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ABSTRACT. We shall give a set of implications which determines the class of
all semigroups which are embeddable in completely simple semigroups. No finite
set of implications is sufficient to ensure that a semigroup is embeddable in a
completely simple semigroup. We derive a set of implications which determines
the class of group embeddable semigroups.

1. Introduction

A quasivariety is a class consisting of algebras of the same type and defin-
able by implications. Alternatively, a class of algebras of the same type is a
quasivariety if and only if it is closed under the formation of isomorphic images.
products, subalgebras and direct limits (see e.g. [13], [19]). Therefore the class of
all semigroups embeddable in completely simple semigroups constitutes a qua-
sivariety CSy (see e.g. [13; p. 216, Corollary 5]). For the necessary background
on semigroups and completely simple semigroups in particular, we refer to [4],
and for information concerning the variety CS of completely simple semigroups,
when considered as unary semigroups, the reader may consult [3]. [16], [17]. For
some particular embeddings of semigroups into completely simple semigroups
and related results, we refer to [1], [5], [6], [7], [8].

L.et X" be a fixed countably infinite set of variables. All the implications that
will be considered will be implications with variables in X . If A(CS,) (resp.
A(CS)) denotes the set of all semigroup implications on X satisfied by all the
members of CS, (resp. CS'), then of course A(CSs) = A(CS). For A C A(CS,)

ANS Subject Classification (1991): Primary 20M99.
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A. ANTONIPPILLAI — FRANCIS PASTIJN

we say that A is a basis of A(CSy) if the class of all semigroups satisfving all
the implications of A coincides with CSy or equivalently, if the implications of
A(CSy) are all derivable (in the sense of [18]) from the implications of A. In this
paper, we shall indicate how to recursively list the implications of such a basis
of A(CS). The main tool to be used is a model of the free completely simple
semigroup on a given semigroup. The method is comparable to the building of
a model for the free group on a given semigroup, as outlined in [4: Section 12,4,
We then show that A(CS) does not have a finite basis.

We refer to [4; Chapter 12] for a discussion on the embeddability of semi-
groups into groups, and for the relevant references to the work of Lambek. Mal-
cev and Ptak. Implications for semigroups embeddable into a member of a given
variety V of orthocryptogroups which contains the variety of all groups were
given in [2]. Using a result of Malcev [11], [12], it was shown in [2] that for
such a variety V the set of implications A(V) cannot have a finite basis.

2. The free completely simple semigroup on a given semigroup

If V is a variety of unary semigroups and S a given semigroup, then the pair
(C,~) is called free in V on the semigroup S if

(i) C eV and v: S — C is a homomorphism,
(ii) C is generated as a unary semigroup by Sv,
(iii) if (H,6) issuch that H € ¥V and 6: S — H is a homomorphism. then
there exists a (necessarily unique) homomorphism v: ' — H such
that

— C/'

is a commutative diagram.

Such objects (C,~) exist of course: indeed, if (F,¢) is free in V on the set
S, and o is the congruence relation on F' generated by the set

{(ab,c)| a,b,ce S, ab=c in S}.
- n . . . Y . .
then (F/o, 107) is free in V on the semigroup S. In particular. a free com-
pletely simple semigroup on a semigroup S exists; moreover, such free objecis

are isomorphic (in the obvious sense). Though we have a good understanding of
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free completely simple semigroups (see e.g. [3], [17]), we shall find it useful to
give a model of a free completely simple semigroup on a given semigroup which
already satisfies certain implications.

For a semigroup S and a,b € S we put apb if there exists n > 1 and

clements dy,...,d,, ¢1,...,e,, ¢1,...,¢,_1 of S such that
ady = e, cpdy = caey .y Cpeodp_1 =cCp_1€p_1, Cp_1d, = be, .

If n =1, we assume that ad, = be; for some dy and e;. It is easy to see
that p is the least left zero semigroup congruence on S ([9]). The relation
on S is defined in a dual way: A is the least right zero semigroup congruence
on 5. We use the notation 7 = AN p. Thus n is the least rectangular band
congruence on S ([9]). For any i,n > 1, and z,y € X, zp; ,y will stand for

the following conjunction of (formal) equalities on the free semigroup X+ on
the set of variables X :

LV = PiaWiy, Piali2 = Pi2W;2,

(2)
Pin-2Vin-1 = Pin—-1Win-1, Pin—-1Vin = YW;n .

