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ABSTRACT. In this paper, we consider algebras of a given type r with the 
set F of fundamental operation symbols and without nullary operations. An 
identity </? « ip of type r we call clone compatib le if p and ip is the same 
variable or neither ip nor ip is a variable, and we have the same fundamental 
operation symbols in (p and ip. For a variety V we denote by Vc the variety 
defined by all clone compatible identities from I d ( V ) . In this paper, we assume 
|FI > 2. First we study properties of clone compatible identities, then we define 
a construction called a clone extension of an algebra. Using this construction we 
represent algebras from Vc by means of algebras from V if V satisfies some 
assumptions on terms. Further we define equational bases of Vc, and we apply 
these results to the varieties of lattices, Boolean algebras and some others. 

0. Preliminaries 

We shall consider algebras of a given type r: F —> N, where F is a set of 
fundamental operation symbols, and N is the set of positive integers, i.e., we 
do not admit nullary operations. For a term (p of type r we denote by Var(<^) 
the set of all variables occurring in (/?, and by F(tp) - the set of all fundamen
tal operation symbols occurring in (f. If <p is a term of type r, then writing 
(f(xi , . . . , x- ) instead of <p we shall mean that Var((/?) = {x{ , . . ., xj } . 

In [4] the notion of regular identity was introduced. Namely, an identity 
<p = ij) is regular if Var((/?) = Var( /0). In [7]-[9], we considered so-called bireg-
ular and uniform identities of type r defined as follows: <p « ijj is biregular 
if it is regular and F((p) = F(ip); </? « %j) is uniform if F(<p) = F(ij)) and if 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 08A05; Secondary 08B99. 
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F(<p) ^ F , then <p « ij) is regular. In [9], we gave some representation theorems 
for algebras from varieties defined by uniform and biregular identities. In [7], we 
studied varieties defined by uniform and biregular identities from bisemilattices. 
An identity <p « if) of type r is called normal (see [1], cf. [3], or non-trivializing 
in [6]) if it is of the form x ^ x o r F((p) 7-= 0 ^ F(ij)). In [8], we mentioned about 
some other kind of identities, namely: <p « if) we called operationally regular if 
F(<p) = F(i/)). In this paper, such identities we prefer to call clone compatible, 
however, we exclude x « y. 

For a variety V of type r we denote by V c the variety defined by all clone 
compatible identities from Id( V) . If V is the variety of lattices, then an identity 
(p « xj) is clone compatible if and only if it is uniform, so studying them reduces 
to results from [7]. However, in Section 5, we use representation theorem also for 
bisemilattices. If | F | — 1, then a clone compatible identity is normal, and this 
case reduces to results of [3] or [2]. 

Therefore, in this paper, we assume \F\ > 2. Among others, we want to 
consider the case of B c , where B is the variety of Boolean algebras with funda
mental operation symbols + , • , ' . This we do in Sections 1 and 5, however, we 
prove more general theorems. In Section 1, we study clone compatible identities 
in varieties. In Section 2, we define a construction called a clone extension of an 
algebra. In Section 3, we give representation theorems for algebras from varieties 
Vc under some assumptions. In Section 4, we find equational bases of Vc. In 
Section 5, we apply theorems from Section 3 for some varieties. 

1. Clone compatible identities 

First we observe that the set of clone compatible identities of a variety V 
need not be an equational theory. In fact, the identity x + x-y^x + x-z is 
clone compatible in the variety B of Boolean algebras, but x + x-y^x + x-z' 
is not, although it is a consequence of the previous one. So let us try to find out 
what an equational theory generates the set of clone compatible identities from 
Id(B) , It means that we want to find the form of identities from Id (B c ) . 

If ((p « t/j) 6 Id(V) , we shall write V \= tp ~ ij). 

LEMMA 1.1. Let V be a variety of type r, \F\ > 2, and for every / , j G F , 
f ^ g, there exists a term p,(x,y) of type r such that F(pfg(x,y)) — {f,g} 
and 

V \=pftg(x,y)nx. (1.1) 

Then we have: if V f= <p « V, where \F((p)\ > 1 and \F(i/))\ > 1, then Vc f= 
ip ~ if). 
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P r o o f . If |E | = 2, then the statement holds automatically. Let |E | > 2, 
f,g £ F(<f), f 7^ g, and let h,t € E(V0> h ^ t. Let us fix p, (x,y) and 

ph,t(xiy)-Then 

yc N p/.fl^'y) ~ P/,fl (
x>2) a n d y c 1= PhAx> v) ~ Pfc,t(x'z) • (L2) 

By (1-1), 

Vc\=<P~Pf,g(v,v) (1.3) 

since this identity is clone compatible and belongs to Id(V). Similarly, 

Vc\=1>*Phytty,1>). (1.4) 

Further, by (2), 

yC r= Pf,g&> ^) ~ P/,9(V' ^ ) a n d y C 1= P/.,*(^' ^ ) ~ Ph,t(^' ¥>) • (1-5) 

Since V \= <p « ?/>, so by (1), 

V c | = P / , f l ( v ^ ) « P M ( V ' , ¥ ' ) (1-6) 

as it is clone compatible. Now, by (1.3), (1.5), (1.4), (1.5), (1.6), we get the 
statement. • 

Let V be a variety of type r , consider the following condition: 

(l.i) Every identity ip « t/> from Id(V) is regular whenever F(ip) — F(I/J) 

= {/}, feF. 

THEOREM 1.2. If a variety V of type r satisfies assumptions of Lemma 1.1 
and condition (l . i), then the equational theory Id(Vc) consists exactly of the 
union of three disjoint sets El7 E2J E3 defined as follows: 

Ex consists of all identities from Id(V) satisfying ( l . i); 
E2 is the set of all identities ip « t/); 
where \F((p)\ > 1. \F(ip)\ > 1 and V \= (p « ip; 
Er, is the set of all identities x- « x-, where x- is a variable. 

