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EXISTENCE RESULTS FOR SECOND ORDER 
VOLTERRA INTEGRODIFFERENTIAL 

EQUATIONS WITH DEVIATING ARGUMENTS 

LONGTU Li* — XlANGZHENG QlAN** — ZHICHENG WANG** 

(Communicated by Milan Medved7) 

ABSTRACT. In this paper, using the nonlinear alternative of Leray-Schauder 
and the Gronwall-Bellman-Bihari-type integral inequalities, we study the initial 
value problems of the second order Volterra integrodifferential equations with 
deviating arguments. 

1. Introduction 

In this paper, existence results are presented for the solutions of second order 
Volterra integrodifferential equation with deviating arguments 

(p(t)u'(t))' = f(t,u(9l(t)), fk(t,s,u(g2(s))) ds, p(t)u'(t)) , 
0 

0 < ŕ < T , 
(1.1) 

with u satisfying the initial value condition 

u(t) = <p(t), t G [-r, 0], u'(0) = A, (1.2) 

where p G C[0,T], p(t) > 0, / G C([0,T] x R x R x R,R), k G 
C([0,T] x [0,T] x R,R), A G R, gvg2 G G (see Section 2), tp G C([~r, 0],R) 
and 

r = — min< min g, (t), min qJt) \ > 0. 

Here u'(0) means the derivative on the right ix'(0+). 
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By using the nonlinear alternative of Leray-Schauder and suitable a priori 
estimates, we prove the global existence of a solution to (1.1)-(1.2) on the 
whole interval [0, T]. 

The global existence of solutions for ordinary differential equations has been 
considered by many authors. By employing the topological transversaly theorem, 
D. O ' R e g a n [4], and J. W. Lee and D. O ' R e g a n [3], and H u a x i n g X i a 
and T. S p a n i l y [6] have established global existence results for differential 
delay equations. We continue these consideration to a global existence prob
lem (1.1)-(1.2) for the second order Volterra integrodifferential equation with 
deviating arguments. Since the application of the nonlinear alternative of Leray-
Schauder involves a priori bounds of solutions, and the estimate of such bounds 
is more difficult for Volterra integrodifferential equation with deviating ar
guments, we use Gronwall-Bellman-Bihari-type inequalities ([1]) to establish 
a priori bounds. 

Our paper is organized as follows. In Section 2, we present some prelimi
naries. The general global existence results are discussed in Section 3. Finally, 
in Section 4, we obtain some results on a priori bounds of solutions. 

2. Preliminaries 

Let C r , r > 0, be the space of all continuous functions u: [—r,0] —» E. For 
ip G Cr we define the norm 

M h r | 0 ] = sup h/,(0)| • 
L J 0G[-r,O] 

For convenience, we introduce the following notations and definitions: 

I N I o = S U P M*)l> 
t€[-r,0] 

Mi =max{|M|0 , Hpu'llo}, 

C[-r ,T] = C([-r,T],lR), 

K1[-r,T]--{wGC[-r,T]nC1[0)T]; u(0) = <p{0) and 1 ^ < oo} . 

DEFINITION 2.1. Denote by G the class of continuous functions g: R —> R 
satisfying g(t) < t. 

DEFINITION 2.2. H belongs to class Gx if H(u) is nonnegative, continuous, 
and nondecreasing for u > 0, H: [0, oo) —> [0, oo), H(u) > 0 for u > 0, 
H(0) = 0, and t~lH{u) < H{t~lu) for t > 1 and u > 0. 
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L E M M A 2.1. ( N O N L I N E A R ALTERNATIVE OF L E R A Y - S C H A U D E R ) ([2]) 

Assume U is a relatively open subset of a convex set K in a Banach space E. Let 
G*: U -r K be a compact map, p£U, and let Nx(u) = N(u, A): Ux [0,1] -> K 
be a family of compact maps (i.e., N(Ux [0,1]) is contained in a compact subset 
of K, and N: U x [0,1] -» K is continuous) with JV-. = G* and N0 = p, the 
constant map to p. Then either 

(i) G* has a fixed point in U ; 
or 

(ii) there is a point u G dU and A G [0,1] such that u = Nxu. 

