Mathematic Slovaca

Bedřich Pondělíček

Inverse semirings whose additive endomorphisms are multiplicative

Mathematica Slovaca, Vol. 46 (1996), No. 5, 525--529
Persistent URL: http://dml.cz/dmlcz/136689

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INVERSE SEMIRINGS WHOSE ADDITIVE ENDOMORPHISMS ARE MULTIPLICATIVE

Bedřich Pondělíčéek

(Communicated by Tibor Katrin̆ák)

ABSSTRACT. The purpose of this paper is to show that every inverse semiring

 whose additive endomorphisms are multiplicative is associative.In [1], T. Kepka showed that every ring whose additive endomorphisms are ring endomorphisms is associative. The aim of this paper is to generalize this result for inverse semirings.

We shall fix the type $\tau=(t$, ar) with $t=(+, \cdot,-), \operatorname{ar}(+)=\operatorname{ar}(\cdot)=2$ and $\operatorname{ar}(-)=1$. An inverse semiring is a τ-algebra $\mathscr{S}=(S, \tau)$ satisfying the axioms:
(1) $(S,+,-)$ is a commutative inverse semigroup,
(2) multiplication "." distributes over addition " + " from either side,
(3) $0 x+0 y=0 x \cdot 0 y$, where we put $0 z=z+(-z)$.

By $S(\mathscr{S})$, we denote the set of all elements of an inverse semiring. We put $E(\mathscr{\mathscr { S }})=\{x \in S(\mathscr{S}), x=x+x\}$ and $I(\mathscr{S})=\left\{x \in S(\mathscr{S}), x=x^{2}\right\}$, where $r^{2}=x \cdot x$. An inverse semiring \mathscr{S} is said to be associative if $(S(\mathscr{S}), \cdot)$ is a semigroup.

According to (1), (2) and (3), it is easy to show (see [2]) the following:
(4) $-(x+y)=(-x)+(-y),-(x \cdot y)=(-x) \cdot y=x \cdot(-y)$ and $-(-x)=x$.
(5) $0(x+y)=0 x+0 y=0 x \cdot 0 y=0(x \cdot y)=x \cdot 0 y=0 x \cdot y, x+0 x:=x=0 x+x$, $0 x=0(-x)$ and $0(0 x)=0 x$.
(6) $E(\mathscr{S})=\{x \in S(\mathscr{S}), \quad x=0 x\} \subseteq I(\mathscr{S})$.

Associative inverse semirings were described in [3].

BEDŘICH PONDĚLÍČEK

DEFINITION 1. An inverse semiring \mathscr{S} is said to be distributive if
(7) $x \cdot y z=x y \cdot x z, z y \cdot x=z x \cdot y x$ for all $x, y, z \in S(\mathscr{S})$.

Let us note that a product $u \cdot v$ we usually denoted by juxtaposition $u v$.
Let x be an element of a distributive inverse semiring \mathscr{S}. It follows from (7) that
(8) $x \cdot x^{2}=\left(x^{2}\right)^{2}=x^{2} \cdot x$,
and so we have
(9) $x \cdot x^{3}=x^{2} \cdot x^{3}=\left(x^{3}\right)^{2}=x^{3} \cdot x^{2}=x^{3} \cdot x=x^{3}$
if we put $x^{3}=x \cdot x^{2}$.
Se [4].
Lemma 1. Let \mathscr{S} be a distributive inverse semiring. If $x, y \in I(\mathscr{S})$, then:
(i) $x y \in I(\mathscr{S})$,
(ii) $x y \cdot x=x \cdot y x$,
(iii) $x=-x$.

Proof. (i) and (ii) follow from (7).
(iii): By (8), (4) and (7), we have $x=\left(x^{2}\right)^{2}=\left((-x)^{2}\right)^{2}=(-x)(-x)^{2}=$ $-\left(x x^{2}\right)=-x$.

For any elements x, y of an inverse semiring we put $x-y=x+(-y)$.
LEMMA 2. Let \mathscr{S} be a distributive inverse semiring. If $y==x-x^{3}$. where $x \in S(\mathscr{S})$, then $y^{2}=x^{2}-x^{3}$ and $y^{3}=0 x$.