If n =1, we assume that (2) reduces to xv;; = yw; . Dually, x X\, y stands
for the conjunction of

Sim® =ti1qi1,  Si2qi1 = ti2qgi2,
(3)
< Sim—19in—2 = t'i,.n -19in—1; SinQinm—1 = t'i,,'n.yv
where again for n =1 we assume that (3) reduces to s; 1@ =t; 1y, and xn;,y
denotes the two sequences combined, with the understanding that the v; ¢, w; 4,
sios b, V<0 <n and p;j, qij, i <j<n-—1,are distinct variables of the
set X
With the notation introduced above, we thus have that a pb in the semigroup
S if and ounly if there exists n > 1 such that a substitution of the variables
involved in (2), with @ substituted by a and y substituted by b, yields from (2)
a sequence of true equalities in S In this case we write a p,, 0. The definitions
for the relations A, and 1, on S are analogous. It should be noted that if
ap, b.then ap,, b for every m > n, and the same remark applies for A, and
1, - From this it also follows that anb if and only if, for some n > 1, an, b

b

LEMMA 1. Let A be the quasivariety defined by the implications A; — B .
J € J. where Aj is a conjunction of equations, and Bj, an equation. Lel
{reo o ry, } be the set of variables involved in Aj — Bj for j € J. Then a

semigroup is a rectangular band of members of A if and only if it satisfics the
implications
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Aj

‘ — Bj (1)
TN Ty, 1<i<ny J

for every j € J and every n > 1.

Proof. Let S be a rectangular band of semigroups which belong to A.
Thus, there exists a rectangular band congruence é on S such that each &-class
belongs to A. The least rectangular band congruence 7 is contained in &.
whence each 7-class is contained in some é-class. Let 7 € J, n > 1. and let
a substitution in A; and x7;, z; of the variables xy,... 2, .... by the cle-
ments ay,...,an,,... of S yield a collection of true equalities in .S'. Then the cl-
ements aj, ..., a,; of S are n-related and belong to some é-class 7" of S. Since
T satisfies A; — Bj, the substitution in Bj of xy,...,x,, by ay..... a,,
yields a true equality in S. Therefore S satisfies the implications (4).

Conversely, assume that S satisfies the implications (4). Let T be an 1-class.

J € J, and let a substitution in A; of xy,...,x,, by elements a..... ay,, of
T yield a collection of true equalities. In particular, ay,... ,a, are n,-related
for some n > 1. Since S satisfies (4), the substitution in B; by a;..... a,

yields a true equality. Hence T belongs to A and S is a rectangular band of
members of A.

Let us denote the variety of all rectangular bands by RB. For any quasiva-
riety A of semigroups, the quasivariety consisting of the semigroups which are
rectangular bands of members of A is precisely Ao RB, the Malcev product
of A and RB. Let G be the variety of all groups, and G, the quasivariety of
all semigroups which are group embeddable. Thus G; 0o RB is the quasivariety
consisting of the semigroups which are rectangular bands of group embeddable
semigroups. Every semigroup which is embeddable into a completely simple semi-
group is a rectangular band of group embeddable semigroups: CS, C G. o RE.
Lemma 1 and, for instance, Malcev’s basis of implications [11] for the set (G}
of all semigroup implications on X satisfied by all the members of G, . give us
a means to find a basis of the set A(Gy 0o RB) of the semigroup implications
satisfied by the members of G, 0 RB. Since we ultimately want to find a basis
for A(CS), an affirmative answer to the following would end our quest.

PROBLEM 2. Does CS, coincide with G, o RB?

Another consequence of Lemma 1 is given by
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LEMMA 3. A semigroup is a rectangular band of cancellative semigroups if and
only for every n > 1 it satisfies the implication
(r123 = Tp3, TYN1p Ty, 2720 T3) — T = To (Cn)
and its dual (C}).
COROLLARY 4. A(CS,) contains the implications (C,) and (C}) for
coery n .
Proof. A semigroup which is embeddable into a completely simple semi-

group is a rectangular band of cancellative semigroups.

