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WITH ADVANCED ARGUMENT 
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{Communicated by Milan Medved!) 

ABSTRACT. Our aim in this paper is to present a sufficient condition for the 
oscillation of the second order differential equation with advanced argument 

(^)u' ( t )) +P(*)«(*) + «(0«0-(*))=O (*) 

by comparing (*) with the first order advanced equation of the form 

z'{t)-q2{t)z(r{t))=0. 

We consider the second order functional differential equation with advanced 
argument 

( rW U ' W ) +P(t)u(t) + <*(tHT(t)) = °> (!) 

where r ,p , r/, r G C([£o,oo)), r(t) and q(t) are positive, p(t) is nonnegative and 
T(t)^t. 

Let us denote 

L0u(t) = u(t), LlU(t) = ^ y ^ ' W , L2u(t) = (LlU(t))'. 

Then equation (1) can be rewritten as 

L2u(t) + p(t)u(t) + q(t)u(T(t)) =0. 

For convenience and further references, we introduce the notation 

t 

R(t) = / r(s) ds , t ^ t0 . 

to 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34C10. 
K e y w o r d s : advanced argument, comparison theorem . 
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We always assume that R(t) —•> co as t —> oo. 
In the sequel, we shall restrict our attention to nontrivial solutions of the 

equations considered. Such a solution is called oscillatory if the set of its zeros 
is unbounded. Otherwise, it is said to be nonoscillatory. An equation is said to 
be oscillatory if all its solutions are oscillatory. 

In this paper, we have been motivated by the observation that there are very 
few effective criteria for equation (1) involving advanced argument ( r ( t ) ^ t) to 
be oscillatory. For some typical results on the subject we refer to the papers [4], 
and [5]. On the other hand, differential equations with advanced argument can 
be used to discuss properties of ordinary equations (without deviating argument) 
as we can see in [2]. 

THEOREM 1. Let us define for all t ^ t1 (^ t0) 

Pl(t)=p(t)(R(t)-R(t1)), 

q1(t) = q(t)(R(t)-R(t1)). 

If the differential inequality 

y'(t)sgny(t)-Pl(t)\y(t)\-qi(t)\y(T(t))\ > 0 (2) 

is oscillatory, then so is equation (1). 

P r o o f . For the sake of contradiction, let us suppose that u(t) is a positive 
solution of (1) on [t0,oo). Since L2u(t) < 0, then according to a lemma of 
Kiguradze ([3]), there exists some t\ ^ t0, such that L\u(t) > 0 for all t ^ t\. 
An integration of (1) from < to oo leads to 

oo 

L±u(t)^ I [p(s)u(s) + q(s)u(T(s))] ds , t>tx. 

t 

Now, integrating the last inequality from t to t\ one obtains 

t oo 

"W>/,(x)/bW«W + ,(»)uW»))]dsdx, 
t i X 

t s 

^ [p(s)u(s) + q(s)u(r(s))] r(x) dxds , t>h 

ti 

Hence 
t 

*(*) > J[PÁs)u(s) + qi(s)u(т(s))] ds, tЏҺ. (3) 
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Let us denote the right hand side of (3) by y(t). Then y(t) > 0, t ^ t x and 

y\t) - Pl(t)u(t) - (Zi(t)u(r(t)) = 0 , t>tx. 

Since u(t) ^ y(t) and u(T(t)) ^ y(r(t)), then y(t) is a positive solution of the 

differential inequality 

y'(t) - Pl(t)y(t) - qi(t)y(T(t)) > 0, t>tx, 

which contradicts the hypotheses. • 

Now, we transform differential inequality (2) into a simple differential in­

equality. Let 

y(t) = exp I J P l (x) dx J z(t), t>tx. (4) 

Then (2) becomes 

(? ^ 
z'(t)sgnz(t)-gi(t)exp / Pl(x) dx \\z(r(t))\ ^ 0 for t>tx. (5) 

Setting 92(t) = i(t)exp / pi(x) dx 

(6) 

1 
we find that (5) becomes 

z'(t)sgnz(t)-q2(t)\z(T(t))\>0. 

We see that transformation (4) preserves oscillation. Therefore, we can apply 
results holding for (6) also to (2). For example, we have the following theorem. 

THEOREM 2. Let r(t) > t. Define a function f = /(A) for 0 ^ A ^ 1/e by 

/ e ~ A ' = l , l < / ^ e . 

Assume that either 

or 

т{t) 

d = liminf / q2(s) ds > - , 
t-+oo J Є 

t 

т(t) 

c = limsup / q2(s)ds>l, 
t—>oo J 
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or, when 0 < d ^ 1/e and c ^ 1, £/ie following condition hold: 

/(d)(i-yr^)2>i. 
T/ien equation (1) is oscillatory. 

P r o o f . By [1; Corollary 4'] or by [6; Theorems 2.4.1 and 2.4.3] differen­
tial inequality (6) is oscillatory (and as well (2)). Our assertion follows from 
Theorem 1. • 

The following illustrative example serves to compare our results with those 
in [4]. 

E x a m p l e 1. Consider the differential equation 

y"(*) + ^ 2 u ( A t ) = o , * > i . (7) 

It is easy to verify that (7) is not oscillatory for A = 1. Note that for (7), 

pi(t) = 0 ar 

oscillatory if 

pi(t) = 0 and #2CO = Qi(t) = —2~(£ ~~ ̂ i)- By Theorem 2, equation (7) is 

A > e e ?s 4.356. 

On the other hand, by [4; Corollary 1], equation (5) is oscillatory if Ae* > 
e5 « 148.4, and with respect to [4; Corollary 2], equation (5) is oscillatory if 
A > e4 « 54.6. Note that [5; Theorem 3] cannot be applied to (7). 

LEMMA 1. Differential inequality (6) is oscillatory if and only if the differential 
equation 

z'(t)-q2(t)z(r(t))=0 (8) 

is oscillatory. 

P r o o f . It is sufficient to prove that, if (6) has a positive solution, so does 
(8). To prove this, we can use the same arguments as in [7; Lemma 2]. • 

COROLLARY 1. If equation (8) is oscillatory, then equation (1) is oscillatory. 

We can easily extend our previous results to more general nonlinear differen­
tial equation of the form 

(rWU'(i)) + / M * ) , « ( T ( 0 ) ) = 0 , (9) 

where the functions r and r are the same as in (1), / : [ f 0 , o o ) x R x R - + R is 
continuos, and yf(t,x,y) ^ 0 for xy > 0. 
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THEOREM 3. Let pi and qi are defined as in Theorem 1. Let 

| /(t, x, y)\ > p(t)\x\ + q(t)\y\, xy > 0 . (10) 

If differential inequality (2) is oscillatory, then so is (9). 

P r o o f . For the sake of contradiction, we assume that u(t) is a positive 
solution of (9). Since L2u(t) < 0, then, by a generalization of a lemma of 
Kiguradze ([8]), L\u(t) > 0 for all large t, say t ^ t\. An integration of (9) 
yields with help of (10) 

oo 

Lxu(t) ^ / f(s,u(s),u(r(s))) ds 
t 
oo 

^ I\p(s)u(s) + q(s)u(r(s))] ds , t>tx. 

t 

Then arguing exactly as in the proof of Theorem 1 we get that differential 
inequality (2) has a positive solution, which contradicts the hypotheses. 

By Theorem 3 and transformation (6), we have the following corollary: 

COROLLARY 2. Let (10) hold. If equation (8) is oscillatory, then equation (9) 
is oscillatory. 
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