Mathematic Slovaca

Agata Pilitowska; Anna B. Romanowska; Barbara Roszkowska-Lech Products of mode varieties and algebras of subalgebras

Mathematica Slovaca, Vol. 46 (1996), No. 5, 497--514
Persistent URL: http://dml.cz/dmlcz/136687

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

PRODUCTS OF MODE VARIETIES AND ALGEBRAS OF SUBALGEBRAS

Agata Pilitowska … Anna Romanowska Barbara Roszkowska-Lech
(Communicated by Tibor Katriñák)

Abstract

A mode is an idempotent and entropic algebra. The aim of this paper is to describe the structure of subalgebra modes of modes in a product of varieties, in particular varieties such that at least one of them is a variety of affine spaces. We show that certain reducts of such modes may be constructed as Płonka sums. This result is applied to describe subalgebra modes of some binary modes.

1. Introduction

A mode is an idempotent, entropic algebra, i.e., with each singleton a subalgebra, and each operation a homomorphism [RS2; p. 145]. The two properties may be expressed algebraically by means of the idempotent and entropic identities

$$
\begin{align*}
x \ldots x \omega & =x \tag{I}\\
x_{11} \ldots x_{1 n} \omega \ldots x_{m 1} \ldots x_{m n} \omega \omega^{\prime} & =x_{11} \ldots x_{m 1} \omega^{\prime} \ldots x_{1 n} \ldots x_{m n} \omega^{\prime} \omega \tag{E}
\end{align*}
$$

that are satisfied in each mode (A, Ω), for any n-ary operation ω and m-ary operation ω^{\prime} in Ω. Examples of modes are furnished by affine spaces and their reducts, semilattices and convex sets. Modes were studied in detail in [RS2]. Some further information may be found in the list of references at the end of the paper.

[^0]Given a mode (A, Ω) with a set Ω of operations $\omega: A^{\omega \tau} \rightarrow A$. one may form the set $(A, \Omega) S$ or $A S$ of non-empty subalgebras of (A, Ω). This set $A S$ carries an Ω-algebra structure under the complex products

$$
\omega: A S^{\omega \tau} \rightarrow A S ; \quad\left(X_{1}, \ldots, X_{\omega \tau}\right) \mapsto\left\{x_{1} \ldots x_{\omega \tau} \omega \mid x_{i} \in X_{i}\right\}
$$

and it turns out that the algebra $(A S, \Omega)$ is again a mode preserving many of the algebraic properties of (A, Ω) [RS2; p. 146]. This self reproducing property plays an important role in the theory of modes, and also in the theory of semilattice ordered modes studied under the name of modals in [RS2]. See also [RS3]. [RS4].

One of the most important examples of modes is given by affine spaces (or affine modules) over a ring R. Modes of subspaces of affine spaces over fields were investigated in [RS1]. In that paper, one described affine geometry. projective geometry, and the passage between them purely algebraically, using such modes of subspaces. The results of [RS1] were then generalized in [PRS] to the case of affine spaces over arbitrary commutative rings with unity. It was shown there that certain reducts of such modes may be constructed as $\mathrm{P} \not \mathrm{fon}_{\mathrm{n}} \mathrm{k}$ a sums of reducts of affine spaces over the corresponding projective space [PRS: Theorem 3.9]. For certain varieties of modes, this result gives a complete characterization of algebras of subalgebras.

This paper is a sequel to $[P R S]$ and continues the study of algebras $(A S, \Omega)$. It deals with subalgebra modes of modes in a product of varieties, in particular varieties such that at least one of them is a variety of affine spaces. We refer the reader to Section 3 for the definition of such product we use in this paper and a brief discussion concerning the notion in the case of modes. We describe the structure of subalgebra modes of modes in such products in general, and then focus our attention to products of certain varieties of binary (or groupoid) modes. In Section 2, we recall basic definitions and properties of affine spaces and their algebras of subspaces. Section 3 is devoted to products of mode varieties. In Section 4, we discuss the structure of subalgebra modes in products of mode varieties. Finally, Section 5 is devoted to subalgebra modes in certain binary mode varieties.

The notation and terminology of the paper is similar to that in the book [RS2] and in the paper [PRS]. We use "Polish" notation for words (terms) and operations, e.g., instead of $w\left(x_{1}, \ldots, x_{n}\right)$ we write $x_{1} \ldots x_{n} w$. Moreover. the symbol $x_{1} \ldots x_{n} w$ means that x_{1}, \ldots, x_{n} are exactly variables appearing in the word w. The traditional notation is used in the case of groupoid words. For such words we frequently use non-brackets notation, as follows

$$
\begin{aligned}
x_{1} x_{2} & :=x_{1} \cdot x_{2}, & x_{1} \ldots x_{n} & :=\left(x_{1} \ldots r_{n-1}\right) \\
x y^{0} & :=x, & & \text { with } \quad y=y_{1}=\cdots=y_{n} . \\
x y^{n} & :=x y_{1} \ldots y_{n} & & \text { with } \quad x=x_{1}=\cdots=x_{n} . \\
x^{\prime \prime} y & :=x_{n}\left(. x_{n-1}\left(\ldots\left(x_{1} y\right) \ldots\right)\right) & & \text { when }
\end{aligned}
$$

Two words (terms) of given type are mode equivalent if each one can be deduced from the other using only consequences of idempotent and entropic laws. An identity $w_{1}=w_{2}$ is regular if the sets of variable symbols on both sides are equal, and it is linear if the multiplicities of each argument of w_{1} and w_{2} are at most 1. In particular, for any mode (A, Ω), the algebra $(A S, \Omega)$ satisfies all idempotent and all linear identities true in (A, Ω). (See [RS2].) Algebras and varicties are equivalent if they have the same derived (term) operations. We refer the reader to the book [RS2] for all undefined notions and results.

2. Affine spaces and algebras of subalgebras

Let R be a commutative ring with unity, and let $(E,+, R)$ be a module over R. For each element r of R, define a binary operation

$$
\underline{r}: E \times E \rightarrow E ; \quad(x, y) \mapsto x y \underline{r}:=x(1-r)+y r,
$$

and the Mal'cev operation

$$
P: E \times E \times E \rightarrow E ; \quad(x, y, z) \mapsto x-y+z .
$$

The algebra (E, \underline{R}, P) with the ternary operation P and the set \underline{R} of binary operations \underline{r} for r in \underline{R} is equivalent to the full idempotent reduct $\left(E,\left\{x_{1} r_{1}+\cdots+x_{n} r_{n} \mid r_{1}, \ldots, r_{n} \in R, \sum_{i=1}^{n} r_{i}=1\right\}\right)$ of the module $(E,+, R)$. Consequently, it can be identified with the affine space (or module) over the ring R. (See, e.g., [RS2].) Carrying out this identification we will refer to the algebra (E, \underline{R}, P) as an affine space over R or an affine R-space. It is well known that the class of affine spaces over the ring R forms a variety. This variety is equivalent to the variety $\underline{\underline{R}}$ of Mal'cev modes (A, \underline{R}, P) with the ternary Mal'cev operation P and one binary operation \underline{r} for each r in R, satisfying certain identities given in [RS2].

The affine subspaces (or affine submodules) of the module $(E,+, R)$ (i.e., cosets of submodules of $(E,+, R)$) are exactly the subalgebras of the algebra (E, \underline{R}, P). Consider the set $(E, \underline{R}, P) S$ or $E S$ of non-empty subalgebras of (E, \underline{R}, P). The set $E S$ forms an algebra under the complex products

$$
\underline{r}: E S \times E S \rightarrow E S ; \quad(X, Y) \mapsto\{x y \underline{r} \mid x \in X, y \in Y\}
$$

for r in R, and
$P: E S \times E S \times E S \rightarrow E S ; \quad(X, Y, Z) \mapsto\{x y z P \mid x \in X, y \in Y, z \in Z\}$.
It turns out that the algebra $(E S, \underline{R}, P)$ is again a mode satisfying each linear identity satisfied by (E, \underline{R}, P). (See [RS1], [RS2].)