Recall that groups satisfy the following so called quotient condition [10 (see
[1: Section 12.4]):
TW =Yz’

TP =Yq 5 — up = vq. (Q)
uw = vz

LEMMA 5. A(CS,) contains the implications
Tw=yz, wn,y

TP =Yq, PM2nY > — up = vq (Qn)

UWw =0z, wWN3nv
Jor coery n> 1.

>roof. Since A(CS) = A(CS,), it suffices to show that every Rees matrix
semigroup M = M(G5 1, A; P) over a group G satisfies (Q,,) for every n.

For t € X.let t = (i/,g/,\) € M, such that zw = yz, Tp = §q, uw =
rooaty, . pn,§ and wn, v. From the last three conditions we infer that
w. y. p and ¢ belong to the same maximal subgroup of M. Hence, there

exist 7 € I and A € A such that ¢ = i, = i, =i, = 1, = i, = i, and
A Aew = Ay = Ay = A, = A, = A,. From zw = gz, p = yq, uw = vz,
we thus obtain, respectively, g, px,igw = Gy Pxi. 9= Ge Pri9p = Gy Pxi, Gy -
JuPr,iGw = GoPri. 9= - In other words, if in the formal equalities xw = y=z .
op e yqg and ww = vz the variables o, y, w., z, p, ¢. u, v are substituted

respectively by the elements g, pa.is 9y, Guws Pri, 9=+ Yps Priy Ggs Yn Pr,is o
of the o‘mup G, then we obtain true equalities in G . Hence, since G satisfies
(Q) . it follows that gy px,igp = g Pri, gy 15 true in G C onsequently
up = ([ Gu PXyi Yps )‘) = (’ Guv PXiy Yq» )‘) =0q.
Therefore M satisfies (Q,) . as required.
We set out to construct a model for the free completely simple semigroup on

a semigroup S which satisfies the implications (@) for every n > 1.
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CONSTRUCTION. Let S be any semigroup. For a,b € S we define
a/b={(g9,h)| ga=hb, anh}

if this set is nonempty, and otherwise we say that a/b does not exist. When-
ever a/b exists, we call a/b a right quotient of S. Let () be the set of right
quotients of S, and let T be the free semigroup with ) as its set of free gen-
erators. Let 6 be the congruence relation on T generated by pairs of the form
((a/b)(bc/d), (ac/d)), where a,b,d € S, ¢ € S' such that a/b. be/d and ac/d
exist. Let 6% be the canonical homomorphism of 7' onto €' = T/#. For anv
a € 5, a?/a exists since (a,a?) € a?/a, and so we may define a mapping
k:S—T, a—a*/a. Then v = xH" maps S into C'.
LEMMA 6. If the semigroup S satisfies the implications (Q,) for cvery n > 1.
then
(i) for every a,b,e.d € S, (a/b)yn(c/d) # 0 if and only if a/b=c/d:
(ii) if for a,be s, a/b exists, then ab/b = a”/a.
If S satisfies in addition the implications (C,), (C¥). n > 1. then n s
one-to-one.

Proof. The proof of (i) follows immediately from the fact that .S satisfies
(Qn), n>1.

To prove (ii), let a,b € S such that (g,h) € a/b. Therefore gua = hb
and anh. Thus abnhb and g(ab) = (hb)b, whence (g, hb) € ub/b. From the
foregoing also follows that bAh, whence hbnhnana® and ga® = (hb)a. thus
(g.hb) € a*/a. By (i), we may thus conclude that ab/b = a*/a.

As for the last statement, assume that «”/a = ax = bk = b%/b. Since then
(a,a) € a?/a = b?/b, we find ab® = a®b and b*na?, wheuce anb. Since the

n-classes are cancellative, we thus have a = 6.

THEOREM 7. Let S be a semigroup which satisfies the implication (Q,) for
cvery n > 1. Then (C,v) is a free completely simple semigroup on the

semagroup S .
Proof. For any a,b € S we have

a(aba) = a*(ba) . abanana®.

Similarly, bab/ab = b*/b = br . Therefore
(av)(by) = (aba/ba)d (bab/ab)b
= (abab/ab)b
= (ab)y
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because ((aba/ba)(bab/ab), (abab/ab)) is one of the pairs that generate . We
proved that v is a homomorphism of S into C'.

