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ABSTRACT. The purpose of this paper is to show tha t every inverse semiring 
whose additive endomorphisms are multiplicative is associative. 

In [li, T. K e p k a showed that every ring whose additive endomorphisms 
are ring endomorphisms is associative. The aim of this paper is to generalize this 
result for inverse semirings. 

We shall fix the type r = (£,ar) writh t = (+, • , —), ar(+) = ar(-) = 2 and 
ar( —) = 1 . An inverse semiring is a T-algebra y = (5, T) satisfying the axioms: 

(1) (£, +, —) is a commutative inverse semigroup, 
(2) multiplication "•" distributes over addition " + " from either side, 
(3) Ox + OH = Ox • OH, where wre put Oz = z + ( — z). 

By S(y), we denote the set of all elements of an inverse semiring. We put 
E(y') = {x G S(y) , x = x + x} and I(y) = {x e S(y) , x = x2} , where 
x2 = x • x. An inverse semiring y is said to be associative if (,S(J??),-) is a 
semigroup. 

According to (1), (2) and (3), it is easy to show (see [2]) the following: 

(4) -(x + y) = ( - x ) + (-H), -(x-y) = (-x)-y = x • (-y) and -(-x) = x. 
(5) 0(x+y) = Ox+Oy = Ox-Oy = O(x-y) = x-Oy = Ox-H, x+Ox = x = Ox + x, 

Ox = 0 ( - x ) and 0(0x) = Ox. 

(G) E(y) = {x e s(y), x = ox} c i(y). 
Associative inverse semirings were described in [3]. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 16Y60. 
K e y w o r d s : distributive inverse semiring, inverse AE-semiring, inverse semiring. 
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DEFINITION 1. An inverse semiring S? is said to be distributive if 

(7) x • yz = xy • xz, zy • x = zx • yx for all x, H, z £ S(S^). 

Let us note that a product u • v we usually denoted by juxtaposition HO. 

Let x be an element of a distributive inverse semiring £f. It follows from (7) 
that 

(8) x - x 2 = (x2)2 = x 2 -x . 

and so wre have 

(9) x • x3 = x2 • x3 = (x3)2 = x3 • x2 = x3 • x = x3 

if we put x3 = x • x2. 

Se [4]. 

LEMMA 1. Let 5^ be a distributive inverse semiring. If x,H E 1(5^), then: 

(i) xyel(y), 
(ii) xy • x = x • yx. 

(iii) x = —x . 

P r o o f . (i) and (ii) follow from (7). 

(iii): By (8), (4) and (7), we have x = (x2)2 = ( ( - x ) 2 ) 2 = ( - x ) ( - x ) 2 = 
—(xx2) = —x. n 

For any elements x, y of an inverse semiring we put x — y = x + ( — y). 

LEMMA 2. Let 5^ be a distributive inverse semiring. If y — x — x3 . where 
x E S(Sf), then y2 = x2 - x3 and y3 = Ox. 

P r o o f . According to (2), (1), (4), (9) and (5), we have y2 = (x — x3)2 = 
x2 — x • x3 — x3 • x + (x3)2 = x2 — x3 and y3 = (x2 — x3)(x — x3) = x3 — x3 • x -
x2 • x3 + (x3)2 = x3 - x3 = Ox3 =0x. • 

LEMMA 3. Let 5^ be a distributive inverse semiring. If x,y,z £ S(-Cf) and 
x3 G E(y), then: 

x • yz = Ox + Oy + Oz . 

P r o o f . Using (7), (8) and (9) we obtain x • yz = xy • xz = (x • xz)(y • xz) 
= (x2 • xz)(y • xz) = (x3 • x2z)(y • xz). It followrs from (6), (3), and (5) that 
x3 == Ox3 = Ox and x-yz = (Ox • x2z) = (y • xz) = 0(xz) • (y • xz) = Ox + Oy + Oz . 

• 
LEMMA 4. Let 5^ be a distributive inverse semiring. If x,y,z £ S(^), then: 

(10) x • yz = x3 • y3z3 . 

P r o o f . First, we shall show that 

(11) x • yz = x3 • yz. 
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By (1), (2) and (5), we have x-yz = (x3 + x — x3) -yz = x3 • yz + (x — x3) • yz. It 
follows from Lemma 2, (5) and (6) that (x — x3)3 G E(S^), and so, by Lemma 3 
and (5), (x — x3) • yz = Ox + Oy + Oz = 0(x3 • yz). Consequently, we have 
x • yz = x3 • yz + 0(x3 • yz) = x3 • yz. 