Projective space is considered here as the set $L(E)=(E .+. R) S$ of sul)modules of the R-module $(E,+, R)$, together with the semilattice operation + . where for submodules U and V of $E, U+V=\left\{u+v \mid u \in l . v \in I^{\prime}\right\}$ is the sum of U and V. The inclusion structure is recovered from $(L(E)++)$ ria $U \leq V$ if an only if $U+V=V$.

In $[\mathrm{PRS}]$, the structure of the algebra $\left(E S, J_{R}^{0}\right)$, where $J_{R}^{\prime \prime}$ comprises the set of units r of R for which $1-r$ is also invertible, was described using the concept of a $\mathrm{P} \not \mathrm{o}$ onka sum ([P1, , [RS2; p. 236]). Let (Ω) denote the category of Ω-algebras and homomorphisms between them. Consider the semilattice ($H .+$) as a small category (H) with a set H of objects and with mique morphimm $h \rightarrow k$ precisely when $h+k=k$, i.e., $h \leq k$. Let $F:(H) \rightarrow(\Omega)$ be a functor. Then the Płonka sum of the Ω-algehras $(h F, \Omega)$, for h in H. over the semilattice $(H,+)$ by the functor F, is the disjoint union $H F=\bigcup(h F \mid h \in H)$ of the underlying sets $h F$, equipped with the Ω-algebra structure. given for each n-ary operation ω in Ω and $h_{1}, \ldots, h_{n}, h=h_{1}+\cdots+h_{n}$ in H. by
$\omega: h_{1} F \times \ldots \times h_{n} F \rightarrow h F ; \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}\left(h_{1} \rightarrow h\right) F \ldots r_{n}\left(h_{n} \rightarrow h\right) F^{\prime} \omega^{\prime}$.
The canonical projection of the Plonka sum $H F$ is the homomorphism π : $(H F, \Omega) \rightarrow(H, \Omega)$ with restriction $\pi: h F \rightarrow\{h\}$. The subalgeh has $(h F, \Omega)=$ $\left(\pi^{-1}(h), \Omega\right)$ of $(H F, \Omega)$ are the Ptonka fibres. Recall that for Ω-algebras in all idempotent irregular variety V, the identities satisfied by their Plonka sums are precisely the regular identities holding in the fibres.

Theorem 2.1. ([PRS]) For an affine space $(E, \underline{R} . P)$ in $\underline{\underline{R}}$. each algebra $((E, \underline{R}, P) S, \Omega)$, where $\Omega \subseteq J_{R}^{0} \cup\{P\}$, is a Plonka sum of Ω-reducts of affine R-spaces $(E / U, \underline{R}, P)$ over the projective space $(L(E),+)=\left((E+. R) S_{+}+\right)$by the functor $F:(L(E)) \rightarrow(\Omega)$ with $U F=\{x+U \mid x \in E\}$ and $\left(U^{r}-V^{\prime}\right) F:$ $U F \rightarrow V F ; x+U \mapsto x+V$.

Let V be a variety of Ω-algebras equivalent to a variety $\underline{\underline{R}}$ of affine R-spaces. For each V-algebra (A, Ω), let $V(A)$ be the smallest subvariety of I containing (A, Ω). Then there is a quotient $R(A)$ of the ring R such that the varieties $V(A)$ and $R(A)$ are equivalent. The algebra (A, Ω) is equivalent to the faithful affine space $\overline{(A}, R(A), P)$. (The affine space (E, \underline{R}, P) is said to be fuithful if the module $(E, \overline{+, R)}$ is faithful.)

Proposition 2.2. ([PRS]) Let V be a variety of Ω-algebras equivalent to a variety $\underline{\underline{R}}$ of affine R-spaces. Let (A, Ω) be in V. If $\Omega \subseteq J_{R(1)}^{\prime \prime} \cup\{\Gamma\}$. then the algebra $((A, \Omega) S, \Omega)$ is a Ptonka sum of $V(A)$-algebras. cquivalent to affine $R(A)$-spaces, over the semilattice $((A,+, R) S,+)=\left((A,+, R(A)) S^{\prime}+\right)$.

3. Products of mode varieties

Let V_{1}, \ldots, V_{n} be varieties of Ω-algebras of the same fixed type. The varieties V_{1}, \ldots, V_{n} are independent if there is an n-ary Ω-word $x_{1} \ldots x_{n} d$ such that the identity $x_{1} \ldots x_{n} d=x_{i}$ holds in V_{i} for each $i=1, \ldots, n$. It is we 1 known that whenever the varieties V_{1}, \ldots, V_{n} are independent, each algebra (A, Ω) in their join $V=V_{1} \vee \ldots \vee V_{n}$ is isomorphic to a product $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ with $\left(A_{i}, \Omega\right)$ in V_{i} for each $i=1, \ldots, n$, and algebras $\left(A_{i}, \Omega\right)$ are determined up to isomorphism. In this case, we denote the join V of V_{i} by $V_{1} \times \ldots \times V_{n}$ and say that V is the product of its subvaricties V_{1}, \ldots, V_{n}. (See [GLP].) It is easy to see that, in this case, the product $V_{1} \times \ldots \times V_{n}$ satisfies the diagenal identity

$$
\begin{equation*}
r_{11} \ldots x_{1 n} d x_{21} \ldots x_{2 n} d \ldots x_{n 1} \ldots x_{n n} d d=x_{11} x_{22} \ldots x_{n n} d \tag{3.1}
\end{equation*}
$$

Moreover, if V_{1}, \ldots, V_{n} are varieties of modes, then so is $V_{1} \times \ldots \times V_{n}$. (Cf., c.g.. [RS2; 2.3], note, however, that in [RS2], the product of varieties is called a "direct sum".) On the other hand, if $x_{1} \ldots x_{n} d$ is a word of a variety V of Ω-modes, and V satisfies the identity (3.1), then V is the product $V_{1} \times \ldots \times V_{n}$ of its subvaricties V_{1}, \ldots, V_{n} with each V_{i} defined by the identity $x_{1} \ldots x_{n} d$ $=x_{i}$. This is a consequence of a more general theorem (cf., e.g., [MMT; 4.4], [FMINT]) saying that a variety V of Ω-algebras is the product of its subvarieties $V_{1} \ldots \ldots V_{n}$, whenever $x_{1} \ldots x_{n} d$ satisfies $(3.1), x \ldots x d=x$, and for each ω in【2. $x_{11} \ldots x_{1 \omega \tau} \omega \ldots x_{n 1} \ldots x_{n \omega \tau} \omega d=x_{11} \ldots x_{n 1} d \ldots x_{1 \omega \tau} \ldots x_{n \omega \tau} d \omega$. Obviously, last identities are always satisfied by Ω-modes. So, in the case of Ω-modes, these identities reduce to (3.1). The word d is called a decomposition word and is miquely defined modulo equational theory of V. As was shown in $[A K]$, in the case the independent varieties V_{1}, \ldots, V_{n}, have finite bases for their identities, their product $V_{1} \times \ldots \times V_{n}$ is finitely based, too. In the case of varieties of modes, it is very easy to find its basis.