I'rom the definition of 6 it follows that for every a € 5,

(a/a)f (a®/a)d = (a®/a)d = (a*/a)B (a/a)d, (5)
(((L/(L)H)? = (a/a)b, (6)
(a*/a)0 (a)a*)0 = (a*/a*)0 = (a)a)0 = (a/a*)0 (a*/a)0 (7)

where, by Lemma 6 (i), a?/a® = a/a because (a,a) € (a/a) N (a®/a?). Hence
every element (a?/a)f = ay belongs to a maximal subgroup of C with iden-
tity element (a/a)f, and the inverse of (a?/a)f within this subgroup of (' is
(a/a?®)0. Using this and the fact that v is a homomorphism, we find that for

a,ce s,
(ca/ca)® (a/a)d = (ca/caca)d (caca/ca)d (a/a)b
)0 (ca)y (a/a)b
ca/caca)fcyay (afa)d
)

ca/caca)f ey ay (8)

I

=(
(ca/caca
(
=

= (ca/ca)b.

For all a,c € S, a/ea exists because (ac,a) € a/ca, and furthermore by
Lemima 6 (i),

(a/ca)d (caca/ca)l = (aca/ca)d = (a*/a)0,
and consequently by (5),

(a/a)d (ca/ca)d = (a/a®)0 (a® /a) (ca/ca)d
a/a*)0 (
(
)0 (

= (
( /
= (a/a*)0 (a/ca)0 (caca/ca)d (9)
= (
=

I
i

a/ca)f (caca/ca)d (ca/ca)d

a*/a)0

a/a’

' |

a/a)f

From (8) and (9), we thus have that the idempotents (a/a)0 and (ca/ca)d of
(" are L-related. From this a more general statement follows:

adbin S = (a/a)d L (b/b)f in C. (10)
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Clearly, for all a,c € S

(a/a)f (ac/ac)l = (ac/ac)f . (1)

Also, a/a = aca/aca by Lemma 6 (i) since (a,a) € (a/a) N (aca/aca). and
therefore

(ac/ac)f(a/a)d = (ac/ac) (aca/aca)d

= (aca/aca)d = (a/a)0. (12)

From (11) and (12), we thus have that the idempotents (a/a)f and (ac/ac)f)
of C are R-related. From this a more general statement follows:

apbin § = (a/a)d R (b/b)6 in C. (13)

Let E be the set of idempotents of C' of the form (a/a)f. a € S. For any
(a/a)d, (b/b)8 € E we have

(a/a)d R (ab/ab)d L (b/b)0

and

(a/a)f L (ba/ba)0 R (b/b)6
in C. It follows that E is biorder isomorphic (in the sense of [11] or [15]) to the
biordered set of a rectangular band. Therefore the subsemigroup of " generated
by E is an idempotent generated completely simple semigroup ([14]. [15]). Let
D be the union of the maximal subgroups of C' whose identity elements belong
to E. Obviously, D is a completely simple semigroup.

Let a/b € Q. Then by Lemma 6 (i), ab/b = a*/a. whence
(a/b)0 = (a/b)0 (b/b)6
= (a/b)0 (b /)0 (b/b%)0
= (ab/b)0 (b/b*)0
= (a?/a)0 (b/bH)0 .
and since by (5), (6) and (7), (a®/a)0, (b/b*)0 € D, we have from (11) that
(a/b)0 € D.Since C is the semigroup generated by Q6. it follows that " = D).

Therefore C' is a completely simple semigroup. From (7), we know that for all
be S, (b/b*)§ = (by)™!, and so by (14), we have that for all a/b € Q.

=t

(a/b)0 = (a7) (b3) " (1
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Therefore C' is generated, as a unary semigroup, by Sv.

Assume that H is a completely simple semigroup and é6: S — H is a homo-
morphism. If a/b = ¢/d exist, then there exists (g, h) € a/b = c/d, whence

ga = hb. gc = hd, anhne,
and so
(90)(ad) = (ho)(bd), (96)(cd) = (ho)(dd),
gé R ab H hé Heb LbS L 6.

