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ON DIVISIBILITY OF h+ BY THE PRIME 5 

STANISLAV JAKUBEC 

(Communicated by Milan Paštéka) 

ABSTRACT. In this paper it is proved that under certain assumptions (see Theo

rem 1) 5 does not divide the class number of the real cyclotomic field Q ( C P + C J J ) • 

In troduc t ion 

Let /, p be primes such that p = 21 + 1. D a v i s has proved in [1] that if 2 
is a primitive root modulo /, then 2 does not divide the class number h of the 
cyclotomic field Q(C?>)- This result follows from the relation between the group 
of totally positive units and the group of squares of the field L = Q(Cp + Cp"1) • 

In E s t e s [2], it is shown that provided the order of 2 modulo / is —-— , 

and / = 3 (mod 4). then 2 does not divide the class number h of the cyclotomic 
field Q(CP). This result was obtained using Hasse's theorem (Satz 45), i.e. h is 
odd if and only if h~~ is odd. 

Note that analogous assertions for divisibility of h by primes q > 2 do not 
hold. For example for / = 29. p = 59: 3 is a primitive root modulo 29 and 3 
divides the class number of the cyclotomic field Q(Cs9)« For / = 11, p = 23: 
the order of 3 modulo 11 is 5 and 3 divides the class number of the cyclotomic 
field Q(C2*). 

It seems that analogous assertions hold if we consider the divisibility of the 
class number h+ of the real cyclotomic field Q(Cp + Cp-1) instead of the divisi
bility of the class number h of the cyclotomic field Q(C/>)-

In [3]. it is proved that if p, / are primes such that p = 21 + 1 and the prime 
q is a primitive root modulo /, then q does not divide the class number h+ of 
the real cyclotomic field Q(Cp + C;71)-

In [4]. it is proved thai if the order of 3 modulo / is , then 3 does not 

divide h{ . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11R29. 
K e y w o r d s : Class number, Cyclotomic field, Divisibility. 

651 



STANISLAV JAKUBEC 

The aim of this paper is to prove the following theorem. 

THEOREM 1. Let I, p be primes such that p = 21 + 1, I = 3 (mod 4) , and let 

the order of the prime 5 modulo I be 1-1 Then 5 does not divide the class 

number h+ of the real cyclotomic field Q(Cp + Cp

 X) • 

This theorem is proved using the following theorem in [3]. 

PROPOSITION 1. Let I, p, q be primes, p = 1 (mod I), q ^ 2 ; q / /; q < p. 

Let K be a subfield of the field L, [K : Q] — I and let h^ be the class number 

of the field K . 

If q | hK , then q | N Q ( C , ) / Q ( U ; ) , where 

UJ = 0.1 ^2 X(ѓ) + a2 Y^ x(i) + Ьa„_i J ^ x(г) 
i=l ( m o d g) iEE2 ( m o d q) i = q—l ( m o d q) 

and x(x) is the Dirichlet character modulo p, x(x) — Qnd'r • 

In the following tables, the numbers a, for q = 3, 5, 7, 11, 13 are given. These 
values were calculated on the basis of [3; p. 73, formula (4)]. 

Table 1: q = 3. 

O i û _ 

p — 1 (mod 3) 0 1 

p = 2 (mod 3) 1 0 

ТаЫе 2: д = 5. 

« i Ct2 «з a 4 

p = 1 (mod 5) 0 1 - 1 1 

p = 2 (rnod 5) - 1 0 1 1 

p = 3 (mod 5) 1 1 0 - 1 

p = 4 (mod 5) 1 - 1 1 0 
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Table 3: q = 7. 

o x ӣ2 aз Ű4 o 5 o 6 

p = 1 (mod 7) 0 1 5 3 5 1 

p = 2 (mod 7) 5 0 6 4 4 6 

p = 3 (mod 7) 4 4 0 5 1 5 

p = 4 (mod 7) 2 6 2 0 3 3 

p = 5 (mod 7) 1 3 3 1 0 2 

p = 6 (mod 7) 6 o 
JĹJ 4 2 6 0 

Table 4: a = 11. 

a i a 2 aз UĄ_ a 5 a 6 a 7 a 8 ag aio 

p = 1 (mod 11) 0 1 7 0 3 1 3 0 7 1 

p = 2 (mod 11) 6 0 7 6 0 9 9 0 6 7 

p = 3 (mod 11) 0 0 0 1 6 4 4 4 6 1 

p = 4 (mod 11) 10 3 10 0 0 9 3 3 9 0 

p = 5 (mod 11) 8 5 5 8 0 9 0 9 0 9 

p = 6 (mod 11) 2 0 2 0 2 0 3 6 6 3 

p = 7 (mod 11) 0 2 8 8 2 0 0 1 8 1 

p = 8 (mod 11) 10 5 7 7 7 5 10 0 0 0 

p = 9 (mod 11) 4 5 0 2 2 0 5 4 0 5 

p = 10 (пюd 11) 10 4 0 8 10 8 0 4 10 0 
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Table 5: q = 13 . 