Proposition 3.2. Let V_{1}, \ldots, V_{n} be independent varieties of Ω-modes, with cach V_{i} satisfying the identity $x_{1} \ldots x_{n} d=x_{i}$. Let each V_{i} be defined by identitics $t_{j}^{i}=w_{j}^{i}$ for $j=1,2, \ldots, k_{i}$. Then the product $V_{1} \times \ldots \times V_{n}$ is the variety of Ω-modes defined by the identities

$$
\begin{align*}
x_{11} \ldots x_{1 n} d x_{21} \ldots x_{2 n} d \ldots x_{n 1} \ldots x_{n n} d d & =x_{11} x_{22} \ldots x_{n n} d \tag{3.3}\\
x_{1} \ldots t_{j}^{i} \ldots x_{n} d & =x_{1} \ldots w_{j}^{i} \ldots x_{n} d \tag{3.4}
\end{align*}
$$

for cach $i=1, \ldots, n$ and $j=1, \ldots, k_{i}$.
Proof. Let V be the variety of Ω-modes defined by the identities (3.3) and (3.4). It is easy to see that each variety V_{i} satisfies the identities (3.3) and (3.4), whence $V_{1} \vee \ldots \vee V_{n} \subseteq V$. On the other hand, since the variety V has a decomposition word, each algebra (A, Ω) in V is isomorphic to a product
$\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ with each $\left(A_{i}, \Omega\right)$ satisfying $x_{1} \ldots x_{n} d=x_{i}$, and hence also each $t_{j}^{i}=w_{j}^{i}$. It follows that (A, Ω) is in $V_{1} \times \ldots \times V_{n}$, and hence \subseteq $V_{1} \times \ldots \times V_{n}=V_{1} \vee \ldots \vee V_{n}$.

Let us recall that for any mode (A, Ω) the subalgebra mode $(A S, \Omega)$ satisfies all idempotent and all linear identities true in (A, Ω). If (A, Ω) is in the variety $V=V_{1} \times \ldots \times V_{n}$ as in Proposition 3.2, and the identities (3.3) and (3.4) are linear, then the mode $(A S, \Omega)$ of subalgebras is again in V and decomposes into product of V_{i}-algebras.

4. Products of mode varieties and algebras of subalgebras

At first we give some basic properties of subalgebras of a product of nontrivial modes.

If V_{1}, \ldots, V_{n} are independent varieties of Ω-algebras, an algebra (A, Ω) is in the variety $V_{1} \times \ldots \times V_{n}$, and (A, Ω) is isomorphic to $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ with $\left(A_{i}, \Omega\right)$ in V_{i}, then we say that $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ is a factorization of (A, Ω).

LEMMA 4.1. ([FMMT]) Let V_{1}, \ldots, V_{n} be independent varieties of Ω-algebras. Let $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ be a factorization of an algebra (A, Ω) in the carity $V=V_{1} \times \ldots \times V_{n}$.If (B, Ω) is a subalgebra of $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$. then for each $i=1, \ldots, n$, there is a subalgebra $\left(B_{i}, \Omega\right)$ of $\left(A_{i}, \Omega\right)$ such that (B, Ω) is isomorphic to $\left(B_{1}, \Omega\right) \times \ldots \times\left(B_{n}, \Omega\right)$.

LEmma 4.2. For each i in a set I, let $\left(A_{i}, \Omega\right)$ be an Ω-algebra. For a fixt d in I, let $\left(A_{j}, \Omega\right)$ be equivalent to an affine R-space. If all subalgebras of $\prod_{i \in I}\left(A_{i}, \Omega\right)$ are of the form $\prod_{i \in I}\left(B_{i}, \Omega\right)$, with $\left(B_{i}, \Omega\right)$ a subalgebra of $\left(A_{i}, \Omega\right)$, then
(i) the mapping

$$
\pi:\left(\prod_{i \in I} A_{i}\right) S \rightarrow L\left(A_{j}\right) ; \quad\left(\prod_{i \in I} B_{i}\right) \mapsto U_{j}
$$

where $B_{j}=x+U_{j}$, is an Ω-homomorphism;
(ii) the mapping

$$
\varphi: \pi^{-1}\left(U_{j}\right) \rightarrow \pi^{-1}\left(V_{j}\right) ; \quad \prod_{i \in I} B_{i} \mapsto \prod_{i \in I} C_{i}
$$

where $B_{j}=x+U_{j}, C_{j}=x+V_{j}, U_{j} \subseteq V_{j}$ and for $i \neq j, C_{i}=B_{1}$. is. an Ω-homomorphism.

Proof.
(i) Let $\prod_{i \in I}\left(B_{i k}, \Omega\right)$ for $k=1, \ldots, n$ be subalgebras of $\prod_{i \in I}\left(A_{i}, \Omega\right)$ with $B_{j k}=$ $r_{k}+U_{k}$, and ω be n-ary operation in Ω. Then

$$
\begin{aligned}
\prod_{i \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega & =\left\{\left(b_{i 1}\right)_{i \in I} \ldots\left(b_{i n}\right)_{i \in I} \omega \mid b_{i k} \in B_{i k}\right\} \\
& =\left\{\left(b_{i 1} \ldots b_{i n} \omega\right)_{i \in I} \mid b_{i k} \in B_{i k}\right\}=\prod_{i \in I} B_{i 1} \ldots B_{i n} \omega
\end{aligned}
$$

Moreover,

$$
B_{j 1} \ldots B_{j n} \omega=\left(x_{1}+U_{1}\right) \ldots\left(x_{n}+U_{n}\right) \omega=x_{1} \ldots x_{n} \omega+U_{1} \ldots U_{n} \omega
$$

Hence

$$
\begin{aligned}
\prod_{i \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega \pi & =\prod_{i \in I} B_{i 1} \ldots B_{i n} \omega \pi=U_{1} \ldots U_{n} \omega^{\prime} \\
& =\left(\prod_{i \in I} B_{i 1}\right) \pi \ldots\left(\prod_{i \in I} B_{i n}\right) \pi \omega
\end{aligned}
$$

(ii) Let $\prod_{i \in I}\left(B_{i k}, \Omega\right)$, for $k=1, \ldots, n$, be subalgebras of $\prod_{i \in I}\left(A_{i}, \Omega\right)$ with $B_{j k}=x_{k}+U_{j}$, and ω be n-ary operation in Ω. Then $\left(\prod_{i \in I} B_{i 1} \ldots \prod_{\imath \in I} B_{i n} \omega\right) \varphi=$ $\left(\prod_{i \in I} B_{i 1} \ldots B_{i n} \omega\right) \varphi$, where $B_{j 1} \ldots B_{j n} \omega=x_{1} \ldots x_{n} \omega+U_{j}$.

Let $\left(\prod_{i \in I} B_{i k}\right) \varphi=\prod_{i \in I} C_{i k}$; where $B_{j k}=x_{k}+U_{j}, C_{j k}=x_{k}+V_{j}$, and for $i \neq j, C_{i k}=B_{i k}$. Then

$$
\begin{aligned}
\left(\prod_{i \in I} B_{i 1}\right) \varphi \ldots\left(\prod_{i \in I} B_{i n}\right) \varphi \omega & =\prod_{i \in I} C_{i 1} \ldots \prod_{i \in I} C_{i n} \omega \\
& =\prod_{i \in I} C_{i 1} \ldots C_{i n} \omega=\left(\prod_{i \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega\right) \varphi
\end{aligned}
$$

$\operatorname{since} C_{j 1} \ldots C_{j n} \omega=x_{1} \ldots x_{n} \omega+V_{j}$.

The next theorem follows directly from Lemma 4.1 and Lemma 4.2.