P r o o f . We denote by cc( V) the set of all clone compatible identities from 
Id(V). Since Id(Vc) is the smallest equational theory generated by cc(V), so 
to prove the theorem, it is enough to show that the set E = E1 U E2 U E3 is 
an equational theory containing cc(V) and E C Id(V c ) . Obviously, cc(V) C E. 
One can easily check that E is an equational theory, i.e., it is closed under 
five Birkhoff's derivation rules. Obviously, Ex U E3 C Id(V c ) . By Lemma 1.1, 
E2 C Id(V c ) , what completes the proof. • 
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COROLLARY 1.3. The equational theory Id(B c) consists exactly of the union 
of three disjoint sets El9 E2, E3 as in Theorem 1.2, where V = B is a variety 
of Boolean algebras and F = { + , - , ' } . 

P r o o f . Put 

p + i . ( z ,y ) = x + x-y, p+,(x,y) = x + (y + y')', p.,(x,y) = x-(y-y')'. (1.7) 

Further, B satisfies (l.i). So assumptions of Theorem 1.2 are satisfied. • 

R e m a r k 1.4. The second assumption of Theorem 1.2 is essential. 

In fact, let V be the variety of groups with fundamental operations • , _ 1 

satisfying xn « yn. Then the identity xn « (y • y~1)n belongs to Id(Vc) and 
does not belong to E. 

For further considerations, it is useful to consider for every variety V the 
variety Vc defined by all identities <p « ij> satisfied in V for which F(ip) — 
F(il>) = {/} for / G F , or for which both \F((p)\ and \F(i/>)\ is greater than 1 . 
In fact, many important varieties of groups, rings, lattices and Boolean algebras 
satisfy Lemma 1.1 (see Section 5), and we have: 

LEMMA 1.5. If a variety V satisfies assumptions of Lemma 1.1, then Vc = 
V~c. 

In fact, we observe that we have always Vc CVC. 

For fixed / G F we put { /} ' = F \ { /} . An identity <p w ij> of type r will 
be called f-normal if it is one of the following forms: 

(f « ^ , where % ) U F ( ^ ) C { / } ; (1.8) 

y > « V , where F((p) D {/} V 0 + F($) n { / } ' . (1.9) 

For a variety V of type r we denote by Vy the variety of type r defined by 
all /-normal identities from Id(V). Further, we put NAV) = Id(V,) . 

PROPOSITION 1.6. If every identity of the form (1.8) from Id(V) is regular, 
then the set NJV) is an equational theory. 

The proof is left to the reader since it is similar to that of Theorem 1.2. 

If q(x) is a unary term of type r with F(q) = F0 for some F 0 C F , then 
in the sequel, we shall write qp0(x) instead of q(x), and we shall write qAx) if 
F0 = {f} for some feF. ° _ 

Let V(^) denote the variety defined by the set Id( V c ) U {qf(x) « x) . 
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LEMMA 1.7. If V is a variety of type r . and there exists a unary term qf(x) 
such that 

V\=qf(x)^x, (1.10) 

then VW = Vf . 

P r o o f . Since Id (V^) C Id(V(/)) , and Vf satisfies (1.10), so Vf C V^. 
If <p & if; is of the form (1.8), and Vf (= ip « T/), then 

V(f) \=<p* qf(ip) « g / ( ^ ) ~ </> • ( l .H) 

If <p & ip is of the form (1.9), and Vf \=np & %jj, then we have again (1.11). Thus 

Id(V^) C Id (V^) ) , and consequently, V^ CVf. D 

THEOREM 1.8. Let V satisfy the following condition: 

There exists a term q{f,g\(
x) such that f,g € F, f ^ g and 

Vt=Q{f,9}(x)~x- _ 
Then the variety V" of the type r defined by Id( Vc ) U {q?f g\(x) ~ x} is equal 
to V. 

P r o o f . L e t y ^ ^ f Then V" h ^ ? { / , r f M « ? { / > r i W « f ° 

COROLLARY 1.9. Le£ V be a variety of algebras for which there exist unary 

terms qf(x) and qg(x) with V (= (qf(x) « x « qg(x)) . Then V is a variety 

defined by Id( V^) U {fy(x) « x, <^(:r) « x} . 

LEMMA 1.10. Le£ a variety V of type r satisfy the following condition: 

(l.iv) There exists a term qf(x,y) of type r such that the identity 

qf(x,y) zzx (1.12) 

is satisfied in V. 

Then Vf = V. 

P r o o f . Since we have Id(V^) C Id(1(/), so we have to prove the converse 
inclusion-

Let V^ip^ip. If (p^ijj is of the form (1.8) or (1.9), then it belongs to 
Id(V.) by the definition of Vf . Suppose that F(ip) C { /} , and there is g G { /} ' , 
where g £ F(ip). Obviously, identity (1.12) is satisfied in Vf. So we have: 

Vf \=qf(<p,ij>) «¥>, Vf \=qf(ip,p) « V, V
f \=qf(<p,il>) &qf(rl>,<p) 

since the last identity is of the form (1.9), and it is satisfied in V. Thus Vf (= 
(p ~ I/J. D 

COROLLARY 1.11. / / V is the variety of groups with fundamental operation 
symbols • and _ 1 satisfying xn « yn, then V and V coincide. 