Proof. According to (2), (1), (4), (9) and (5), we have $y^{2}=\left(x-x^{3}\right)^{2}=$ $x^{2}-x \cdot x^{3}-x^{3} \cdot x+\left(x^{3}\right)^{2}=x^{2}-x^{3}$ and $y^{3}=\left(x^{2}-x^{3}\right)\left(x-x^{3}\right)=x^{3}-x^{3} \cdot x-$ $x^{2} \cdot x^{3}+\left(x^{3}\right)^{2}=x^{3}-x^{3}=0 x^{3}=0 x$.

LEMMA 3. Let \mathscr{S} be a distributive inverse semiring. If $x, y, z \in S(. \mathscr{S})$ and $x^{3} \in E(\mathscr{S})$, then:

$$
x \cdot y z=0 x+0 y+0 z
$$

Proof. Using (7), (8) and (9) we obtain $x \cdot y z=x y \cdot x z=(x \cdot x z)(y \cdot x z)$ $=\left(x^{2} \cdot x z\right)(y \cdot x z)=\left(x^{3} \cdot x^{2} z\right)(y \cdot x z)$. It follows from (6), (3), and (5) that $x^{3}=0 x^{3}=0 x$ and $\left.x \cdot y z=\left(0 x \cdot x^{2} z\right)=(y \cdot x z)=0(x z) \cdot(y \cdot x z)=0 x+0 y+0\right)$.

LEMMA 4. Let \mathscr{S} be a distributive inverse semiring. If $x, y, z \in S(\mathscr{S})$, then: (10) $x \cdot y z=x^{3} \cdot y^{3} z^{3}$.

Proof. First, we shall show that
(11) $x \cdot y z=x^{3} \cdot y z$.

By (1), (2) and (5), we have $x \cdot y z=\left(x^{3}+x-x^{3}\right) \cdot y z=x^{3} \cdot y z+\left(x-x^{3}\right) \cdot y z$. It follows from Lemma $2,(5)$ and (6) that $\left(x-x^{3}\right)^{3} \in E(\mathscr{S})$, and so, by Lemma 3 and $(5),\left(x-x^{3}\right) \cdot y z=0 x+0 y+0 z=0\left(x^{3} \cdot y z\right)$. Consequently, we have $x \cdot y z=x^{3} \cdot y z+0\left(x^{3} \cdot y z\right)=x^{3} \cdot y z$.

Now, we shall prove (10). According to (7), (8), (11) and its dual, we have $x \cdot y z=x^{3} \cdot y z=x^{3} y \cdot x^{3} z=\left(x^{3} y\right)^{3} \cdot x^{3} z=x^{3} y^{3} \cdot x^{3} z=x^{3} \cdot y^{3} z=x^{2} x \cdot\left(y^{3} z\right)^{3}=$ $x^{3} \cdot y^{3} z^{3}$.

Theorem 1. Let \mathscr{S} be a distributive inverse semiring such that
(12) $x \cdot y z=x z \cdot y=z \cdot x y$ for all $x, y, z \in S(\mathscr{S})$.

Then \mathscr{S} is associative.
Proof. Let \mathscr{S} be a distributive inverse semiring satisfying (12). First, we shall prove that
(13) $\mathcal{J}=(I(\mathscr{S}), \cdot)$ is a commutative semigroup.

It follows from Lemma 1 (i) that \mathcal{J} is a groupoid. Let $x, y, z \in I(\mathscr{S})$. According to (12) and Lemma 1 (ii), we have $x y=x x \cdot y=x \cdot y x=x y \cdot x:=y \cdot x x=y x$, and so the groupoid \mathcal{J} is commutative. By (12), $x \cdot y z=z \cdot x y=x y \cdot z$. Thus the groupoid \mathcal{J} is associative.

Now, we shall show that \mathscr{S} is associative. Let $x, y, z \in S(\mathscr{P})$. Then, by Lemma 4, its dual, (9) and (13), we obtain $x \cdot y z=x^{3} \cdot y^{3} z^{3}=x^{3} y^{3} \cdot z^{3}=x y \cdot z$.

DEFINITION 2. An inverse $A E$-semiring is an inverse semiring \mathscr{S} such that every endomorphism of $(S(\mathscr{S}),+)$ is also an endomorphism of $(S(\mathscr{S}), \cdot)$.

ThEOREM 2. Every inverse AE-semiring is associative.
Proof. Let \mathscr{S} be an inverse AE-semiring. It is easy to show that \mathscr{S} is distributive (see [1; Proposition 2.2 (i)]). According to Theorem 1, it remains to prove that \mathscr{S} satisfies (12).