THEOREM 4.3. Let V_{1}, \ldots, V_{n} be independent varieties of Ω-modes. For a fixed j in $I=\{1, \ldots, n\}$, let V_{j} be equivalent to a variety $\underline{\underline{R}}$ of affine R-spaces. Let $\left(A_{1}, \Omega\right) \times \ldots \times\left(A_{n}, \Omega\right)$ be a factorization of an algebra (A, Ω) in the cariet!y $V=V_{1} \times \ldots \times V_{n}$. If $B_{j}=x+U_{j}$ is a subalgebra of $\left(A_{j}, \Omega\right)$ term rquiralent to $\left(A_{j}, \underline{R\left(A_{j}\right)}, P\right)$, then define

$$
\pi:\left(\prod_{i \in I} A_{i}\right) S \rightarrow L\left(A_{j}\right) ; \quad \prod_{i \in I} B_{i} \mapsto U_{j}
$$

 algebras

$$
\begin{array}{r}
\left(\pi^{-1}\left(U_{j}\right), \Omega\right)=\left\{\prod_{i \in I}\left(B_{i}, \Omega\right) \mid\left(B_{i}, \Omega\right) \leq\left(A_{i}, \Omega\right) \text { for } i=1, \ldots, n\right. \\
\text { and } \left.B_{j}=x+U_{j} \text { for } . \text { in } A_{j}\right\}
\end{array}
$$

over the projective space $\left(\left(A_{j},+, R\left(A_{j}\right)\right) S,+\right)$ by the functor F : $\left(\left(A_{j},+, R\left(A_{j}\right)\right) S,\right) \rightarrow(\Omega)$, with $U_{j} F=\pi^{-1}\left(U_{j}\right)$ and $\left(U_{j} \rightarrow V_{j}\right) F: \pi^{-1}\left(l_{j}\right) \rightarrow$ $\pi^{-1}\left(V_{j}\right) ; \prod_{i \in I} B_{i} \mapsto \prod_{i \in I} C_{i}$, where $B_{j}=x+U_{j}, C_{j}=x+V_{j}$. and for $i \neq j$. $C_{i}=B_{i}$.

Proof. The proof is similar to the proof of 2.2 (see $[\mathrm{PRS}])$. Lemma 4.2 implies that π is an Ω-homomorphism onto the semilattice $\left(\left(A_{j},+. R\left(A_{j}\right)\right) S++\right.$. and F is a functor. The Plonka fibres have the form described in the theorem. For $k=1, \ldots, n$, let $\prod_{i \in I}\left(B_{i k}, \Omega\right)$ be subalgebras of $\prod_{i \in I}\left(A_{i}, \Omega\right)$ with $B_{j k}=r_{k}+l_{k_{i}}$ and let ω be n-ary operation in Ω. As in Lemma $4.2, \prod_{i \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega=$ $\prod_{i \in I} B_{i 1} \ldots B_{i n} \omega$, where $B_{j 1} \ldots B_{j n} \omega=x_{1} \ldots x_{n} \omega+\left(U_{1}+\cdots+U_{n}\right)$. since ω is derived from $\underline{J}_{R\left(A_{j}\right)}^{0} \cup\{P\}$. Hence $\prod_{i \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega=\prod_{i \in I} B_{i 1}\left(U_{1} \rightarrow I_{i}+\ldots\right.$ $\left.+U_{n}\right) F \ldots \prod_{i \in I} B_{i n}\left(U_{n} \rightarrow U_{1}+\cdots+U_{n}\right) F \omega$ showing that $((A, \Omega) S . \Omega)$ is a Plonkia sum as claimed. In particular, if for $k=1, \ldots, n, B_{j k}=x_{k}+l_{j}$, we obtain that $\prod_{1 \in I} B_{i 1} \ldots \prod_{i \in I} B_{i n} \omega=\prod_{i \in I} B_{i 1} \ldots B_{i n} \omega$, with $B_{j 1} \ldots B_{j n} \omega=x_{1} \ldots r_{n} \omega+l_{j} . \quad \square$

Certain identities on two variables are easily seen to be satisfied in algebras of subalgebras of $V_{1} \times \ldots \times V_{n}$-algebras. To describe them. we need the following lemma.

PRODUCTS OF MODE VARIETIES AND ALGEBRAS OF SUBALGEBRAS

LEMMA 4.4. For $1 \leq i \leq n$, let V_{i} be idempotent varieties of Ω-algebras. If the identity $x y v_{i}=x$ is satisfied in the variety V_{i}, then the identities

$$
\begin{equation*}
x \ldots x x y v^{v} v_{2} \ldots v_{n}=x=x \ldots x x y v_{\sigma(1)} v_{\sigma(2)} \ldots v_{\sigma(n)} \tag{4.5}
\end{equation*}
$$

are satisfied in the variety $V_{1} \vee \ldots \vee V_{n}$ for each permutation σ of the set $\{1,2 \ldots, n\}$.

Proof. First, let us note that each variety V_{i} satisfies the identity (4.5). Indeed, since $x y v_{i}=x$ is satisfied in V_{i}, it follows that V_{i} also satisfies

$$
\begin{aligned}
. r x \ldots x x y v_{1} v_{2} \ldots v_{n} & =x \ldots x\left(x\left(x \ldots x x y v_{1} v_{2} \ldots v_{i-1}\right) v_{i}\right) v_{i+1} \ldots v_{n} \\
& =x \ldots x x v_{i+1} \ldots v_{n}=x .
\end{aligned}
$$

The same holds for any order of V_{1}, \ldots, V_{n}. Consequently, (4.5) holds in the join $I_{1} \vee \ldots \vee V_{n}$ 。

As a consequence of Lemma 4.4, Proposition 2.2 and Theorem 4.3, one has the following.

Proposition 4.6. For $1 \leq i \leq n$, let V_{i} be independent varieties of Ω-modes. If an identity $x y v_{i}=x$ is satisfied in the variety V_{i} and is mode equivalent to a linear identity, then the identities

$$
\begin{equation*}
x \ldots x x y v_{1} v_{2} \ldots v_{n}=x=x \ldots x x y v_{\sigma(1)} v_{\sigma(2)} \ldots v_{\sigma(n)} \tag{4.7}
\end{equation*}
$$

are true in modes of subalgebras of $V_{1} \times \ldots \times V_{n}$-modes, for each permutation σ of the set $\{1,2, \ldots, n\}$.

Proof. The proof goes by induction on n. Let $n=2$. Let $\left(A_{1}, \Omega\right),\left(B_{1}, \Omega\right)$ be in V_{1} and $\left(A_{2}, \Omega\right),\left(B_{2}, \Omega\right)$ be in V_{2}. Then $\left(A_{1} \times A_{2}\right)\left(A_{1} \times A_{2}\right)\left(B_{1} \times B_{2}\right) v_{1} v_{2}=$ $A_{1} A_{1} B_{1} v_{1} v_{2} \times A_{2} A_{2} B_{2} v_{1} v_{2}=A_{1} A_{1} v_{2} \times A_{2}=A_{1} \times A_{2}$, because modes of subalgebras of V_{1}-modes satisfy $x y v_{1}=x$, and modes of submodes of V_{2}-modes satisfy $x y v_{2}=x$. Similar argument shows that the identity (4.7) implies similar identity for $n+1$, and hence Proposition 4.6 holds.

COROLLARY 4.8. For $1 \leq i \leq n$, let V_{i} be independent varieties of Ω-modes. For a fixed j in I, let V_{j} be a variety of Ω-algebras equivalent to a variety $\underline{\underline{R}}_{j}$ of affine R_{j}-spaces. Moreover, let an identity $x y v_{j}=x$ be satisfied in the variety $\underline{\underline{R}}_{j}$. and for $i \neq j$ let algebras of subalgebras of V_{i}-algebras satisfy the identity $. r y w_{i}=r$. Then the Plonka fibres $\pi^{-1}\left(U_{j}\right)$ satisfy the identities

$$
x \ldots x x y v_{1} v_{2} \ldots v_{n}=x=x \ldots x x y v_{\sigma(1)} v_{\sigma(2)} \ldots v_{\sigma(n)}
$$

for cach permutation σ of the set $\{1,2, \ldots, n\}$.