From this it follows that
(a8)(b8) ™" = (96)~(h6) = (c8)(d8) "
Consequently, the mapping
x:Q— H, a/bw (ad)(bs)™*

is well-defined. Since T is free on Q, there exists a homomorphism ¢: T — H
extending x . If a/b, be/d and ac/d exist, then, since aAb and thus (ad) L (bd),

((a/b)(be/d)) ¢ = (a/b)p (be/d)y
= (a/b)x (be/d)x
= (ab)(b8) " (bc)é (dé)~*
= (ad)(b8) " (b6)(c6)(d6) "
= (ab)(c8)(d8) ™
= (ac)8 (d§)~"
= (ac/d)e.

It follows that 6 C ¢p~!, and consequently there exists ¢: C — H such that
07y = p. Since for any a € S

avy = (a%/a)0y = (a/a)p = (a®/a)x = (ab)*(a8) " = as,

the diagram (1) commutes. Hence (C,7) is a free completely simple semigroup
on S.

For the record we note

THEOREM 8. A semigroup S can be embedded into a completely simple semi-
group if and only if S satisfies (Qn) foralln>1,and v: S — C is one-to-one.

For v to be one-to-one, we need  and 6 to be one-to-one. By Lemma 6, x
is guaranteed to be one-to-one if the semigroup S satisfies the implications (C,)
and (C) for all n > 1. As we shall see in the next section, these implications
(C",), (C*) need not be present in a basis for A(CS}).
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3. Implications for semigroups embeddable
in completely simple semigroups

In this section we indicate how to list the implications of a basis of A(CS.)
and we show that A(CS;) cannot have a finite basis.

For m > 1 let N be the set of positive integers, A = {—1.1}. B = {0.1}.

and A,, = {1,...,m}. Let g = (91,92,93) be a mapping of 4,, into AxMNx [
k—1

such that, with m, =14+ > g1(i) forall 1 <k <m and m; = 1.
i=1

(i) 1< go(k) <my forall 1 <k <m;
(ii) if g2(k) =1, then gi(k) = —1;

m

(i) > g1(i) =0, g2(m) = 1.

=1

With such a mapping g we associate an implication (/,,,) for all n such that
m < n in the following way. If for 1 < k < m, ¢g1(k) = 1. g3(k) = 1. then I
stands for the formal equalities over X :

Pk g, (k) k = dk l':;z(k),k y  PEUE = qRUE

qk Msk+1n Lgy(k)k s 9k TI5k+2,m Uk,

ThT gy (k)+1.k = SA:JTT(,Z(A.>+1,L1 y TRURWE = SEZk,

Sk Mok+3n Tgy(k)+1.k s Sk Pok+an Uk, Sk /\Sl\'+'1.u Wy .
ERURWE = YkZk s Yk Pok45m Uk, Yk Adk+5m Wh
Tiky1 = Tik Tpggq = T forall 1<i < gy(k).
Ty (k).k+1 = URWk 3’;2(k).kv+1 = Zk

! ! R :
Tigt1 = Titl ks Tipr1 = Tippp forall = ga(k) <@ <y

{ gi(k) = —1 and g3(k) = 0, then I} stands for the variant of I;. just described.
where w;. is the empty symbol, and where sp Msr+a wi and yu 1spas, U -
whereas the unmeaningful sp Aspa., Wy, and yu Askis.,, wy are to be ignored.
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If gi(k) =1, g3(k) =1, then I stands for

el gy (k) ok = Yk Ty (k) ks LRURWE = Y2k s

Yk Msk+1m Tgo(h) ks Yk Psk42n Uk s Yk Ask42,n Wk

Pritp = qrUk s Ak M5k43,n Uk

IFpCpWE = SkZk, Sk Psk+4,n Uk, Sk /\5k7+4,n wy ,

Tigpl = Tig Ty = Tig forall 1<i< gs(k),
Ly (k). k+1 = U .’E.qu(k)’k_*.l = U},

Typ (k)b = VRWE S Ty (k)41 kgt = 2k s

Lik+l = Tim1k ";'/i,k+1 = .’L';_I,k for all go(k)+1<i<mp+1.

If g(k) =1 and g3(k) = 0, then I stands for the variant of I just described,
with wy, the empty symbol. Here yi n5r42.0, ur and s nsgya.n vk, whereas the
unmeaningful yg Aspro.n Wi and Sk Nsk44., Wi are to be ignored.