By the solution of the IVP (1.1)-(1.2) we mean a function u G Kl[-r,T] 
which satisfies the integrodifferential equation (1.1) and the initial value condi
tion (1.2). 

3. An existence principle 

In this section, we present the general global existence result of a solution of 
the IVP (1.1)-(1.2). 

THEOREM 3.1. Let f: [0,T] x R x R x R -> R and k: [0,T] x [0,T] x R -> R 
be continuous functions, p G C[0,T] ; p(t) > 0, and assume g1,g2 £ G. Suppose 
that there is a constant M, independent of X, such that \u\x < M for any 
solution u to 

(p(t)u'(t))' = Xf(t,u(9l(t)), fk(t,s,u(g2(s))) ds, p(t)u'(tj) , 
x 0 ' 

0<t<T, 0 < A < 1 , (-"-);. 

u(t) = cp(t), te[-r,0], u'(0) = A, (1.2) 
for each A e (0,1). Then (1.1) -(1.2) has at least one solution u e Kl[-r,T] 
with 

P r o o f . Solving (1.1)A-(1.2) is equivalent to finding a u G Kl[-r,T] such 
that satisfies 

t 

u(t) = lp(0) + J^r)(Ap(0) 
0 

s 

+ X f(r,u(gi(r)), fk(r,x,u(g2(x))) dx, p(r)u'(rj} d r j ds , 

o 
(3.1) 
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where 

" f a W ) " i V f a W ) . «,(•)<o. 
Define the operator NA: O1 [0,1] -+ O],[0,1] by 

t 

(Nxu)(t)=<p(0)+J^(Ap(0) 
0 

s 

+XJ f(r,u(gi(r)), fk(r,x,u(g2(x))) dx, p(r)u'(r)) drj ds. 
o 

Here C^[0,T] = {u e C[0,T] n Cl[0,T]; u(0) = <p(0), tx'(0) = A} . Of course, 
(1.1)A-(1.2) is equivalent to the fixed point problem u = Nxu. Certainly, Nx 

is continuous since / and k are completely continuous by the Arzela-Ascoli 
theorem. To see this, let fi C C^[0,T] be bounded, i.e., \u\x < k* for all 
u e n , where k* > 0 is a constant. Let K = max{ | |^ | | r r j 0 i , k*}. First Nxfi, is 
uniformly bounded. This follows from the inequalities 

T T 
8 ds \Nxu(t)\ < \<p(0)\ + |Ab(0) J'J^. + Mif 
p(s) 

0 0 

and 
W)(Nxu)'(t)\<\A\p(0) + MlT1 

where Mx = sup \f(t, ux,u2, uz)\, where the supremum is computed over [0, T] x 
[-K, K] x [Kx, KJ x [-K, K]. Here Kx = sup |fc(t, 5, w)\T, where the supremum 
is computed over [0, T] x [0, T] x [-K, K]. 

We next show the equicontinuity of NAf2 on [0,T]. For u e fi and tl,t2 e 
[0, T] we have 

\Nxu(tx) - Nxu(t2)\ 

K^Am 

t2 

A Í / ( r , i z ( 5 l ( r ) ) , fk(r,x,u(g2(x))) dx, p(r)ix'(r)) d r j ds 
o 

'H/řfelH/^t 

+ 

Ь 

< 
(3.2) 
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and 

|p(í1)(-Vлtt)'(t1)-p(í2)(ЛГлu) ,(í2)| 

= Л / / ( « , « ( $ , » ) , fk(s,r,u(g2(r))) dr,p(s)u'(s)) ds (3.3) 