The mapping $x \mapsto x z+x$ is an endomorphism of $(S(\mathscr{S}),+)$, and so it is an endomorphism of $(S(\mathscr{S}), \cdot)$. Thus we have

$$
(x z+x)(y z+y)=x y \cdot z+x y
$$

for all $x, y, z \in S(\mathscr{S})$. Using (1) and (2) we get

$$
x z \cdot y z+x \cdot y z+x z \cdot y+x y=x y \cdot z+x y
$$

By (7), we obtain
$(x y \cdot z-x y \cdot z)+x \cdot y z+(x z \cdot y-x z \cdot y)+(x y-x y)=(x y \cdot z-x y \cdot z)-x z \cdot y+(x y-x y)$.
According to (5), we have

$$
0 x+0 y+0 z+x \cdot y z=0 x+0 y+0 z-x z \cdot y
$$

BEDŘICH PONDĚLÍČEK

Consequently,

$$
0(x \cdot y z)+x \cdot y z=0(-x z \cdot y)-x z \cdot y
$$

and so

$$
x \cdot y z=-x z \cdot y
$$

It follows from [4; Theorem III.1.2 (ii)] (or directly from the dual of Lemma 4 . (9) and Lemma 1 (i)) that $x z \cdot y \in I(\mathscr{S})$, and so, by Lemma 1 (iii), we get

$$
x \cdot y z=-x z \cdot y=x z \cdot y .
$$

Analogously, we can show that $z \cdot x y=x z \cdot y$ using the mapping $z \mapsto x z+z$ and the equality $(x z+z)(x y+y)=x \cdot z y+z y$.

Note. It is easy to show that an inverse semiring \mathscr{S} is a semilattice if an only if $E(\mathscr{S})=S(\mathscr{S})$. Evidently, every semilattice is an inverse AE-semiring. In this note, we shall describe an inverse AE-semiring which is neither the semilattice nor the ring.

Let \mathscr{S} be a τ-algebra, where $S(\mathscr{S})=\{1,0, h\}$ and

+	1	0	h
1	0	1	h
0	1	0	h
h	h	h	h

-	
1	1
0	0
h	h

\cdot	1	0	h
1	1	0	h
0	0	0	h
h	h	h	h

It is easy to verify that \mathscr{S} is an inverse semiring. Let f be an additive endomorphism on \mathscr{S}. Then $f(0) \neq 1 \neq f(h)$. We have the following possibilities:

Case 1. $f(0)=h$. Then $f(h)=f(h)+f(0), f(1)=f(1)+f(0)$. and so $f(h)=h=f(1)$.
Case 2. $f(0)=0$ and $f(h)=h$. Then $f(0)=f(1)+f(1)$, and so $f(0) \neq h$.
Case 3. $f(0)=0$ and $f(h)=0$. Then $f(h)=f(h)+f(1)$, and so $f(1)=0$.
From this we obtain that \mathscr{S} has four additive endomorphisms:

	f_{1}	f_{2}	f_{3}	f_{4}
1	h	0	1	0
0	h	0	0	0
h	h	h	h	0

It is clear that every $f_{i}(i=1,2,3,4)$ is a multiplicative endomorphism on \mathscr{S}. Therefore \mathscr{S} is an inverse AE-semiring.

INVERSE SEMIRINGS WHOSE ADDITIVE ENDOMORPHISMS ARE MULTIPLICATIVE

REFERENCES

[1] KEPKA, T.: Semirings whose additive endomorphisms are multiplicative, Comment. Math. Univ. Carolin. 34 (1993), 213-219.
[2] PONDĚLÍČEK, B.: Inverse semirings and their lattice of congruences, Czechoslovak Math. J. 46(121) (1996), 513-522.
[3] SALIJ, V. N.: To the theory of inverse semirings, Izv. Vyssh. Uchebn. Zaved. Mat. 3(82) (1969), 52-60. (Russian)
[1] .JEŽEK, J.-KEPKA, T.-NĚMEC, P.: Distributive groupoids, Rozpravy Československé Akademie Vèd Rada Mat. Přírod. Věd $91 / 3$ (1981).

Received September 5, 1994
Department of Mathernatics
Faculty of Electrical Engineering Czech Technical University Technická 2
CZ-166 27 Praha 6
CZECH REPUBLIC