Then (I,,,,,) is the implication

o 2ot P y
Txyy = xTTy g, T Nom T1,1,

Il«-~-«]'nn — T =Y. <[!IA"')

21 .20 . .
YLim+1r =Y -I‘L,m_f.[ o Y Nsm46.n Tl m+1

THEOREM 9. A semigroup can be embedded in a completely simple semigroup
if and only if it satisfies the implications (Qn) and (Ig,,) .

Proof. We already proved that A(CS,) contains the implications (Q,,).
In order to show that A(CS) = A(CS) contains (I;,), let S be a completely
simple semigroup, and for any t € X, we take { € S such that the formal

equalities in the left-hand side of (I4.n) yield, after substitution, true equalitics
in S. We then must prove that = = 9.

If gi(k) = —1. then with the notation introduced above,

I _ o
Pk Cga(k)k = Gk Lga(k).h Pk Uk = qk Uy,
qx H Tgyhyue H iy

thus

= R N~ I
Lgo(k).h Jfg,z(],»).,g» =P 4k = UR Uy,
Similarly.

I P | — 5 S, — 77, 51
'I'g]'g(lsf]-'f-l.]\‘ J/gg(l\')+]-k ,k' S = Uk'll/'k/‘,k
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where wy = 1 € S' if wy, is the empty symbol, that is, if g;(k) = 0. Therefore

- -1 - -1 [
Lga(k)k Lgy (k) k L2 (k)+1.k Loy (kyr1,6 = Yk Vi UkWk 2y

= ﬂk,?DA.E,:1 (since 1wy £ v in S)
- =1

- 'Egz(kt).kt+1 xgz(k)‘/-%l s

so that

- =/ -1 = =/ =1 _ = =/ —1 s =/ —1 :
LLkLy g - Tk Lo, = TLEH1I LY oy oo T kb L8 b1 (16)

Similarly, if g1(k) = 1, then (16) holds. Therefore (16) holds forall 1 <k < m .
and we find

- =1 _ 5 = =1 1=
TiaZy = Lim4+1Ly myq - (17)
Since also
Ty, =27, and THZ.,,
we have that
— — —/ —
I=F, 3, (18)
and similarly we find that
7l (19)

Y =T1m+1 T1om+1- \

Thus from (17), (18) and (19), we have that Z = §, as required.

Conversely, assume that a semigroup S satisfies the implications (@) and
(14.n) . By Theorem 7, with the notation adopted in the previous section. (C'.~)
is a free completely simple semigroup on S. We must prove that ~ is one-to-one.
Assume that Z,7 € S such that #y = gy. That is, (#°/) 0 (y°/y). Since 0 is
generated by pairs of the form ((a/b)(bc/d), (ac/d)), where a.b.d € 5. ¢ € !
such that a/b, be/d and ac/d exist, there exists a proof in 1" of the form

(z°/2) = (Z1a/ ) — = (T /T ) (T /Ty k)

ey e —y (,’7,']__,,,_*_1/.’7,‘/]‘,”4_1) = (1/2/17) .

where for each 1 < k < m. there exists 1 < go(k) < my such that

(Z g (k) b/ Ty 1) = (T /Tk) (Zgohy a1k /Ty () gap) = (Thitn /32

and
Uk Wk = Tgy (k) k+1 5 Tk = Tgy(k) bt
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while
Tiktl = Tik, j;'v,k-l—l = j‘.',i,k forall 1<i< (]2(/€> ,

and
— — —/ =/ ) P
Tidrl = Tig1h, Thppr = Tipih for all go(k) <t < my.

Or otherwise,

(Egz(k),k/‘fgz(k:],kt) - (ﬂkqﬁk/zk) 3

Up == Tgy(k),k+1 > Uk = T, g2(k),k+1
VpWr == Tgy(k)+1,k+1 > 2k = Tgy(k)+1, k41
while
Tikdl = Tik, Thpy1 =Tig for all 1<1i< ga(k),
and

Tidl = Ticih,  Tippr = Ti_1k for all go(k)+1 <i<my+1.

In the former case, we define g;(k) = —1 and g3(k) =0 if Wy =1 € S, and
gs(k) = 1 if @, € S. In the latter case we put ¢1(k) = 1 and g3(k) = 0 if
i = 1€ S and g3(k) = 1 if wy, € S. It is now easy to see that g = (g1, g2, g3)
satisfies the required conditions. From the above and the definition of the right
quotients it follows that for a sufficiently large n there exists a substitution of
the letters t of X by corresponding elements ¢ of S such that after substitution
the formal equalities in the left-hand side of (I;,,) yield true equalities in S.
Since S satisfies (I,,), we have & = §. We proved that Zvy = gy implies
T =y.and so v embeds S into the completely simple semigroup C'.