In fact, take q.(x, y) = x • yn. 
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2. An /-clone extension and 
a clone extension of an algebra 

Let \F\ > 2 and let B = (B;FB) be an algebra of type r , and let r be a 
retraction of £?, i.e., an idempotent endomorphism. We shall say that B is an 
f-clone extension of an algebra A = (A]FA) with respect to r if the following 
conditions are satisfied: 

(2.i) A = r(B); 

(2.iia) If g e { /} ' , ah,..., air(g) e B, then 

9BK ' • • • > % J = 9A(r(ah),..., »•(%„)) ; 

(2.ii/3) If a n , . . . , a i T ( / ) G S and {flil, . . . , a i T { / ) } D r ( B ) # 0, then 

/BK'---'a
M / , ) = ^H%)'---^k ( / ) ) ) -

We shall say that B is an f-clone extension of an algebra A if it is an /-clone 
extension of an algebra A with respect to some r . 
(2.iii) For every q G F we have <1B|^ = qA, consequently, .A is a subalgebra 

of B. 

In fact, if q € F , â  , . . . ,a{ € A, then, by (2.iia) or (2.ii/3), we have 

qB (a- , . . . , a- ) = qA(r(a- ) , . . . , r(a- )) = a^fa- , . . . , a- ) . 
H \ * l ' ' ? r ( q ) / ^ V V 2 l j > 5 V ^ r ( q ) / / ^ V *1 ' ' ?'r(g)/ 

Let us observe that every algebra C = (C]FC) is an /-clone extension of 
itself if we accept r to be the identity. 

LEMMA 2 . 1 . If B — (B;FB) is an f-clone extension of an algebra A, and 
p(xi , . . . , a ^ ) is a term of type r with F((p) D { /} ' ^ 0. then for every 
aiii'-'aim e B wehave ^ K > - - - > a i J =<PA(r(ai1)>--'>r(aiJ)-

P r o o f . Using the definition of an /-clone extension we can verify the state
ment of the lemma by induction on complexity of a term (p. • 

COROLLARY 2.2. If B is an f-clone extension of an algebra A, and (p(x{ ,. . . 
. . . ,xim) ~ 4>(x- , . . . ,-C.- ) is an identity of type r with F(ip) D { /} ' ^ 0 ^ 
F(ip) Pi { /} ' , £/ien (p ̂  ^ is satisfied in B if and only if it is satisfied in A. 

This follows at once from Lemma 2.1. 

Let r : F ^ N b e a type of algebras with \F\ > 2. Let S be a nonempty set, 
and {T/}/€ir be an indexed family of mappings with rf:S-^S satisfying the 
following conditions: 

(2.iv) rforf= rf for every / € F ; 
rf°r9=rg° rf f o r e v e r y f>9 e F\ 
rforg=rsort for every f,g,s,teF; f ^ g , s ^ t . 
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Such family will be called a concentrating family of mappings on S. 

EXAMPLE 2 .3 . Let S = { a 1 , a 2 , a 3 , a 4 } , F — {/, g}. We put rf(a1) = a2 , 
rf(a2) = a2 , rf(a3) = a4 , rf(a4) = a 4 , ^ ( a - J = a3 , r^(a2) = a4 , Tp(a3) = a3 , 

^ K ) = a 4 ' 
We put b, = r , o r for some / , J E F , f ¥" 9- By (2.iv), t\ does not depend 

on the choice of / and g . We have 

(2.v) The mapping /i is idempotent, and if a E /i(-S), then 
r*(a) = h(a) = a for every / G F . 

In fact, hoh = (rforg)o (r f o r ) = (r f o r^) o (rp org) = rforg = h 
for some / , g E F, f ^ g. If a E /i(Sf), then a = /i(b) for some b G 5 . So 
a = /i(b) = h(h(b)) = h(a). Further, rf(a) = rf(h(a)) = rf(rf(rg(a))) = 
rf(rg(a)) = Ka) = a-

Put Af = rf(S) for every / G F and put A = h(S). 

(2.vi) 0 ^ = A ^ 0 , and i f / , < ? G F , / ^ g , t h e n 
/€F 

-4 ̂  = -Ap if and only if Af = A = Ag. 

In fact, if a G f| / 4 f , then we have r f(a) = a for every f E F. So, for / 7-- g, 

h(a) = r
f(rg(a)) = rf(a) = a. Consequently, a G -A. If a G A, then, for / G F , 

r f ( a ) = a by (2.v). Thus a G P| A f . I f A f = A for some / 7̂  g, a E A f , then 
/GF J J ^ 

we have /i(a) = r
f(r (a)) = rf(a) = a, so a G i . Now, by the first statement 

A = ^ . 
Put F0 = {/ G F : i ^ i J . B y (2.iv) and (2.vi), we have: 

(2.vii) For every / , <? G F \ F 0 , / ^ L7, we have ( ^ \ A) n ( ^ \ A) = 0. So, if 
a ^ A, then there exists at most one f E F such that a E Af. 

(2.viii) If for some / G F , a G 5 we have r^(a) G A, then 7^(a) = h(a). 

In fact, by (2.v), rf(a) = rg(rf(a)) = rf(rg(a)) = /i(a), where / ^ g. 

(2.ix) If a G ^ and fl G { /} ' , then rg(a) = h(a). 

In fact, rg(a) = ^ ( ^ ( a ) ) = rf(rg(a)) = h(a). 

If Ax = (A i ; F ^ 1 ) and A2 = (A2; F ^ 2 ) are two algebras, then we shall 
write Ax = A2 if A1 = A2 and /•*- = fA* for every / G F . 

Let S = (£, { ^ } f ( E F , {-4/ l /eF' "4) be a system satisfying the following 
conditions: 

(2.x) S is a nonempty set; 

(2.xi) {rf}feF is a concentrating family of mappings, i.e., satisfying (2.iv); 
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(2.xii) A and Af are algebras of type r for every / G f , where A = (A\FA), 

A = /i(S% where h = r^ o rg for some f ^ g, Af = (Af;F
Af), Af = 

r , ( B ) ; 

(2.xiii) For every f E F, h\Af is a retraction of Af such that Ay is an /-clone 

extension of A by h. 