ai a2 ÛЗ a4 a
5 aв a7 a

8 
a

9 aio ÛŁЦ arž 

p = 1 (mod 13) 0 1 8 4 1 9 7 9 1 4 8 1 

p = 2 (mod 13) 10 0 11 7 7 4 2 2 4 7 7 11 

p = 3 (mod 13) 9 9 0 10 3 9 7 11 7 9 3 10 

p = 4 (mod 13) 1 5 1 0 2 12 10 10 10 10 12 2 

p = 5 (mod 13) 7 12 12 7 0 8 6 8 4 8 6 8 

p = 6 (mod 13) 10 11 12 11 10 0 11 5 8 8 5 11 

p = 7 (mod 13) 2 8 5 5 8 2 0 3 2 1 2 3 

p = 8 (mod 13) 5 7 5 9 5 7 5 0 6 1 1 6 

p = 9 (mod 13) 11 1 3 3 3 3 1 11 0 12 8 12 

p = 10 (mod 13) 3 10 4 6 2 6 4 10 3 0 4 4 

p = 11 (mod 13) 2 6 6 9 11 11 9 6 6 2 0 3 

p = 12 (mod 13) 12 5 9 12 4 6 4 12 9 5 12 0 

P r o o f of T h e o r e m 1. Since the order of 5 modulo / is / - 1 

have ( j ) = 1 

1 = 4 = 

, we 

hence / = 1 or 4 (mod 5). From this, we have p = 3 or 1 (mod 5). 

According to Proposition 1 and Table 2 it holds that if 51 /?+, then 
5 I N Q ( 0 ) / Q ( ^ ) ?

 w h e r e 

ш= J2 x({) + 5ľ *(*) ~ Л x(*)' for i> = 'л 

i = ì ( п ю d 5) i = 2 ( m o d 5) i=Л (rnod Г>) 

ш = 5 ľ ^ ~ Л X^ + Xľ X(ѓ), 
i = l ( m o d 5) ѓ = 2 (rrюd 5) i = 3 ( m o d Г,) 

mod o), 

for /; = 4 (шod 5) 
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It is easy to see that UJ — 2 T , where 

r= Yl x ^ + Y x ^ ~~ J2 x ^ ' for p = 3 (mod 5), 
i = l (mod 5) 2=2 (mod 5) i~4 (mod 5) 

*<f i<\ i<f 

r = _C *(0 ~ ]C X(i) + Y x^ ' for P = 4 (mod 5). 
i = l (mod 5) i=2 (mod 5) i=3 (mod 5) 

i<f *<f i<f 

Since the order of 5 modulo / is —~\— , we have that 5 is splitting to two 

divisors in Q(C/)- Because / = 3 (mod 4), it holds that (•^p-j = — 1 , hence if 

5 | N Q ( ^ ) / Q ( U ; ) , then 5 divides TT. 

The proof will be in two steps: I. p = 4 (mod 5); II. p = 3 (mod 5). 

I. case: p = 4 (mod 5). 

The following formula holds: 

TT= J2 "nxttr1) = bQ + biO + b2(t + "• + bt-ic^1, (i) 
i . j=l:2:3 (mod 5) 

*\j<§ 

where un = 1, ai2 = - 1 , ai:i = 1, a 2 i = - 1 , a 2 2 = 1, a 2 3 = - 1 , a 3 i = 1, 
a 3 2 = — 1, axi = 1. 

Then 5 | TT if and only if 

bo = bi = • • • = bi-i (mod 5) . 

We shall compute the coefficient b0. 

Let \(ij~l) = 1, then ij~l = 1 (mod p) or zjf"1 = - 1 (mod p), therefore 

either / — j = 0 (mod ?j) or i + j = 0 (mod p) i,j < y . Hence i = j (mod p ) . 

The following equalities hold 

#{/ = l(mod5),/<|} = 

#{/ = 2(nюd5), г < | } = 

#{/ = 3(mod5), г< | } 

p + 1 

10 

p + 1 

10 

p ì _ p + 1 

10 

Since « u = a22 = «;« = 1. we get 

; iP+1 

On = 3 . 
10 
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Let k < I; gk = 2 or — 2 (mod p). We shall prove that the coefficient bk = 0 . 