<2 

< M J í 1 - ť 2 | 

The equicontinuity of NXQ on [0, T] now follows from (3.2) and (3.3). Thus the 
Arzela-Ascoli theorem implies that NA is completely continuous. Let 

M*=max{М, IMI[-r,o]} 

and set 

U={«€O^[0,T]: | tt |1<M* + l } , 

Q = C1
B[0,T], 

E = O[o,T]nO1[o,T], 
t 

Nou(t) = <p(0) + Ap(0)f^. 
0 

Note that N(U x [0,1]) is contained in a compact subset of Q. To see this, 
let N(un,\n) be any sequence in N(U x [0,1]). Then, as above, N(un,\n) is 
uniformly bounded and equicontinuous on [0, T], so the Arzela-Ascoli theorem 
again yields the same results. 

Apply Lemma 2.1 to deduce that Nx has a fixed point, i.e., (1.1)-(1.2) has 
a solution u 6 Kl[-r,T\. The fact (p(t)u'(t))' G C[0,T] follows from (3.1) with 
A = l . 

The proof of Theorem 3.1 is complete. • 

4. A priori bounds 

In this section, we deal with a priori bounds for IVP to second order 
Volterra integrodifferential equations with deviating arguments. We shall use 
the Gronwall-Bellman-Bihari-type integral inequalities to derive a priori bounds 
to fulfil the conditions imposed in Theorem 3.1. 
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To simplify the notation, in the sequel, we will define 

p(t)=j 
t 1 + /h 2 {r)exp( /h 2 {x) dx) dr 

p{s) 
ds , 

W(t) = M\{_ri0]+p(0)\A\P(t). 

THEOREM 4.1 . Let f: [0,T] x R x R x R -> R and k: [0,T] x [0,T] x R -> R. 
be continuous functions, p G C[0,T], p(t) > 0, and assume that gl,g2 £ G. 
Suppose that for every t,s G [0, T] and u,v,w G R 

\k(t,s,u)\ < /i1(5)|tt| and 
(H) 

\f(t,u,v,w)\ < h(t)(\u\ + \v\ + h2(t)\w\) , 

where h, hx and h2 are continuous nonnegative real-valued functions on [0,T]. 
Then the IVP (1.1) -(1.2) has at least one solution u G Kl[-r,T] with 

(pu')'eC[0,T}. 

P r o o f . By Theorem 3.1, the IVP (1.1)-(1.2) has at least one solution in 
Kl[—r,T} if there is a priori bound for solutions to (1.1)A-(1.2). 

Let u(t) be a solution of (1.1)A —(1.2). Then we have 
t 

p(t)u'(t)=p(0)A + \Jf(s,u(9l(s)), jk(s,x,u(g2(x))) dx, p(s)u'(s)) ds. 

o 
(4.1) 

Applying (H), we obtain from (4.1) 
t 5 

Ь(*)^( í ) | < P(0) |A| + У /І(^) ^|гx(У l(s))|+ У ^(o;)|îx(Ö2(a;)) | da;^ ds 

o o 
t 

(4.2) 

+ Jh2{s)\p{s)u'{s)\ds. 

0 

Applying Theorem 1 in [5] to the above inequality (4.2) we have 

\p{t)u'{t)\ < I 1 + J /i2(s)exp( J h2{x) dx) ds ] • 

• (p{0)\A\ + Jh{s)(\u{9l{s))\+ J h^u^x^dx) ds\ . 

^ 0 0 ' 

(4.3). 
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Multiplying inequality (4.3) by l/p(t) and integrating on [0,t], we obtain 

Kt)|<||vllhri0]+p(o)|A|P(t) 
t s 

+ J{P(t) - P(s))h(s)(\u{9l(s))\+ dx^j da. 

