íhe probability distribution p^ of a randonr variable £ is an observable on the 
I)-poset [0,1]. 

If Ĺ is a quantum logic, x is arr observable, and m is a state on L, therr a 
probability distributiorr mx of the observable x in the state m is an observable 
on the D-poset [0,1] , too. 

ít is easy to prove that the following proposition holds. 

PROPOSITION 4. Let x be an observable on a D-a-poset P . Then the fol-
lowìng assertions are true: 

(i) x(A U B) \ x(B) = x(A) \ x(A П 13) for all A, B Є B(R); 

(ii) гf x(A) = 1 . then (x(A) \ x(B)) Є 1Z(x), and, moreover, 

x(A ПB) = x(B) for any B Є B(R); 

(iii) if x(B) = 0 , then (x(A) \ x(B)) Є IZ(x), and, moreover, 

x(A UB) = x(A) for any A Є B(R); 
(iv) гf x(A) < x(B), then x(B) \ x(A) < x(B \ A) . 

THEOREM 1. Let x be an observable, and let m be a state on a D-a-poset 
P. A mapping mx: B(R) —> [0,1] defined via 

mx(E) = m(x(E)) for any E e B(R) , 

is a probability measure on B(R) . 

P r o o f . We prove only the cr-additivity of the mapping mx . Let (En)n

<L1 

n 
be a sequence of pairwise disjoint Borel subsets. Pu t An = (J E{, n = 1, 2,. . . . 

i=i 

The sequence (^4n) ! is monotonic, and 

| J An = Џ En . 
7 , - 1 ? , - l 
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Let us ca lcu la te 

Г 
rnx 

(JEn\ =mí,í (JE.Лj = Ҷ ' ( U Л ) = Ҷ \/ •'•(-!» ) 
OC 

= m ( . r ( Л , ) ) + Y ^ m(x(A„) x , r (Л„_j) ) 

эc 

= m ( ; r ( Л J ) ) + У ^ ( . r ( Л ( , x Д , - , ) ) 

n = 2 

OC ^C "V 

= m ( ; r ( i i , ) ) + ү \ r i í > ( Я „ ) ) = У ^ m(. r( ŕ ľ„)) = ] Г „,.,.[ /•; 

T h e m a p p i n g rnx is said to be a probability distribution of the observable ./• 

in t h e s ta te m and, by Example 13, t h e m a p p i n g rnx is an observable on the 

D-cr-poset [0, 1] . 

Now a mean value of t h e observable x in the s ta te m can be defined by the 

integral 

E(x) := J t mx(dt) 

R 

if it exists and is finite. 

4. R e p r e s e n t a t i o n of o b s e r v a b l e s 

T h e functional calculus for compatible observables in q u a n t u m logics is based 

on a representat ion of these observables by Borel measurable functions. 

T h e functional calculus for observables in D-posets may be const ructed in a 

similar way. 

L E M M A 1. Let x: B(R) —> P be an observable on a D-cr-poset P and hi 

f: R —> R be a Borel measurable mapping. Then the mapping y: B(R) — P d( -

fined by the formula y(E) = x(f~1(E)) for any E (E B(R) is also an obs( rrubh 

(and we write y = : i : o / ~ 1 ) . 

T h e proof of this L e m m a requires only a rout ine verification of t he condit ions 

in t h e definition of an observable . 
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THEOREM 2 . ( R e p r e s e n t a t i o n T h e o r e m ) Let x , y bc two observahlcs on a 
l)-rr-poset P . Then the following two eonditions are equivalent: 

(i) rThcrc is a Borci rneasurabie funě lion f: R —» R such that 
x(B) = ij(f-{{E)) for any E G B(R) . 

(ii) There is a chain M , M C B(R) , .sw;/i tfmt 
{ . r ( ( - o o ? r ) ) : r G Q } C (y (A) : A G M } , 
wherc Q Y\S f/ic ,sci o/ a/i raťionals. 

P r o o f. Let M be a linear ordered set of t he Borel subsets such that 

{ . r ( ( - o o , r ) ) : r G Q} C {y(.4) : ,4 6 A / } . 