We next show that the result obtained in Theorem 9 yields a basis of imn-
plications for the quasivariety Gs consisting of all semigroups which are group
cmbeddable.

We shall denote the identity element of the free monoid X* by 1 and the
cequality relation in X* by =. For any finite subset A of X and w € X*, let
w .y be the word which results from w by deleting all the occurrences of elements
of A. In particular, w, = 1 if all the elements of X which occur in w belong
to A. Given any set F = {p; = qi,...,pr = qi} of formal equalities on the free
semigroup Xt let E4 be the set of formal equalities on X T, where v = w
belongs to B4 if and only if one of the following cases occur:

(i) v =w is of the form (pi)a = (¢i)a,
where 1 <i <k, (p)aZ1# @i)a,
(ii) v =y =w if for some 1 <i <k we have (pi)a=1=(q
(iii) v = w is of the form (pi)ay =y, where 1 < i<k, (p

i)A
i)A # !
(iv) v =w is of the form (¢;)a¥y =Y, where 1 <7 <k, (pi)a =1
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where y is some fixed variable of X . Given any set A of semigroup implications.
we denote by A* the set of semigroup implications defined by the following;:

V] =W, ..., Vg =W —> V=W (20"
belongs to A* if and only if there exists an implication

Pr=4q1,---sPk=Qqk —>P=( (21
in A and a finite subset A of X such that

{vi=wy, ..., =we} ={pL=q1,--- , Pk = Qi } A (22
and
(v=w)e{p=qla. (23)
We remark that A is finite if and only if A* is finite, and that A C A*.

For any semigroup S let S! be the semigroup S with an extra identity
element adjoined if S does not have an identity element. and S = S! otherwise.

THEOREM 10. Let A be a set of semigroup implications, and S be a can-
cellative semigroup. Then S' satisfies the implications of A if and only if S
satisfies the implications of A* .

Proof. Assume that S satisfies the implications of A*. If S = S!. then
S' satisfies the implications of A, since A C A*. We now assue that S # S*t.
Let (21) be any implication of A and for any t € X, let £ € S' such tha
after substitution the formal equalities in the left-hand side of (21) vield true
equalities in S. Let A = {t € X | T =1}.Since S satisfies the implication
(20), where (22) and (23) are satisfied, it follows that v = w vields after
substitution a true equality © = @ in S. Since S does not have an identity
element, either v = w is of the form y = y, in which case py = ¢ . and then
p=4¢q.or v=py and w = g4, and then again p = ¢ because © = . Thus S’
satisfies the implications of A.

Assume that S' satisfies the implications of A. Let (20) be any implication
of A*, derived from the implication (21) of A by (22) and (23) for some
finite subset A of X, and for any variable ¢t € X which occurs in (20). let
I € S, so that after substitution the formal equalities in the left-hand side of
(20) vield true equalities in S. For any t € A, let £ = 1 € S'. Extending the
previous assignment in this way, after substituting the formal equalities in the
left-hand side of (21), then vields true equalities in S': here we use the fact
that cancellative semigroups satisfy xy =y — 2z =z and vy =y — 20 = .
Since S' satisfies the implication (21), the considered assignment vields a true
equality p = ¢ in S', and thus also a true equality © = @ in S. Hence S
satisfies the implications of A*.
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COROLLARY 11. A semigroup is embeddable in a group if and only if it is can-
cellative and satisfies the implications of A*, where A is the set of implications

of Theorem 9.

Proof. This is an immediate consequence of Theorems 9 and 10 since a
semigroup S is embeddable in a group if and only if S! is cancellative and
cmbeddable in a completely simple semigroup.

COROLLARY 12. The set of implications A(CSs) does not have a finite basis.

Proof. If A(CS,) hasa finite basis A, then the implications of A* together
with the cancellative laws constitute a finite basis for A(Gy), where G, is the
class of all group embeddable semigroups. This, however, is impossible by the

results of [12].
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