The system S we shall call a concentrating system. We define a new algebra 
A(S) — (S;FA( ') of type r , where the fundamental operations in A(S) are 
defined by condition: 

(2.xiv) If / G F and a, , . . . ,a , G 5 , 
\ / J Z! ' ' Z T ( / ) ' 

then 

fA{S)K^-^J=fA{S}(rf{an),...,rf{airJ) 

= / ^ ( r / ( a n ) , . . . , r / ( a M / ) ) ) . 

The algebra A.(S) will be called a clone extension of the algebra A by the 
concentrating system S, or briefly, a clone extension of the algebra A. 

By (2.iv) and (2.v), h and h\Af are uniquely defined. Further, 

h{Af) = rg{rf{rf{S))) = rg{rf{S)) = h{S) = A. 

So, (2.i) is satisfied for r = h and every / G F , and therefore / ^ ( s ) is well 
defined. 

(2.xv) For every / G F we have y-^(s) | ̂  — fAf, and r , is a retraction of 

A(S) . So .A, is a subalgebra of A(S) . 

In fact, let / G F and a ^ , . . . , ^ G A , . By (2.xiv), we have 

/^ (S)K,---'Va,) = /^( r /K)'--- ' r / (%/)))- / ' 4 /K.--- 'V/ , ) -

Let 6 i i t . . . , 6 i r ( / ) 6 5 , f,ge F.li f = g, then, by (2.xiv), we have 

r / ( / ^ s ) ( 6 n , . . . , 6 M / ) ) ) = r / ( / ^ ( r / ( 6 . ) , . . . , r / ( 6 i r ( / ) ) ) ) 

= / ^ 8 J ( r / ( 6 i i ) > . . . , r / ( 6 i r ( / ) ) ) . 
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If 9 7̂  f •> then we have by (2.xiv), (2.xiii), (2.iv) that 

r9(f
A{S\K---ATJ)=r9(f

A<(rf(bil),...,rf(blTJ)) 

= rg(f
A<(rf(rf(bti)),...,rf(rf(blTU))))) 

= r9(rS(f
Al(rfK),...,rf(blT(f))))) 

= h(f*i(rf(bii),...,rf(btTu)))) 

= fAf(h(rf(K)l-..MrfKJ)) 
= fAf(rf(r9(K))T^rf(rg(blTU)))) 

= f A { S ) ( r g ( b H ) , . . . , r a ( b l T J ) . 

(2.xvi) For every / G F, JA{S)\A = fA * a n d h i s a retraction of A{S). So A 
is a subalgebra of A(S). 

Indeed, h is an endomorphism since h = r , o r for some / ^ <1, and it is 
idempotent by (2.v). By (2.xiv), (2.iia), (2.ii/3) and (2.v), we have that if q G F 
and a • , . . . , a • Gj4, then 

* l ' ' * r ( q ) ' 

g ^ s ) ( a . , . . . , a . ) =qA«(r(a, ) , . . . , r (a, )) 
^ V 2 l ' > M < z ) 1 H \ <7V * l ' ' ' <7V %r(q)'> 

= a ^ ( a n , . . . , a i r ( J = qA« (h(a^),..., h(airJ) 

= q-A(h(h(aii)),...,h(h(airJ))=q*(aii,...^atTJ. 

Every algebra C = (C; Fc) is a clone extension of itself since it is enough to 
put S = C and to accept r . to be the identity map in C for every / G f . 

(2.xvii) If B = (S ; F B ) is an /-clone extension of an algebra A = (A] FA), then 
it is a clone extension of the algebra A. 

In fact, it is enough to put S = J3, A* = # , .4. = A for every g G {/} ' , r^ to 
be an identity, and r = r for every g G { /} ' . 

(2.xviii) Let for some / , g G F , / 7̂  g, we have r , = r = id, where id is the 
identity map. Then A(S) = „4, i.e., A(S) is the trivial clone extension. 

In fact, then for every a G S we have /i(a) = r*(rQ(a)) = rJa) = a . So 
A{S) = A. 

(2.xix) If { a n , . . . , a ? : }H IJ r p ( S ) ^ 0 , t h e n 
9£{fY 

/ ^ s ) ( a . , . . . , a M / ) ) = / ^ ) ( a ( a . ) , . . . , / 1 ( a M / ) ) ) 

= / - A ( ! l ( a n ) , . . . , l 1 ( a i T ( / ) ) ) . 
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Indeed, let a- G IJ r (S) = IJ A for some k G { l , . . . , r(f)\ . So there 
k ge{f}' ge{f}' 

is g G {/} ' such that a-k G A . Then, by (2.xiii), (2.xiv), (2 .ha) , (2.ii/3), we 
have 

/^ ( s )K'-'a
M/)) 

= fA^(aii,...,aik_i,rq(aik),alk+i,...,aiTU)) 

= fAf (r/(an)' • • • ' r /K-!)' r /( r
gK)) ' r /K+ 1)' • • • 'r /K ( / ))) 

=/"4/(r/K)'---'r/K-1)' / lK)'r/K+1)'---'r/K ( / ))) 
= fA(h(aii),...,h(aiki),h(h(aik)),h(aik+i),...,h(alTu))) 

= / - 4 ( ^ K ) ' • • •' ^ K - J ' ^ K ) ' ft(a.„+1), • • •, n K ( / ) ) ) • 

Obviously, a clone extension of an algebra A depends on the structure of 
every A *. However, in the further considerations, we require something more 
from algebras A* to obtain representation theorems. 

LEMMA 2.4. If <p(xi , . . . , xi ) is a term of type r such that F(<p) = {/} and 

a t i ' - - - ' a i m
 G S ' t h e n 

^ ( 8 ) ( a i l , - , a i m ) = ^ ' ( r / ( a i i ) , . . . , r / ( a i m ) ) . 

This follows from (2.xiv) by easy induction on the complexity of (p. 