5. Certain binary mode varieties and algebras of subalgebras

In this section, we investigate the structure of algebras in a certain binary (or groupoid) mode variety, and the structure of modes of their subalgebras. The variety in question is the join of three varieties. The first one is the variety $V_{\text {. }}$ of binary modes defined by the identities

$$
\begin{equation*}
y^{s} x=x=x y^{t} . \tag{5.1}
\end{equation*}
$$

The variety is very well known. (See, e.g., [PRS].) It is a Mal'cev variety with the Mal'cev operation given by

$$
x y z P:=x y^{t-1} \cdot y^{s-1} z .
$$

So $V_{s, t}$ is equivalent to $\underline{\underline{R}}_{s, t}$ for some commutative ring $R_{s, t}$ generated by one element, say r. The groupoid multiplication can be identified with the operation \underline{r}. In fact, the identities (5.1) hold in a groupoid (G, \underline{r}) precisely if $r^{s}=1$ and $(1-r)^{t}=1$. The ring $R_{s, t}$ is isomorphic to the ring $Z[X] /\left(X^{s}-1 .(X-1)^{t}-1\right)$.

The varieties $V_{s, t}$ contain many well-known varieties of Mal`cev binary modes. Among them are the varieties $G(n, k)$ of groupoids studied by Mitschke, Werner [MW], equivalent to affine spaces over the rings $R(n, k)=$ $Z[X] /\left(X^{n}-1, X^{k}+X-1\right)$. Each $G(n, k)$ is a subvariety of the variety $V_{n, n / n, k ;}$. where $[n, k]$ is the greatest common divisor of n and k. To show it, let us first note that the generator r of the ring $R(n, k)$ satisfies the conditions $r^{n}=1$ and $r^{k}=1-r$. Hence $(1-r)^{n /[n, k]}=r^{n(k /[n, k])}=1$, which implies that $G(n, k)$-groupoids satisfy the identity $x y^{n /[n, k]}=x$, and hence are members of $V_{n, n /[n, k]}$. The varieties $G(q)$ of groupoids equivalent to affine spaces over finite fields $G F(q)$, described by Ganter, Werner [GW], are subvarietie. of $G(q-1, k)$, where $r+r^{k}=1$ and r is a primitive element of $G F(q)$. Any irregular variety $2 m+1$ of cormmutative binary modes (cp. [JK] and [RS6]) is equivalent to the variety $\underline{\underline{Z}}_{2 n i+1}$ of affine spaces over the ring $Z_{2 m+1}$. The groupoid multiplication is given by $\underline{r}=\underline{m}+1$. Here $1-r=r$. For each rariety $2 m+1$ there is an n such that $2 m+1$ is contained in the variety $V_{1, n}$. Indeed, since $2 m+1$ and $m+1$ are relatively prime, Euler's Theorem shows that there is $n=\varphi(2 m+1)$ such that $(m+1)^{n}=1(\bmod (2 m+1))$. Hencer each $2 m+1$-groupoid satisfies the identity $x y^{\prime \prime}=x$. There is another interesting series of varieties of binary modes equivalent to varicties $\underline{Z}_{2 m-1}$. There are subvarieties $S_{2 m+1}$ of the variety S of symmetric binary modes satisfying the identity $x y^{2}=x$, defined by the additional identity

$$
x y s_{2 m+1}:=\left(\ldots\left(y_{1} x_{2} \cdot y_{33}\right) \cdot x_{4} \ldots\right) x_{2 m} \cdot y_{2 m+1}=x
$$

where $y_{1}=y_{3}=\cdots=y_{2 m+1}=y$ and $x_{2}=x_{4}=\cdots=r_{2 m}=r$.

The variety S was thoroughly investigated by B. Roszkowska. See, e.g., [Rs1] and [Rs2]. From results of [Rs2], one can easily deduce that each variety $S_{2 m+1}$ is equivalent to the variety $\underline{\underline{Z}}_{2 m+1}$. The groupoid multiplication is given $b_{y} \underline{r}=\underline{2}$. Since 2 and $2 m+1$ are relatively prime, Euler's Theorem again shows that there is $s=\varphi(2 m+1)$ such that $2^{s}=1(\bmod (2 m+1))$. It follows that each $S_{2 m+1}$-groupoid satisfies the identity $y^{s} x=x$ and, consequently, is in the variety $V_{s, 2}$.

The other two varieties we will consider in this section, $D_{m, n}$ and $D_{k, l}^{*}$ defined below, are of interest to us, because they also have interesting, models, and because of their connection to idempotent abelian algebras.

First recall that a groupoid (G, \cdot) is called abelian if it satisfies the so called term condition.
(TC) If $x y_{1} \ldots y_{n} w$ is a groupoid word (term), a, b are in G and

$$
\left(c_{1}, \ldots, c_{n}\right),\left(d_{1}, \ldots, d_{n}\right) \text { are in } G^{n}, \text { then }
$$

$$
a c_{1} \ldots c_{n} w=a d_{1} \ldots d_{n} w \text { implies } b c_{1} \ldots c_{n} w=b d_{1} \ldots d_{n} w
$$

(See, e.g., [MMT].) As was observed by K. Kearnes [K], idempotent abelian groupoids are modes. In particular, Kearnes can show that each finite idempotent abelian groupoid (G, \cdot) decomposes as the product $A \times L \times R$, where (A, \cdot) is equivalent to an affine space, and (L, \cdot) and $(R, *)$, with $x * y=y x$, are in the variety $D_{m, n}$ of groupoid modes defined by the m-reduction law

$$
\begin{equation*}
x_{1}\left(x_{2}\left(\ldots\left(x_{m-1} \cdot x_{m} y\right) \ldots\right)\right)=x_{1}\left(x_{2}\left(\ldots\left(x_{m-1} \cdot x_{m}\right) \ldots\right)\right) \tag{mR}
\end{equation*}
$$

and the n-cyclic law

$$
\begin{equation*}
x y^{n}=x . \tag{nC}
\end{equation*}
$$

Moreover, the variety $V(G)$ generated by (G, \cdot) decomposes as the product $V(A) \times V(L) \times V(R)$ of varieties $V(A), V(L)$ and $V(R)$ generated by the groupoids $(A, \cdot),(L, \cdot)$ and (R, \cdot) respectively. Some of varieties $D_{m, n}$ are very well known. The variety defined by (2R) is the variety L of differential or LIR-groupoids, see, e.g., [RS5]. It contains as subvarieties the variety $D_{2, n}$ of n-cyclic groupoids, see [RR2]. The variety of kei-modes ([RS2; Chapter 4]) is defined by the identity $x^{2} y=y$, dual to (2C). In its dual form, i.e., defined by (2C), this variety is the variety of symmetric binary modes. It contains as subvarieties the varieties $D_{n, 2}$.

There is a very easy way to show that any two of the three varieties $V_{s, t}$, $I_{m, n}$ and $D_{k, l}^{*}$, defined dually to $D_{k, l}$, are independent. Similarly, all these three varieties are independent. To show this, we will need the following lemma.

LEMMA 5.2. Let V be the variety of all binary modes. Let n and i be positive integers with $n \geq i$. The following identities are equivalent in the variety V.
(i) $x_{1}\left(x_{2}\left(\ldots\left(x_{i-1}\left(x_{i}^{n-i+1} y\right)\right) \ldots\right)\right)=x_{1}\left(x_{2}\left(\ldots\left(x_{i-1} x_{i}\right) \ldots\right)\right)$,
(ii) $x_{1}^{n} x_{2}=x_{1}$,
(iii) $x_{1}\left(x_{2}\left(\ldots\left(x_{i}\left(x_{i+1}^{n-i} y\right)\right) \ldots\right)\right)=x_{1}\left(x_{2}\left(\ldots\left(x_{i-1}\left(x_{i} x_{i+1}\right)\right) \ldots\right)\right)$.
(iv) $x_{1}\left(x_{2}^{n-1} x_{3}\right)=x_{1} x_{2}$,
(v) $x_{1}\left(x_{2}\left(\ldots\left(x_{n} y\right) \ldots\right)\right)=x_{1}\left(x_{2}\left(\ldots\left(x_{n-1} x_{n}\right) \ldots\right)\right)$,
(vi) $x_{1}\left(x_{2}\left(\ldots\left(x_{n} y\right) \ldots\right)\right)=x_{1}\left(x_{2}\left(\ldots\left(x_{n} z\right) \ldots\right)\right)$.