Then for every r G Q there is a Borel suhset Ar G i\/ such t h a t ./:(( —oc./•)) 

//UM-
\ \ e notě t ha t . if ty (A) < y( /J) for A, £ G il/ , t hen there are C\ D G A/ such 

that A C C and y(fí) = y{C) , D C B and y(A) - y ( D ) . 

Indeed, it suíhces to pu t C - A u B , D = AnB. Similarly, if A, B, C G A/ . 

K C and /y(A) < y ( B ) < /y(C), t hen there is D G il / such t h a t A C l K f 
and //(D) = \j{B) . It suffices to pu t D = A U ( B n C) . 

Now we can construct by induct ion a sequence ( B ř l ) ^ = J C i\/ such that 
./•(( o o . /•„)) = </(/?„) for any rn G Q and, if r?; < r7 , t hen Bt C £ , . 

Let B = H # » • P u t A n == # n \ B . Because y ( B ) = z(0) = 0 , we hav 
v = l 

y(A„) = y(Bn x B) = y(Bn) x y{B) -= y(Bn) = x ( ( - o o , r n ) ) 

The sequence (A 7 / . )^= I is cons t ruc ted such t h a t : 

(i) j : ( ( - o o , r n ) ) = y(An) for any r n G Q , n = 1 ,2, . . . ; 

(ii) A7 C A7 if 7-i < ró; 

(Ui) n ^ n = 0 • 

We define an B(R)-rneasurabie function / : R —> IR. as follows: 

/(*) - < 

if t G IR \ IJ An 
n==l 

oo 
inf {rť G Q : í G A 2} if t G |J An . 

n = l 

:u 
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The function / is everywhere well-defined and finite. Moreover, 

ГҶ(-oo,rfc)) = { 

hence / is B(IR) -measurable. 

Let r e Q, r = 0. Then 

{ U Aг if rk < 0. 
rг<rfc 

U Au u ( R x Q An) if n > 
Гг<Гk

 V П = l 7 

0 . 

/ \ / (JXJ \ W / II, 

y(f-\(^,r))) =y[ (J AA = y[\J AA = \J y(\jAj, 
\ri<r ' M = l ' n = l \ = 1 

OO CO 

= V'y(AKJ= \/ x((-oo,rKn)) 
71=1 71=1 

= x{ [J(-°°,rKJ J = x ( ( - o c , r ) ) , 

where (rjz) ҷ=1 = {r* G Q : n < r} , r K n = max {rh, r j 2 , . . . , rjn } . 

Similarly, if r > 0. 

It is clear that y(f~1(R)) = x(R) because y(f~1(R)) = 1. 

Let [a, b) be an interval, a , b £ Q , a < b. Then [a, b) = ( — oo, 6) \ ( — oo, a) , 
therefore 

y(r L ( [a ,6)) )=x([a ,6)) . 

Let us denote <S = {[a, b) : a, 6 £ Q, a < 6} . It is not difficult to show that 

y ( / - 1 ( [ a , 6 ) U [ c , o ' ) ) ) = . r ( [ a , 6 ) U [ c , d ) ) , 

аnd 

Now we put 

у ( Г Ҷ [ « , Ь ) x Ы ) ) ) = x([a,ò) x Ы ) ) 

JC={AeB(U): yif-1 (A)) = x(A)} 

The system /C contains the algebra s(S) over the system S . We show that K 
is a monotone system. 
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D-POSETS 

Let {En)™=1 C /C, En C En+i for any n G N. Then 

'('-'(u&)h(urH 
oc oo / OO \ 

= V y{r\En)) = \/ x(En) = xI [J En . 
n=l n=l \ n = l / 

There holds: B(R) = a(S) C yV[(s(S)) C K, where cr(S) denotes the least 
O-algebra over S , and A4(s(«5)) denotes the least monotone system over s(S) , 
which implies that K = B(R). 

C\)iiversely, let / : R —* R be a Borel measurable function with y(Kf~1(E)) = 

.v{E) for every E G B(R). Then the system M = {f~l(-oc,r) : r G Q} is a 
chain such that 

{x ( ( -oo , r ) ) : r G Q} C {y(A) : A G M } . 

• 

The representation theorem enables to define the compatible observables, 
the joint observable and to prove, for example, the weak law of large numbers 
in D-posets (see [2]), e t c 
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