LEMMA 2.5. If <p(xi , . . . ,xi ) is a term of type r such that \F(<p)\ > 1 and 
a- , . . . ,a- G S, then 

' l '"m 

^s\ati,...,aiJ = ^(h(ali),...,h(alm)). 

P r o o f . If (p = fix- , . . . , x • , g(y. .....y. ).x- .... .x- ) for some 

f,9 E F, f ^ 9,then,since g^
s\bh,...,bJrJ = 9^(rg(bh),...,rg(bhJ) 

and g
Ag{rg(bh),...,rg(bMg))) 6 rg(S), so, by (2.xiv), (2.i ia), (2M/3) and 

(2.xix), we have 

fAiSK^---^^9A^bh,...,buJ,atk+i,...,alTJ 

= fA(h(aJ,...,h(aikJ,h(g^
s\bji,...,bjTJ,h(aikJ,...,h(aiTJ)) 

= fA(h(aii),...,h(atki),g
A^(h(bn),...,h(bjTj),h(ai^ 

= fA(h(aJ,...,h(alkJ,g
A(h(bh),...,h(bhJ),h(aikJ,...,h(atTJ). 

In general, we proceed by induction on the complexity of (p. If </? = f((p{ , . . . 
. . . , (pi ) , then there exists _7 G F such that g ^ f, and for some fc, k G 

{ l , . . . , T ( / ) } , we have g G F(<pik). If F(ip{ ) = {5}, then using Lemma 2.4 we 
infer as above. If l-FXv?. )| > 1, then we use the inductional assumption. • 
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LEMMA 2.6. If <p{x{i,..., xim) « ^(x^,..., xja) is an identity of type r with 
f ^ K » - ^ i J ) = F{^(xjy^xjj) = {/} for some f E F, then it is 
satisfied in A(S) if and only if it is satisfied in Af . 

This follows from Lemma 2.4. 

LEMMA 2.7. If (p(x{i,..., xim) « 'lP{xj1, • • • • £ja) is an identity of type r ivztTi 
^ ( ^ ( x ^ , . . . ,-Cim)) | > 1 0^d | F ( ^ ( x . i ? . . . , x - a ) ) | > 1. i/ien z< is satisfied in 
A(S) if and only if it is satisfied in A. 

This follows from Lemma 2.5. 

The above definition of a clone extension of an algebra A is a kind of con
struction. Now we want to give a little simpler equivalent definition of this notion 
which is rather a kind of description. 

Let T : F —> N be a type of algebras with 0 $_ T(F) and | F | > 2 . 

DEFINITION 2.8. An algebra B = (B;FB) of type r : F —> N is a done 
extension of an algebra A of type T by means of a family {AAfeF of algebras 
of type T if the following conditions are satisfied: 

(2.xx) There exists a concentrating family {r AfeF of retractions of B. 

(2.xxi) Af,f£F and A are subalgebras of B, where Af= (r ,(J5); FB\r (B)) 

and A= ( r , ( r t ( f l ) ) ; FB\ra(rt(B))) for fixed M e F , * ^ * -

(2.xxii) If / 6 F , a 2 i , . . . , a . r ( / ) E r / B ) and { a ^ , . . . , a . r ( / ) } n ra(rt(B)) ^ 0, 
then 

/ ^ K . . - . . % / ) ) = / > l K ( » - t ( a i 1 ) ) , . . . , r a ( r t ( a i T ( / ) ) ) ) . 

If ^ . . . . . ^ G B , then 

/ B ( ^ ' - . 6 M / ) ) = / > 1 / W 6 M ) . - . ' - / ( ^ ( / ) ) ) . 

By (2.xv), (2.xvi) and (2.ii/3), the conditions of the previous definition imply 
(2.xx) - (2.xxii) and checking the converse is easy to verify. 
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3. Representation theorems 

For a variety V of type r we denote by Tif(V) the set of all identities of the 
form (1.8) belonging to Id(V). 

THEOREM 3 . 1 . Let V be a variety of type r . If an algebra B is an f-clone 
extension of an algebra A from V and B satisfies E *(V). then B belongs to Vr. 

P r o o f. If (p « ip is of the form (1.9) and V (= (p « 0 , then A satisfies 
ip ~ %jj and, by Corollary 2.2, B satisfies <p w 0 . If (p « -0 is of the form (1.8), 
then H satisfies <.p w -0 by the assumption. Thus B E Vf. D 

THEOREM 3.2. Let V be a variety of type r. If A is a clone extension of an 

algebra A from V where for every f E F the algebra Af satisfies Y,f(V), then 

A belongs to Vc and consequently, to Vc. 

P r o o f . If ip zz if; is satisfied in V, where |F(v?)|, |F(V>)| > 1? then it is 
satisfied in A, and by Lemma 2.7, it is satisfied in A. If (p ~ I/J is satisfied in 
V, where F ( ^ ) = F(V>) = {/} for some / G F , then it belongs to E , (V) , so by 
assumption, it is satisfied in Af. By Lemma 2.6, <p « V lS satisfied in .4. • 

For a variety V of type r let us consider the following condition. 

(3.i) For every / G F , there exists a term qf(x) such that V 1= qf(x) ~ x. 

THEOREM 3.3. Let V be a variety of type r satisfying condition (3.i). If A* 
belongs to Vc, then A* is a clone extension of an algebra A from V, where for 
every / € F the algebra Af satisfies T,f(V). 

P r o o f . Let A* = (A*; FA*) belong to V0'. Put rf(a) = qf
A* (a) for every 

a E A*. So, by (3.i), conditions (2.iv) and (2.xi) hold. In fact, by (3.i), we have 

Vc \= qf(qf(x)) « qf(x) for every f E F 

v~ch<if(qg(
x)) *q9(qf(

x)) for / , j e f ; 

^ H / ( ? 9 W ) - 9 5 f e W ) for / , » , s , t e F , / ^ p , s ^ * . 