Proof.
(i) \Longrightarrow (ii): It follows by substituting x_{1} for $x_{2}, \ldots, x_{\text {; }}$ in (i).
(i) \Longrightarrow (iii): As a consequence of the first implication one gets $r_{1}=$ $x_{1}^{\prime \prime} x_{i+1}$. Then entropicity and (i) imply the following:

$$
\begin{aligned}
x_{1}\left(x_{2}\left(\ldots\left(x_{i+1}^{n-i} y\right) \ldots\right)\right) & =\left(x_{1}^{n} x_{i+1}\right)\left(x_{2}\left(x_{3}\left(\ldots x_{i}\left(x_{i+1}^{n-i} y\right) \ldots\right)\right)\right) \\
& =\left(x_{1} x_{2}\right)\left(\left(x_{1}^{n-1} x_{i+1}\right)\left(x_{3}\left(\ldots\left(x_{i+1}^{n-i} y\right)\right)\right)\right) \\
& =\left(x_{1} x_{2}\right)\left(\left(x_{1} x_{3}\right)\left(\left(x_{1}^{n-2} x_{i+1}\right)\left(x_{4}\left(\ldots\left(x_{i+1}^{n-i} y\right)\right)\right)\right)\right) \\
& =\ldots \\
& =\left(x_{1} x_{2}\right)\left(\left(x_{1} x_{3}\right)\left(\ldots\left(x_{1} x_{i}\right)\left(\left(x_{1} x_{i+1}\right)^{n-i+1} y\right) \ldots\right)\right) \\
& =\left(x_{1} x_{2}\right)\left(\left(x_{1} x_{3}\right)\left(\ldots\left(\left(x_{1} x_{i}\right) \cdot\left(x_{1} x_{i+1}\right)\right) \ldots\right)\right) \\
& =x_{1}\left(x_{2}\left(\ldots\left(x_{i} x_{i+1}\right) \ldots\right)\right) .
\end{aligned}
$$

(iii) \Longrightarrow (i): It follows by substituting x_{i} for x_{i+1} in (iii).
(ii) \Longrightarrow (iv): It follows by the equivalence of (i) and (iii) for $i=1$.
(iv) \Longrightarrow (v): Applying successively the equivalence of (i) and (iii) one ob)tains the following identities true in V.

$$
\begin{aligned}
x_{1}\left(x_{2}\left(x_{3}^{n-2} x_{4}\right)\right) & =x_{1}\left(x_{2} x_{3}\right) \\
x_{1}\left(x_{2}\left(x_{3}\left(x_{4}^{n-3} x_{5}\right)\right)\right) & =x_{1}\left(x_{2}\left(x_{3} x_{4}\right)\right) \\
& \vdots \\
x_{1}\left(x_{2}\left(\ldots\left(x_{n} y\right) \ldots\right)\right) & =x_{1}\left(x_{2}\left(\ldots\left(x_{n-1} x_{n}\right) \ldots\right)\right) .
\end{aligned}
$$

(v) \Longrightarrow (iv): It is obvious.
(vi) \Longrightarrow (i): It follows by substituting x_{i} for $x_{i+1}, \ldots, x_{n}, z$ in (vi).

Let us note that by Lemma 5.2, the variety of $D_{m, n}$-modes can be equivalently defined by the identities

$$
x^{m} y=x \quad\left(R_{t \prime}\right)
$$

and

$$
x y^{n}=x
$$

$$
\left(C_{n}^{\prime}=\mathrm{n}\left(C^{\prime}\right)\right.
$$

The dual variety $D_{m, n}^{*}$ is defined by the dual identities

$$
x y^{m}=y
$$

$$
\left(R_{\ldots}^{*}\right)
$$

and

$$
\begin{equation*}
x^{n} y=y . \tag{n}
\end{equation*}
$$

PRODUCTS OF MODE VARIETIES AND ALGEBRAS OF SUBALGEBRAS

LEMMA 5.3. For natural k, l, m, n, s and t, any two of the varieties $D_{k, l}^{*}$, $)_{m, n}$ and $V_{s, t}$ are independent.

Proof. Let (i, j) denote the least common multiple of natural numbers i and j. It is easy to see that the following implications hold

$$
\begin{array}{rlrl}
\left(R_{m}\right) & \Longrightarrow\left(R_{(m, l)}\right),\left(R_{(m, s)}\right) ; & & \left(C_{l}^{*}\right) \Longrightarrow\left(C_{(m, l)}^{*}\right),\left(C_{(l, s)}^{*}\right) \\
\left(C_{n}\right) \Longrightarrow\left(C_{(n, k)}\right),\left(C_{(n, t)}\right) ; & & \left(R_{k}^{*}\right) \Longrightarrow\left(R_{(n, k)}^{*}\right),\left(R_{(k, t)}^{*}\right) ; \\
\left(C_{t}\right) \Longrightarrow\left(C_{(k, t)}\right),\left(C_{(t, n)}\right) ; & & \left(C_{s}^{*}\right) \Longrightarrow\left(C_{(l, s)}^{*}\right),\left(C_{(m, s)}^{*}\right)
\end{array}
$$

It follows that one can take as a decomposition words:

$$
\begin{array}{ll}
x y^{(n, k)} \text { or } x^{m, l} y & \text { for } D_{m, n} \text { and } D_{k, l}^{*} \\
x^{(m, s)} y & \text { for } D_{m, n} \text { and } V_{s, t} \\
x y^{(k, t)} & \text { for } V_{s, t} \text { and } D_{k, l}^{*}
\end{array}
$$

Consequently, each pair of varieties above is independent.
Lemma 5.4. For natural numbers k, l, m, n, s and t, the three varieties $I_{k, l}^{*} . I_{m, n}$ and $V_{s, t}$ are independent.

Proof. Let (i, j, k) be the least common multiple of natural numbers i, j and k. Let

$$
x y z w:=\left(x^{(m, s . l)} y\right)\left(y z^{(k, t, n)}\right)^{(k, t, n)} .
$$

Then it is easy to check that the identity $w=x$ is satisfied in the variety $D_{m, n}$, the identity $w=y$ is satisfied in the variety $V_{s, t}$, and finally, the identity $w=z$ is satisfied in the variety $D_{k, l}^{*}$. Hence the varieties $D_{m, n}, D_{k, l}^{*}$ and $V_{s, t}$ are independent.
Proposition 5.5. The following hold for any natural numbers k, l, m, n, s and t

$$
\begin{align*}
D_{m, n} \vee D_{k, l}^{*} & =D_{m, n} \times D_{k, l}^{*} \tag{5.6}\\
D_{m, n} \vee V_{s, t} & =D_{m, n} \times V_{s, t} \tag{5.7}\\
D_{k, l}^{*} \vee V_{s, t} & =D_{k, l}^{*} \times V_{s, t} \tag{5.8}\\
D_{m, n} \vee D_{k, l}^{*} \vee V_{s, t} & =D_{m, n} \times D_{k, l}^{*} \times V_{s, t} \tag{5.9}
\end{align*}
$$

Proof. It follows directly by Lemma 5.3 and Lemma 5.4.
Note that bases for the identities satisfied in each of the four varieties above can be easily deduced using Proposition 3.2. In the first three cases, the bases (an be simplified a little using the following observation.

For any binary operation $x \circ y$ the diagonal identity $(x \circ y) \circ(z \circ t)=x \circ t$ is equivalent to the conjunction of

$$
\begin{equation*}
(x \circ y) \circ z=x \circ z, \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
x \circ(y \circ z)=x \circ z . \tag{5.11}
\end{equation*}
$$

Obviously, the conjunction of (5.10) and (5.11) implies the diagonal identity: Conversely, the diagonal identity applied in different ways to $[(x \circ y) \circ(p \circ q)] \circ$ ($r \circ z$) yields (5.10), and a symmetric argument shows that the diagonal identity. implies (5.11).