Let x ( u - 1 ) — Cf ? then either ind(2 j _ 1 ) = fc or i n d ( i j _ 1 ) = k + l, and therefore 

either 

U 
; - l — 2 (mod p) or ij = — 2 (mod p) , 

i, j < | ; i , j = 1;2;3 (mod 5) 

Since ai3 =• &33 = 17 a 2i — ~ 1 , a r1d p __ 4 (mod 5), we obtain 

6fc = # { j = 3 (mod 5); J < | } - # { J = 1 (mod 5) ; j < f } = 0 . 

Hence, if 5 | r r , then 

60 = bk = 0 (mod 5) . hence p + 1 = 0 (mod 25). 

To prove the theorem, it is sufficient to show that there is a coefficient bt ^ 0 

(mod 5) in (1). 

Let I\, I2 denote the sets of all integral numbers x 

h: 5 < x < y : т 2P / - P lr> : — < x < -
5 2 

Multiply the integers in the set l\ by 5 and reduce by modulo p. In such a 

way we get numbers Xi. x2l. . . , xr . We take the numbers y{, ;/y2- . . . , /yV hi the 
r) ^ n 

following way: if x% < — , then y2- = x? , and if xt > — , then ?/; = p — .r/. It is 

easy to see that 

{yi. y2, • • •, yr} = j i = l ; 3 (mod 5) . ' < | - } • 

Analogously, the 5th multiplier of interval I2 (reduced modulo p) is equal to 

the set <i = 2 (mod 5) , i < -j \ • 

Let N be a positive integer Ar = 0 (mod 2). Consider the numbers: 

. s , = # | x . 

*2 = #{x. 

*! = #{*. 

')NX 

5Nx 

= 1 (mod 5) ; x Є / 1 

u = 

Гл = 

# { ж , 

p 
5Nx 

P 
5Nx 

P 

= 1 (mod 5); x Є I2\ . 

= ,'5 (шod 5) : x Є /, } . 

Г-2 = # { x 

P 
5Nx 

= 3 (mod 5) ; x Є 12 

= 2 (mod 5); x Є f } 

= 2 (mod 5); x Є I2 
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It is easy to see that 

S = si - s2 + t\ - í2 - r\ + r2 

is equal to some coefficient from (1). 

Now we express the numbers s\, s2 , t\, t2 , r\, r2 by sums of integral parts. 

Let N = 1 (mod 5). Then it holds: 

S\ = 

.S'9 

E (ІV + 1 + Ы)p 

З Л - 2 1 
10 j 

E 

5N 

(N + 1 + Ы)p 
5N 

(N + Ы)p 

5N 

" (N + 5ѓ)p' 

5N 

E 
/. = () 

r з л 

E 

;N + з + ы)p 

5N 

(N + 3 + Ы)p 

(N + 2 + Ы)p 

+ i 
5N 

' ' i E' 
/=() 

E 

(N + 2 + Ы)p 
5N 

(N + 2 + 5i)p 
5N 

5N 

(N + 2 + 5г)p' 
5N 

(N + 1 + Ы)p 
5N 

(N + 1 + Ы)p 
5N 

Let 0 < z < 5TV. Define the numbers S\, S2, T\, T2, Jtx, i t 2 dependent 
on c in the following wav 

E 
Гlì.V - I 

(N + 1 + Ы)z 

;>> E 
+ i 

5N 

(N + l + 5.) 
5N 

(N + 5ѓ) 
5N 

(N + 5ѓ 
5N~ 
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Tl = 

i=0 ч 

ҶN + 3 + 5г>" 
5N 

-
Ҷ N + 2 + 5 > " 

5N 
) • 

T2 = 

Г З Л r - 6 1 

L 1 0 J / 

- - " 

H ^ l + i 

ҶN+3+5>" 
5N 

-
ҶN+2+5>" 

5N 

Rl = 
i=0 ч 

ҶN+2+5>" 
5N 

-
ҶN + 1 + 5І)-" 

5N 
) • 

R2 = 

Г Ҙ І V - 4 1 
I 10 

• Г Лт - 2 1 . ( 

"(N + 2 + 5г>" 

5N 
-

"(N + l + î 
5N 

Ў>j 

+1 

Let p = 5Nk + z; then 

S=fc 

-k 

N-l 
5 

ЗN - 6 
10 

1 -fc 

N-з 

З N - 2 
10 

N- 1 

N-2 

+ k 

1 ) + k 

N - 3 

ЗN - 41 
10 

N - 2 

+ S І - S 2 + Ti - T2 - Rl + R2 • 

Clearly, 

Finally, 

p-z p+l-(z + l) z + 1 
k = —Г7- = пг; = — ("")<! ••' 

oЛ 5Л ••) 

2 4- 1 V 4- 14 
S = SN(z) = x + S, - S> + ï\ - T> - R, + R, (шod 5) 

5 10 

L E M M A 1. // N = 6 n , then 

SN (-5 • -ү - l ) Џ 0 (mod 5) 