Put r/h = qf(qg(x)) for some / ^ # and /i(a) = qh
A* (a) for every a E A*. So /i 

is idempotent by (2.v). Put A = (A; F - 4 *]^ ) , where A = h(A*). The algebra 
.4 is well defined. In fact, for every / E F 

y~c 1= 9/ i ( / (*i . • • •' x r ( / ) ) ) ^ f(qh(
xi)>' •' >9/>r( / ) ) ) • 

S o , i f a n , . . . , a M / ) E ^ ^ 

= fA* K > • • • i tt
M/)) • Consequently, / ^ ( a ^ , . . . , a i r ( / ) ) E fc(^) = A. 
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>x. 
JTÌ 

We prove that A belongs to V. If V \= (p(xi_ > • • • > xirn) ~ <ll)(xj_ > 
then Vc |= ip(qh(xh),..., 9h(x i m)) « il)(qh(xh),..., ^ ( ^ J ) • So, if a^ , . . . , aim, 
6. , . . . , b • G /i(A*), then, since h is the identity map on h(A*), we have 

<PA(ai_>- - • > ai J = T ^ K ) , . . •, %*rJ) 

Thus .A belongs to V. 
Let .Aj = (A / ; F - 4 * ] ^ ) , where A / = rf(A*). The algebra ^ is well 

defined for every / G F. In fact, 

^ != <if(f(xv • • > X T( / ) ) ) ~ f(qf(
xi),• • • , ^ / ( X T ( / ) ) ) > 

and further we infer as for A and qh. We prove that A.̂  belongs to Vf, for 
every / G F . Since T^ is the identity on T^(A*), so Af satisfies qf(x) « x. 
Since A.y belongs to V c , thus, by Lemma 1.7, Af belongs to Vf and satisfies 

E / (y). 
It remains to prove (2.xiii) and (2.xiv). (2.xiv) is satisfied in A*, since A* 

belongs to Vc and 

Vc f= /(x2 , . . . , xr( / )) « f(qf(x1),..., ^/K^))) • 
We prove (2.xiii). We have h(Af) = r

g(
rf(Af)) = r ^ ( r / ( r / ( A * ) ) ) = 

r g ( r / ( ^ * ) ) = h(A*) = A. So (2.i) holds. Let 9 G / ' , a ^ , . . . , ^ G A , . 

Then â  = rf(ai ) for k = 1 , . . . ,r(g). By (2.xiv), we have 

9A,K,---,*iTJ=9Af{rfK)>---MairJ) 
= 9A'(rg(rfK ) ) • - . ^ ( - / K ( 9 ) ) ) ) 

= ^ ( % n ) , . . . , fc(% J ) = / ( h ( a i i ) , . . - , fc(aiT(s))) . 

So we proved (2.i ia). If 6 ^ , . . . ,6,^ G A^ and { 6 ^ , . . . ,6^ } fl A ^ 0, then 

for some 1 < k < r(f) we have bi E A. Then, since 

Vc r= / ( x i> • • • ' x k - i ^ h ( x k ) ' : r k + i ' • • • ' X T ( / ) ) 

~ / ( ^ ( ^ i ) , • • •, 9 />k - i )> 9h(*J> ^faifc+i), • • •, ^ ( ^ ( / j ) ) , 
so 

fAfK>---ATJ=fA<K,---Ak_1MbJAk+1,---A,J 
= f^(h(bj,...,h(bikj,h(blk),h(bikj,...,h(btTJ) 

= /"** (J.&.),..., fc(&ifc_,), h(bik), h(bik+i),..., h(biTJ) 

= f*(h(bli),...,h(btkJ,h(bik),h(blkJ,...,h(birJ). 

Thus, we proved (2.ii/3). D 
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THEOREM 3.3 ' . Let V be a variety of type r satisfying assumptions of 
Lemma 1.1 and condition (3.i). If A* belongs to Vc, then A* is a clone exten
sion of an algebra A from V, where for every f E F the algebra Ar satisfies 
Zf(V). 

This follows from Theorem 3.3 and Lemma 1.5. 

THEOREM 3.4. Let V be a variety of type r satisfying condition (3.i). If an 

algebra A = (A\ FA) belongs to V,, then A is an f-clone extension of an 

algebra A belonging to V, and A satisfies Y,f(V). 

P r o o f . Let A = (A; FA) belongs to Vf. Since Vf C V% so A belongs 
to Vc. As, in the proof of Theorem 3.3, we put r (a) = qg

A(a) f° r every a E A. 
Then, by the argumentation from the proof of Theorem 3.3, we conclude that A 
is a clone extension of an algebra A from V, where A £ V for every g E F. 
The identity qf(x) « x is of the form (1.8) and belongs to Id(V), so it belongs 
to Id(V,), and consequently , it is satisfied in A. Hence A = Af. Thus A 
satisfies T>f(V). If s, t belong to { /} ' , then the identity qs(x) « qt(

x) is of 
the form (1.9) and, by (3.i), belongs to Id(V). Thus, it belongs to Id(V^), and 
consequently, it is satisfied in A. Thus rs(a) = rt(a) for every a £ A. Finally, 
h = rsort=rsors=rtort=rs=rt,so As = A for every s E { /} ' . Now the 
proof that A = Af is an /-clone extension of A is analogous to that of the end 
of Theorem 3.3. D 

THEOREM 3.5. Let V satisfy condition (3.i). Then an algebra A belongs to 
Vf if and only if A is an f-clone extension of an algebra A belonging to V, 
and A satisfies E , ( V ) . 

This follows from Theorems 3.1 and 3.4. 