In fact, the identities (5.10) and (5.11) are mode equivalent. Indeed. if (5.10) holds, then $(x \circ y) \circ z=(x \circ z) \circ(y \circ z)=x \circ(y \circ z)$. The proof in the opposite direction is similar.

Proposition 5.12. Let k, i, m, n, s, t be natural numbers.
(i) The variety of $D_{m, n} \times D_{k, l}^{*}$-modes is defined by the identities

$$
\begin{aligned}
\left(x^{m} y\right) z^{(k, n)} & =x z^{(k, n)}=\left(x y^{n}\right) z^{(k, n)}, \\
z\left(x y^{k}\right)^{(k . n)} & =z y^{(k, n)}=z\left(x^{l} y\right)^{(k . n)},
\end{aligned}
$$

or by the identities

$$
\begin{aligned}
\left(x^{m} y\right)^{(m, l)} z & =x^{(m, l)} z=\left(x y^{n}\right)^{(m, l)} z, \\
z^{(m, l)}\left(x y^{k}\right) & =z^{(m, l)} y=z^{(m, l)}\left(x^{l} y\right)
\end{aligned}
$$

(ii) The variety of $D_{m, n} \times V_{s, t}$-modes is defined by the identities

$$
\begin{aligned}
\left(x^{m} y\right)^{(m, s)} z & =x^{(m, s)} z=\left(x y^{n}\right)^{(m, s)} z, \\
z^{(m, s)}\left(x y^{r}\right) & =z^{(m, s)} x=z^{(m, s)}\left(x^{s} y\right) .
\end{aligned}
$$

(iii) The variety of $D_{k, l}^{*} \times V_{s, t}$-modes is defined by the identities

$$
\begin{aligned}
& \left(x y^{k}\right) z^{(k, t)}=y z^{(k, t)}=\left(x^{l} y\right) z^{(k, t)}, \\
& z\left(x y^{t}\right)^{(k, t)}=z x^{(k, t)}=z\left(x^{s} y\right)^{(k, t)} .
\end{aligned}
$$

Proof. We prove only (i). Proofs of (ii) and (iii) can be done in a similar way. First note that if we take the word $x y d=x o y=x y^{(n . k)}$ as a decomposition word for $D_{m, n}$ and $D_{k, l}^{*}$, then the identities (3.4) of Proposition 3.2 take the form of the first two identities of (i). Then $z \circ\left(x y^{k}\right)=z\left(x y^{k}\right)^{(n \cdot k)}=z y^{(k \cdot n)}=z 0 y$ implies $z \circ(x \circ y)=z\left(x y^{(k, n)}\right)^{(k, n)}=z y^{(k, n)}=z \circ y$. But. by the remark
before 5.12 , the last identity is equivalent to the diagonal identity $(x \circ y) \circ(z \circ t)=$ $x \circ t$. Then 5.12 (i) follows by Proposition 3.2.

The decomposition of $D_{m, n} \vee D_{k, l}^{*} \vee V_{s, t}$-modes given in Propcsition 5.5 together with results of Section 4 allows one to give a description of subgroupoid modes for groupoids in this variety.

Proposition 5.13. Let k, l, m and n be natural numbers. For each $I_{m, n} \times D_{k, l}^{*}$-mode (G, \cdot), the mode $(G S, \cdot)$ of submodes of (G, \cdot) satisfies the identities

$$
x^{m}\left(y x^{k}\right)=x=\left(x^{m} y\right) x^{k}
$$

Proof. Since each identity (mR) is linear and equivalent to $\left(R_{m}\right)$, and similarly, $\left(\mathrm{mR}^{*}\right)$ is linear and equivalent to $\left(R_{m}^{*}\right), 5.13$ follows by Lemma 4.1, Lemma 4.4 and Proposition 4.6.

THEOREM 5.14. Let k, l, m, n, s and t be natural numbers. Let $\left(A_{1}, \cdot\right) \times$ $\left(A_{2}, \cdot\right) \times\left(A_{3}, \cdot\right)$ be a factorization of a $D_{m, n} \vee D_{k, l}^{*} \vee V_{s, t}-m o d e(A, \cdot)$. Then the mode $(A S, \cdot)$ of submodes of (A, \cdot) is a Ptonka sum of binary modes satisfying the identities

$$
x\left(x^{m}\left(y x^{k}\right)\right)^{t}=x=\left(x^{m}\left(y x^{k}\right)\right)^{s} x
$$

over the semilattice $\left(\left(A_{3},+, R\left(A_{3}\right)\right) S,+\right)$. Moreover, if $(A, \cdot)=\left(A_{1}, \cdot\right) \times\left(A_{3}, \cdot\right)$ is in the variety $D_{m, n} \vee V_{s, t}$, then the corresponding Ptonka fibres satisfy the identities

$$
x\left(x^{m} y\right)^{t}=x=\left(x^{m} y\right)^{s} x
$$

And if $(A, \cdot)=\left(A_{2}, \cdot\right) \times\left(A_{3}, \cdot\right)$ is in the variety $D_{k, l}^{*} \vee V_{s, t}$, then the corresponding I'tonka fibres satisfy the identities

$$
x\left(x y^{k}\right)^{t}=x=\left(x y^{k}\right)^{s} x
$$

Proof. It follows by Theorem 4.3, Proposition 4.6, Corollary 4.8 and Proposition 5.5.

EXAMPIE 5.15. The lattice of subvarieties of the variety S of symmetric binary modes was described in [Rs1]. It is isomorphic to the lattice $\tilde{\mathbb{N}}=\mathbb{N} \cup \infty$ of natural numbers with divisibility relation and with the greatest element added. Each subaricty $S_{2 n+1}$ is defined by one additional identity $\left(S_{2 n+1}\right)$. Each varicty $S_{2 m}$ coincides with $D_{m, 2}$. By Lemma 5.3 , the varieties $S_{2^{m}}$ and $S_{2 n+1}$ are independent, and by Proposition 5.5, $S_{2^{m}} \vee S_{2 n+1}=S_{2^{m}} \times S_{2 n+1}$. This was first proved in [Rs2]. Moreover, it was shown there that in fact $S_{2 m} \vee S_{2 n+1}=$ $S_{2 m(2 n+1)}$. By Lemma 4.4, each variety $S_{2^{m}(2 n+1)}$ satisfies the identity

$$
\begin{equation*}
x x^{m} y s_{2 n+1}=x \tag{5.16}
\end{equation*}
$$

In fact, as was shown in [Rs2], this identity defines $S_{2^{m}(2 n+1)}$. This is obviously simpler than the axiomatization that follows from Proposition 5.12. An argument similar to that for Theorem 5.14 shows that the mode ($A S, \cdot$) of submodes oi (A, \cdot) in the variety $S_{2^{m}(2 n+1)}$ is a Płonka sum of binary modes satisfying (5.16).

Let us note, that for a symmetric binary mode (G, \cdot), the mode ($G S_{5} \cdot$) does not necessarily satisfy the symmetric identity. Indeed, consider the groupoid $\left(Z_{4}, \cdot\right)=\left(Z_{4}, \underline{2}\right) . \operatorname{In}\left(Z_{4} S, \cdot\right)$, one has $(\{0\} \cdot\{0,1,2,3\}) \cdot\{0.1 \cdot 2 .: 3\}=\{0.2\}$. $\{0,1,2,3\}=\{0,2\} \neq\{0\}$.