Now, we shall prove (10). According to (7), (8), (11) and its dual, we have 
x • yz = x3 • yz = x3y • x3z = (x3y)3 • x3z = x3y3 • x3z = x3 • y3z = x2x • (y3z)3 = 
x3-y3z3. • 

THEOREM 1. Let S^ be a distributive inverse semiring such that 

(12) x • yz = xz • y = z • xy for all x,y,z G S(S^). 

Then Sf is associative. 

P r o o f . Let y be a distributive inverse semiring satisfying (12). First, we 
shall prove that 

(13) J = (i(S^), •) is a commutative semigroup. 

It follows from Lemma 1 (i) that J is a groupoid. Let x, H, z G I(S^). Accord­
ing to (12) and Lemma 1 (ii), we have xy = xx • y = x • yx = xy • x = y • xx = yx, 
and so the groupoid J is commutative. By (12), x • yz = z • xy = xy • z. Thus 
the groupoid J is associative. 

Now, we shall show that S^ is associative. Let x ,y ,z G S(S^). Then, by 
Lemma 4, its dual, (9) and (13), we obtain x • yz = x3 • y3z3 = x3y3 • z3 = xy • z. 

U 

DEFINITION 2. An inverse AE-semiring is an inverse semiring S? such that 
every endomorphism of (S(S^), +) is also an endomorphism of (S(S^), •) . 

THEOREM 2. Every inverse AE-semiring is associative. 

P r o o f . Let S? be an inverse AE-semiring. It is easy to show that S? is 
distributive (see [1; Proposition 2.2 (i)]). According to Theorem 1, it remains to 
prove that S? satisfies (12). 

The mapping x \-» xz + x is an endomorphism of (S(Sf), + ) , and so it is an 
endomorphism of (S(S?), • ) . Thus we have 

(xz + x)(yz + y) = xy z + xy 

for all x, y, z G S(S^). Using (1) and (2) we get 

xz • yz + x • yz + xz • y + xy = xy • z + xy . 

By (7), we obtain 

(xy• z — xy• z)+x-yz + (xz-y — xz-y) + (xy — xy) = (xy-z — xy-z) — xz-y + (xy — xy) . 

According to (5), we have 

Ox + Oy + Oz + x • yz = Ox + Oy + Oz — xz • y . 
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Consequently, 

and so 
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0(x • yz) + x • yz = 0(-xz • y) - xz • 

x-yz = -xz -y . 

It follows from [4; Theorem III.1.2(h)] (or directly from the dual of Lemma 4. 
(9) and Lemma 1 (i)) that xz • y G I(<9*), and so, by Lemma 1 (iii), we get 

x • yz -xz • y = xz • y . 

Analogously, we can show that z • xy = xz • y using the mapping ; M .r; + ; 
and the equality (xz + z)(xy + y) = x • zy + zy. • 

N o t e . It is easy to show that an inverse semiring y is a semilattice if an only 
if E(y) = S(y). Evidently, every semilattice is an inverse AE-semiring. In this 
note, we shall describe an inverse AE-semiring which is neither the semilattice 
nor the ring. 

Let y be a T-algebra, where S(y) = {1,0, h} and 

+ 1 0 Һ - 1 0 Һ 

1 0 1 Һ 1 1 1 1 0 Һ 

0 1 0 Һ 0 0 0 0 0 Һ 

Һ Һ Һ Һ Һ Һ Һ Һ Һ Һ 

It is easy to verify that 5? is an inverse semiring. Let / be an additive en-
domorphism on Sf. Then /(0) / 1 ^ f(h). We have the following possibilities: 

Case 1. /(0) = h. Then f(h) = f(h) + /(0) , / ( l ) = / ( l ) + / ( 0 ) . and so 

f(h) = h = f(l). 

Case 2. /(0) = 0 and f(h) = h. Then /(0) = /(1) + /(1) , and so /(()) ^ h. 

Case 3. /(0) = 0 and f(h) = 0 . Then f(h) = /(/i) + / ( l ) , and so / ( l ) = 0. 

From this we obtain that y has four additive endomorphisms: 

/. Һ Һ Һ 
1 Һ 0 1 0 

0 Һ 0 0 0 

Һ Һ Л. Һ 0 

It is clear that every fi (i = 1,2,3,4) is a multiplicative endoniorphism 
on y . Therefore y is an inverse AE-semiring. 
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