4. Equational bases 

Let V be a variety of type r satisfying condition (3.i). Let B be an equational 
base of V, and Bf be an equational base of Sy(V) for every / E F. Let Bc be 
a set of identities of type r defined as follows: 

(bx) For every / E F the identity qf(qf(
x)) & qf(x) belongs to Bc. 

(b2) For every f,g E F the identity qf{g(x1,..., xr{g))) « . ^ ( x j ) , . . . 
m"^f(XT(g))) belongs to Bc. 

(b3) For every f,g E F the identity qf(qg(
x)) ~ qg(qf(x)) belongs to Bc. 
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(b4) For every / , g , s , t £ F, where / ^ g and s ^ t, the identity qf (qg(x)) « 

9s(?t(x)) belongs to Bc. 
(b5) If an identity ^(x.^ , • • •, xim) « VK^ja, • • • - £jn) belongs to 5 , then the 

identity ¥>(qf(qg(xn)), - • • ,9 /W^m ) ) ) « ^ f a / W ^ ) ) , • • •, 0 /W^-J)) 
belongs to £>c for some / , 5 E F , f ^ g. 

(b6) For every / G F the identity f(xv .. ., x r ( / ) ) « f(qf(xx),. . . , g / ( ^ r ( / ) ) ) 
belongs to f3c . 

(b7) If an identity ip(x{i,... ,-Cim) ~ ^ ( x ^ , . . . , ^ ) belongs to 5 p then 
the identity <p(qf(xix),. ..,qf(xim)) « ^(qf(xh),... ,qf(xjn)) belongs 
to B c . 

(b8) For every / , p G F , / 7̂  g and fc = l , . . . , r ( / ) , the identity f(xx,... 

-••ixk-i^f(%(xk))ixk+v---'xT(f)) ~f(qf(q9(
xi))T--,qf(qg(

xk-i))i 

qf(Q9(
xk))^f(%(xk+i))^''^f(%(xr(f)))) belongs to Bc. 

THEOREM 4 . 1 . 7/ V is a variety satisfying condition (3.i), i/ien 5 C is an 
equational base of Vc . 

P r o o f . Let us denote by C(V) the class of all clone extensions of alge

bras from V, where for every / G F the algebra A* satisfies E*(V). Put 

V̂  = Mod(jBc). Since every identity from Bc belongs to I d ( V c ) , so Bc C 

I d ( V c ) , hence Vc C V̂  . To complete the proof, it is enough to show that if 

A* = (A*; FA*) belongs to V+, then it belongs to C(V) , see Theorem 3.2. Let 

A* £ V^. As in the proof of Theorem 3.3, we put rf(a) = qf
A (a) for every 

a e A* . By (b1)~ (b 4) , condition (2.iv) is satisfied. We put h(a) = qf* (qf* (a)) 

for every a E A* and some / , g G F with f ^ g. Then fo is a retraction 

of .4* by (bx) and (b 2 ) . We put .4 = (h(A*)\ FA*\h(A*)Y We prove that 

A G V . If an identity ¥>(xii, • . . , x{ ) ~ VK î ? - - - 7 X
7 T ) belongs to F? and 

a{ , . . ., aj , a . , . . . , a • belong to /i(A*), then since AT, is an identity on h(A*), 
we have by (b5) the equalities 

^ K ' • • • 'a,J = ^ (%*-), • • - %,_)) 
= /7%J, . . . ,% j J)=/(a J i , . . . ,a j J. 

Thus .4. satisfies 5 and, consequently, belongs to V. Similarly, using (b2) and 

(b7) we show that Af = (rf(A*); FA \rf(A*) ) satisfies 5 , , so it satisfies 

E r ( V ) . By (b 6 ) , condition (2.xiv) is satisfied. Similarly as in the proof of The

orem 3.3, we show that since (b6) and (bg) belong to F?c, so Af is the /-clone 

extension of A with respect to h\A f • D 

THEOREM 4 .1 / . If V is a variety satisfying assumptions of Theorem 3.3', then 
Bc is a equational base of Vc. 
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This follows from Lemma 1.5 and Theorem 4 .1 . 

COROLLARY 4.2. If a variety V satisfies assumptions of Theorem, 4.1, F is 

finite, V is finitely based, and T,JV) has a finite base for every f £ F, then 

Vc is finitely based. 

COROLLARY 4.2 ' . If a variety V satisfies assumptions of Theorem 4 .1 ' . F is 
finite, V is finitely based, and Y,JV) has a finite base for every f 6 F, then 
Vc is finitely based. 

Let V be a variety of type r satisfying assumption of Theorem 3.5. Let B 
be an equational base of V, and Br be an equational base of T,JV). We define 
the set B* of identities as follows: 

(ca) BfCBf; 

(c
2) qg(

x) % qs(
x) belongs to Bf for every g, s e { /} ' ; 

(cs) qg(qg(
x)) ~ qg(x) belongs to Bf for every g e { /} ' ; 

( c
4 ) 1g(s(xiT--'XT(s))) ~ s(qg(

xi)>---,qg(
XT(s))) belongs to Bf for every 

ge{f}', SEF; 

(c5) if (f(xi ,...,xi ) « ^(x- ,... ,x-) belongs to B, then the identity 

<p{%(xi1),---,Qg(xim)) ~ ^{%(xj, )>•••> %(xjJ) b e l o n g s t o Bf for 

some g e { /} ' ; 
(c6) for every g € { /} ' the identity g(xv ..., xT{g)) ss g(qg(x1),..., qg(xr{g))) 

belongs to Bf; 
(c7) for g e { /} ' the identities f(x1,...,xk_1,qg(xk),xk+1,...,xr{f)) PS 

f(qg(
xi), • • •, qg(

xk-i)><lg(xk)> 4g(xk+i)' • • • > ( / 9 K ( / ) ) ) belong to Bf . 
THEOREM 4 .3 . If a variety V satisfies assumption of Theorem 3.5, B is an 
equational base of V, and Bf is an equational base of T,f(V), then Bf is an 
equational base of V.. 