Exanple 5.17. The variety $S_{4}=D_{2.2}$ of symmetric binary modes is also contained in the variety L of differential groupoids. The lattice of subvaricties of the variety L is described in [RR1]. It is isomorphic to the lattice $\underline{I}^{1 \prime} \times 1$ with the greatest and the smallest elements added, where \mathbb{N}^{11} is the lattice of non-negative integers with the usual ordering as the lattice ordering. For (i.j) in $\underline{\mathbb{N}}^{0} \times \mathbb{N}$, the subvariety $L_{i, j}$ is defined by one additional identity.

$$
\begin{equation*}
x y^{i+j}=x y^{i} . \tag{5.18}
\end{equation*}
$$

Let us note that $S_{4}=D_{2,2}=L_{0,2}$. Subgroupoid modes of S_{1}-modes do not inherit the synmetric identity, but they satisfy the identity $\left(R_{2}\right)$.

The natural question arises. Do the subgroupoid modes of S_{4}-groupoids satisfy any of the identities (5.18)?

To answer this question, let us note that any finite groupoid satisfies an identity of the form (5.18). Indeed, if (G, \cdot) has cardinality n, then for each y in G, the mappings $R_{y}: G \rightarrow G ; g \mapsto g y$, form a finite cyclic monoid. Hence there are an index i and a period p such that $R_{y}^{i+p}=R_{y}^{i}$. It follows that for each x in $G, x y^{i+p}=x y^{i}$. Consequently, any x and y in (G, \cdot) satisfy the identity $x y^{m+l}=x y^{m}$, where m is maximal among all indexes, and l is the least common multiple of all periods. Since the subgroupoid mode of a finite S_{4}-groupoids is finite, it necessarily satisfies an identity of the form (5.18). However. this is no longer true if, instead of a single groupoid, we consider the class $S_{1} S$ of all subgroupoid modes of all S_{4}-groupoids.

THEOREM 5.19. The variety L of differential groupoids is generated by the class $S_{4} S$ of subgroupoid modes of S_{4}-groupoid.

Proof. We will find a sequence $\left(F_{2}, \cdot\right),\left(F_{3}, \cdot\right), \ldots$ of S_{1}-groupoids. such that for each $(i, j) \in \mathbb{N}^{0} \times \mathbb{N}$, there is a groupoid $\left(F_{k} \cdot \cdot\right)$ in this sequence such that $\left(F_{k} S, \cdot\right)$ does not satisfy the identity (5.18). For each nat ural number n. we define $\left(F_{n+1}, \cdot\right)$ to be the free S_{4}-groupoid on $n+1$ free generators $x^{2}, y_{1} \ldots \ldots y_{i}$. For each $\left(F_{n+1}, \cdot\right)$, let $A_{n+1}=\{x\}$, one element subatgebra of $\left(F_{n+1} \cdot \cdot\right)$. and let $B_{n+1}=y_{1} F_{n+1} \cup \cdots \cup y_{n} F_{n+1}$ be the union of the orbits $y_{1} F_{n+1} \ldots \ldots y_{n} F_{n-1}$.

Then it is easy to check the following

$$
\begin{aligned}
& A_{n+1} B_{n+1}=\left\{x y_{i} \mid i=1, \ldots, n\right\} \\
& A_{n+1} B B_{n+1}^{2}=\{x\} \cup\left\{x y_{i} y_{j} \mid i, j=1, \ldots, n \text { and } i \neq j\right\} \\
& A_{n+1} B_{n+1}^{3}=\left\{x y_{i} \mid i=1, \ldots, n\right\} \cup\left\{x y_{i} y_{j} y_{k} \mid\right. i, j, k=1, \ldots, n \text { and } \\
&i, j, k \text { are pairwise different }\}
\end{aligned}
$$

and so on. It is easy to see that $A_{n+1} B_{n+1}^{n+1}=A_{n+1} B_{n+1}^{n-1}$, and that all $A_{n+1} B_{n+1}$, $A_{n+1} B_{n+1}^{2}, \ldots, A_{n+1} B_{n+1}^{n}$ are pairwise different. It follows that in $\left(F_{n+1} S_{,}^{\prime} \cdot\right)$, .$x y^{\prime \prime}$ is different from all $x, x y, \ldots, x y^{n-1}$. Consequently, 5.19 holds.

Acknowledgement

We are grateful to the referee for the careful reading of the paper and several useful suggestions that improved readability of the paper.

REFERENCES

[AK] KNOEBEL, A.: Product of independent algebras with finitely generated identities, Algebra Universalis 3 (1973), 147-151.
[FMIMT] FREESE, R. McKENZIE, R.--McNULTY, G.--TAYLOR, W.: Algebras, Lattices, Varieties. Vol. II, Wadsworth and Brooks/Cole (In preparation).
[GW] GANTER, B.-WERNER, H.: Equational classes of Steiner systems, Algebra Universalis 5 (1975), 125-140.
[GLP] GRATZER, G.-LAKSER, H.-PLONKA, J. : Joins and direct products of equational classes, Canad. Math. Bull 12 (1969), 741-744.
[JK] JEŻEK, J.-KEPKA, T.: The lattice of varieties of commutative abelian distributive groupoids, Algebra Universalis 5 (1973), 14-20.
[K] KEARNES, K.: The structure of finite modes. Preprint.
[MMIT] McKENZIE, R.--McNULTY, G.---TAYLOR, W. : Algebras, Lattices, Varieties. Vol.1, Wadsworth, Monterey, 1987.
[MIW] MIITSCHKE, A.-WERNER, H.: On groupoids representable by vector spaces over finite fields, Arch. Math (Basel) 24 (1973), 14-20.
[PRS] PILITOWSKA, A.--ROMANOWSKA, A.-SMITH, J. D. H.: Affire space and algebras of subalgebras, Algebra Universalis 34 (1995), 527-540.
[P1] PŁONKA, J.: On a method of construction of abstract algebras, Fund Math. 61 (1967), 183 - 189.
[RR1] ROMANOWSKA, A.- ROSZKOWSKA, B.: On some groupoid modes, Demonstratio Math. 20 (1987), 277290.
[RR2] ROMANOWSKA, A.…ROSZKOWSKA, B.: Representations of n-cyclic groupoids, Algebra Universalis 26 (1989), 7-15.
[RS1] ROMANOWSKA, A.- SMITTH, J. D. H.: From affine to projective geometry via convexity. In: Lecture Notes in Math. 1149, Springer, New York, 1985, pp. 255270.
[RS2] ROMANOWSKA, A.--SMITH, J. D. H.: Modal Theory - an Algebraic Approach to Order Geometry and Convexity, Helderman Verlag, Berlin, 1985.
[RS3] ROMANOWSKA, A.--SMITH, J. D. H.: Subalgebra systems of idempotent entropic algebras, J. Algebra 120 (1989), 247-262.
[RS4] ROMANOWSKA, A.--SMITH, J. D. H.: On the structure of the subalgebra system.s of idempotent entropic algebras, J. Algebra 120 (1989), 263-283.
[RS5] ROMANOWSKA, A.-SMITH, J. D. H.: Differential groupoids. In: Contributions to General Algebra 7, 1991, pp. 283290.
[RS6] ROMANOWSKA, A.--SMITH, J. D. H.: On the structure of semilattice sums. Czechoslovak. J. Math. 41 (1991), 24-43.
[Rsi] ROSZKOWSKA, B.: The lattice of varieties of symmetric idempotent entropic groupoids, Demonstratio Math. 20 (1987), 259-275.
[Rs2] ROSZKOWSKA, B. : On some varieties of symmetric idempotent entropic groupoids. In: Universal and Applied Algebra (K. Hałkowska, B. Stawski, eds.), World Scientific. 1989, pp. 254-274.

Received March 13, 1995
Revised July 28, 1995

Institute of Mathematics Warsaw Technical University Plac Politechniki 1 PL-00-661 Warsaw POLAND

[^0]: AMIS Subject Classification (1991): Primary 08A05, 08A30, 08A99, 03C05, 20L05, 20 L 99.
 Key words: algebra, mode, variety, product of varieties, algebra of subalgebras, affine space, Płonka sum, binary mode variety, identities.