0 0 

(4.4) 
Using a similar method to that of the proof of Theorem 1 in [1], we get 

\u(t)\ < W(t)exp ( [ ( ^ - ^ ) W ^ x W ) + ^ ( ^ f a W ) ^ 
\{ W(gi(s)) 

< W(T)exp ( } {P{t) ~ P(s))h(s)W(9M + h1(s)W(g2(8)) ^ 
\{ W(gi(s)) 

= N. 
(4.5) 

From (4.3) and (4.5), we have 
T 

\p(t)u'(t)\ < ll + Jh2(s)expl jh2(x 

( T a 

p(0)\A\ + N íh(s)(l + / \ ( . r ) d . r ) ds 

) dx ) ds ) • 

(4.6) 

= N,. 

So we obtain 
\u\x < M = max{N,N1}. 

Therefore, by Theorem 3.1, IVP (1.1)-(1.2) has at least one solution u G 
Kl[-r,T) and (p(t)u'(t))' G C[0,T]. • 

THEOREM 4.2. L e i / : [ 0 , T ] x R x R x R - > R and k: [0,T] x [0,T] x R -> R 
be continuous functions, p G C[0,T], p(t) > 0, and assume that gx,g2 G G. 
Suppose that 

(i) / is as in assumption (H) of Theorem 4.1 and q^.Gx. 
(ii) ITiere exist a continuous nonnegative functions h* on [0, T] and n such 

that n: [0,oo) -> [0,oo) is nondecreasing nonnegative submultiplicative 
for u > 0 with u(0) = 0 and 

* 

lyfc(M,ttGfe(*))) ds <fc*(*)n(Kfl2(<))|)-
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Then the IVP (1.1) -(1.2) has at least one solution u G Kl[-r,T] with 

(pu')'eC[0,T]. 

P r o o f . Let u(t) be a solution of (1.1)A—(1.2). Then we have 

\p(t)u'(t)\= f 1 + f h2(s)expl f h2(x)dx) dsY 
3 

t 

• (p(0)\A\ + Jh(s)q(\u(9l(S))\) ds + Jh^n^g^s))^ ds\ . 
^ 0 0 ' 

(4.7) 
Multiplying inequality (4.7) by l/p(t) and integrating on [0, t], we obtain 

l«(-)l<IMI[-rto]+P(0)|-4|P(0 
t 

+ J(P(t)-P(s))h(s)q(\u(9l(s))\ds 
0 

t 

J(P(t)-P(s))h1(s)n(\u(92(s))\)ds + 
0 

^maxd lvpH^oj+pWIA lP ÍT ) , !} 
(4.8) 

Z 

+ J(P(T) - P(s))h(s)q(\u(9l(s))\) ds 
0 

t 

+ J(P(T) - P(s))h1(s)n(\u(g2(s))\) ds. 
0 

Applying Theorem 6 in [1], we get 

t 

Ht)\ < Q-1 (Q(l) + J(P(T) - P(s))h(s) ds) 

t 

+ 
0 

N-1 ^ ( m a x ^ Ц v Ц ^ o j +p(0) |Л|P(T), l}) 

t t 

J(P(T) - P^h^n^Q-1 (Q(1) +Jh(r)(P(T) - P(r)) dr)) ds 
0 

(4.9) 
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where 

V 

/

ds 
-Ą, v>vo>0, 

N(r) = I 
vo 

r 
ds 

n(s) ' r > r0 > 0, 

ro 

and Q~~l and N~~l are the inverse of Q and N respectively. Clearly, Q~l and 
N~~l are increasing functions. Using the hypotheses (i) and (ii), we see clearly 
that the right side of inequality (4.9) is bounded, which proves that there is a 
constant Mx > 0 such that 

\u(t)\ <Ml. (4.10) 

From (4.7) and (4.10), we know that there is a constant M2 > 0 such that 

\p(t)u'(t)\<M2. 

So we obtain 
\u\x < M = max{M1,M2} . 

Therefore, by Theorem 3.1, IVP (1.1)-(1.2) has at least one solution u G 
Kl[-r,T] and (p(t)u'(t))' G C[0,T]. • 
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