P r o o f . Denote by Vf the variety defined by Bf . Since every identity from 
Bf belongs to I d ^ ) , so Vf C Vf. Denote by Cf(V) the class of all /-clone 
extensions of algebras from V satisfying T,f(V). Now, by Theorem 3.1, it is 

enough to prove that if an algebra A = ( A; FA ) belongs to Vf , then it belongs 

to Cf(V). But A satisfies E /(V r) by (cx). We put, for a 6 A, r(a) = q*(a) 

for fixed g E { /} ' . By (c2), r is well defined, and it is idempotent by (c3). We 

put A = (r(A); FA\r/-j\ ) , and r(A) = A. By (c4), r is a retraction, so A 

is well defined (the proof of Theorem 3.3). 

If <p(Xij,..., x.J w %l>(Xji ,...,xjn) belongs to B, then by (c5), f(qg(xj,.. -

•••^g(xiJ) ~ HQg(xji)'--->Qg(xjn))
 h o l d s in A. So, by (c2) and (c3), for 

ail,...,aim,bh,...,bjneAvrehave ^(a.^ ..., a . J == ̂ (r(aj,... ,r(a,J) 
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= *lr*{r(bji),...,r{bjn)) = ^ ( & j V .- . ,&, J . Thus A G V and (2.i) holds. If 
g G { /} ' , then by (c6) and (c2), it is easy to show that (2.iia) holds. Similarly, 
by (cr)> w e prove that (2.ii/3) holds for A. Consequently, A belongs to CJV), 
what completes the proof. • 

COROLLARY 4.4. If a variety V satisfies assumptions of Theorem 3.5. F is 
finite, V is finitely based, and S , (V) is finitely based, then V* is finitely based. 

5. Examples 

EXAMPLE 5.1. Let V be a variety of bisemilattices, i.e., the variety of algebras 
of type T : {+ , • } —> N, where T ( + ) = T(-) = 2 and both + and • is idempo-
tent, symmetrical and associative. Put q+(x) = x + x and q.(x) = x • x. By 
Theorem 3.3', an algebra A belongs to Vc if and only if A is a clone extension 
of a bisemilattice 0 , where the following holds. The algebra B+ is the +-clone 
extension of B with respect to h\A, , a n d + is a join semilattice operation 
in B+. The algebra #. is the --clone extension of B with respect to h\A , a n d 
• is a meet semilattice operation in S.. By Corollaries 4.2' and 4.4, V+ , V and 
Vc is finitely based if V is finitely based. 

In particular, if V is degenerated variety of bisemilattices (it satisfies x « y) , 
then B is 1-element and S + = #. — B. Further, for every a, b G A we have 
a + b = a - b = c, where c is the only element of B . 

EXAMPLE 5.2. Let V be a variety of Boolean algebras. Then we obtain the 
similar conclusions as for lattices, where q+(x) = x + x, q.(x) — x - x and 
q,(x) — (x')' - & is a Boolean algebra, A is a clone extension of B, where B+, 
6 are described as in Example 5.1, and in B, the operation ' is an involution, 
S + ( V ) , E.(V), S,(V) are finitely based, and Vc is finitely based since V is 
finitely based. 

EXAMPLE 5.3. Let V be a variety of groups with operations • and _ 1 satisfying 
xn ~ yn. Put q.(x) — xn+l and q_x(x) — ( x - 1 ) - 1 . Then we obtain analogous 
results as in Examples 5.1 and 5.2. In particular, Vc is finitely based. Moreover, 
if B belongs to Vc, then it is a clone extension of a group A by means of a 
family {̂ 4 , A_x}, where A = A. In fact, by Corollary 1.10, we have V = V, 
so V |= ( x - 1 ) - 1 ~ x n + 1 « x, and consequently, r. and r_1 are identities in V. 
Now, by (2.xvii) and (2.vi), A, = ^4. 

EXAMPLE 5.4. Let T : { © , © } —> N be a type of algebras with T ( © ) = 
T ( 0 ) = 2. Let V be the variety of algebras of type r generated by Z = 
({0, l , . . . , p — 1 } ; © , © ) , where © is the addition modulo p , 0 is the mul
tiplication modulo p , and p is prime. Then V is a nontrivial variety of rings 
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satisfying (p + l)x ~ x ~ xp. Consequently, assumptions of Theorems 3.3' 
and 4.17 are satisfied and Vc is finitely based. 

EXAMPLE 5.5. Let V be a variety of some type r satisfying (3.i), where | F | — 2. 
Let Vr be the variety of type r defined by all regular identities from Id(V). Then 
Vr also satisfies (3.i), and we can apply Theorems 3.3' and 4.1'. This observation 
we can apply to Examples 5.1, 5.3 and 5.4. 

Obviously not every variety satisfies assumptions of Lemma 1.1. However, 
if it satisfies condition (3.i), then we can apply Theorem 3.3, Theorem 4.1 and 
Corollary 4.2 as in the following example for n > 2. 

EXAMPLE 5.6. Let r: {OX, . . . ,o n } —> N be a type of algebras with r(ok) — 2 
for k = 1 , . . . , n and 2 < n < UJ . Let Ln be the variety of n-lattices (see [5]), i.e., 
the variety of type r defined by the following identities: xokx « x, xoky « y°kx, 
(xoky)0kz~xok(y°kz) f o r fc = l , - . - , n , and x o h (x o ̂  (... (x o iri y)...)) 
« x for every permutation i l r . . , i n of indices 1, . . . , n . By Theorem 3.3 and 
Corollary 4.2, the variety Ln is finitely based, and every algebra from Ln can 
be represented as a clone extension of an algebra from Ln. 

Some other results concerning clone compatible identities will be published 
in the future. 
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