P r o o f . If we substitute z -= 5 • -7: 1 to the sums 6'j, ,S'>, 7\. 7«->, /?.i. /?•> . 
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we get: 

£>! = #<U = 4 (mod 6), i e -^-1+1 15 J + ' 
N-l 

i = 5 (mod 6 ) , i Є (0, 2 N - 1 3 
15 

S'2 = # Ь: = 4 (mod 6), i Є 
N- l l 

+ 1, 
З N - 2 

10 

It follows that 
N N 

S i 
10 

Ti = #{/ = 0(nюd6), ' Є ( [ ^ 5 
Г2N - 6 

5 + 1, 
N-3 

i = 1 (mod 6) , i Є (0 
2 N - 9 

15 

7', = #<J / = 0 (mod 6) . J G ( | - ^ r - ^ + 1, 
З N - 6 

10 

Hence 

+ 4 
T. = TO = 

N R 

10 

/?! = # ! , / = 5 (nюd 6 ) . ? Є 
2N - 3 

15 
+ 1, 

N-2 

= 0(mod 6) . í Є ( 0 
2 N - 6 

15 

]{., _ # i •/ _ 5 (mod 6) . J e 
N-2 

+ 1, 
ЗN - 4 

10 

lierefore 
ІV л N 

_£_ L 4 — 

Дi = -Ч^; *.= " 
5 

10 
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Now we have 
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, + 1 5 - f - l + l 
— — = = 1 (mod 5) . 

SлJ5- - | - - l ) = - 1 ^ 0 (mod5). 

Lemma 1 is proved. 

Now we shall show that there exists a coefficient bt ^ 0 (mod 5) in (1). 

Let n be such that p ^ — 1 (mod 5 • 6 n ) . Let p = z (mod 5 • 6 n ) . Generate 
the sequence z\, z2l... , zn-2 in the following way 

Zi = z (mod 5 • 6 n " ? ; ) , z% < 5 • 6n~''' . 

If S6n-i(zi) ^ 0 (mod 5) for some z, then we take IV = Gn~' and the theorem 
is proved. Otherwise, let 

S6n-i(zi) = S6n-2(z2) = • • • = S 6 2(z n _ 2 ) = 0 (mod 5) . 

Supposing that p ^ — 1 (mod 5 • 6 n ) , by Lemma 1 we have 

2 i ^ 5 - 6 n - ' - l ; Zi^h-^-'-'-X. (2) 

Possible values for a prime number p modulo 180 are 59 or 119 or 179 (it 
follows from p = — 1 (mod 5), p = —1 (mod 3), p = — 1 (mod 4).) 

By (2) and the induction we get ^n_2 = 59 or 119. By computation we shall 

verify that 5 3 6 (59) ^ 0 (mod 5) and 5 3 6 (119) ^ 0 (mod 5). This contradicts 

the fast that 636(2:71-2) = 0 (mod 5). The theorem is proved for p = 4 (mod 5). 

II. case: p = 3 (mod 5). 

In this situation we have 

TT= J2 aijX(iri) = bo + blQ + b2(;? + '-' + bl-l(;l-i, (3) 
i,j = l;2;4 (mod 5) 

where an = 1, a 1 2 = 1, aM = — 1, a 2 i = 1, a22 — 1, a2X = - 1 , an = --1 , 
a42 = - 1 , a 4 4 = 1. 

Analogously as in case I, we obtain b() = 1 (mod 5) in (3). Let, N = 0 

(mod 2). Define S i , S2, T\, T2, 7?i , 7?2 analogously as in case I. 
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Similarly as in case I, we prove that p = 3 (mod 25). In the same way as in 
case I, we shall define the numbers SN(z). 

3 _ z тv + 14 
SN(z) = -— ~~ + Sl-S2+T1-T2-Rl + R2, for N = 1 (mod 5), 

SN(z) 

SN(z) 

S,(z) = 

5N 10 
3 - z N-2 

5N 10 
3 - г N + 2 

~5N ӢГ~ 
3 - 2 N-14 

5N 10 

+ Sy - S2 + T1-T2-R1+R2, for N _ 2 (mod 5), 

+ Si - _ 2 + Ti - T2 - Ri + R2 , for N _ 3 (mod 5) , 

+ Sy- S2 + Tl-T2-R1 + R2, for N = 4 (mod 5) . 

L E M M A 2. Lei N = 2" , th en 

SN ( 5 ~ + 3) Џ. 1 (mod 5) . 

P r o o f. This is analogous to Lemma 1. Here we consider the cases N = 
1.2.3.4 (mod 5). 

The proof of the theorem is similar as in case I. Now we take n such that 
p£ 3 (mod 5.2"). 
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