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METRIC PROPERTIES OF ENGEL SERIES 
EXPANSIONS OF LAURENT SERIES 

PETER J. GRABNER* — ARNOLD KNOPFMACHER** 

(Communicated by Milan Pasteka) 

ABSTRACT. We derive metric properties of the polynomial digits occurring in 
certain series expansions for Laurent series, analogous to the Engel series repre
sentation for real numbers. In particular, we obtain limiting distributions for the 
degrees of the digit polynomials and the order of approximation by the partial 
sums of the series. 

1. Introduction 

Recently A. K n o p f m a c h e r and J. K n o p f m a c h e r [8] introduced and 
studied some properties of various unique expansions of formal Laurent series 
over a field F , as the sums of reciprocals of polynomials, involving "digits" 
a1? a 2 , . . . lying in a polynomial ring F[X] over F. In particular, one of these 
expansions (described below) was constructed to be analogous to the so-called 
Engel expansion of a real number, discussed in P e r r o n [15; Chapter 4]. 

Previously, A r t in [1] and M a g n u s [11], [12] had studied a Laurent se
ries analogue of simple continued fractions of real numbers, involving "digits" 
x 1 , x 2 , . . . in a polynomial ring -P[X]. In addition to sketching elementary 
properties of an n-dimensional "Jacobi-Perron" variant of this, P a y s a n t -
L e r o u x and D u b o i s [13], [14] also briefly outlined certain "metric" theorems 
analogous to some of K h i n t c h i n e [7] for real continued fractions, in the case 
when F is a finite field. The main aim of this paper is to derive similar met
ric results for the Laurent series Engel-type expansion referred to above. (For 
analogous results concerning Engel expansions of real numbers, see E r d o s , 
R e n y i , S z u s z [2] and R e n y i [16], and G a l a m b o s [5].) 

In the corresponding case of Liiroth type expansions for Laurent series ergodic 
and other metric properties have recently been investigated by J. K n o p f 
m a c h e r [10] and extended by A. and J. K n o p f m a c h e r in [9]. For both 
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the continued fraction and Liiroth expansions of Laurent series, ergodicity of 
the corresponding transformations were used to derive the results. Howrever, in 
the case of Engel expansions the underlying transformation is not ergodic The 
growth conditions satisfied by the polynomial digits suggest that an approach 
via Markov chains could be used. For the corresponding ideas in the case of 
Engel, Liiroth and more generally Oppenheim expansions for real numbers we 
refer to G a l a m b o s ' book [5]. 

In order to explain the conclusions, we first fix some notation and describe 
the inverse-polynomial Engel-type representation to be considered: 

oo 

Let C = F((z~1)) denote the field of all formal Laurent series A = ~~ cnz~n 

n=v 

in an indeterminate z, with coefficients cn all lying in a given field F. (We 
consider F((z~x)) rather than F((z)) as in [8], [9] since it turns out to be more 
convenient for stating our results.) 

We also consider the ring F[z] of polynomials in z, and the field F(z) of 
rational functions in z, with coefficients in F. 

If cv ^ 0 we call v = v(A) the order of A, and define the norm (or valuation) 
of A to be ||A|| = q~v(A). where initially q > 1 can be an arbitrary constant, 
but later it will be chosen as q = card(F), if F is finite. Letting v(0) = -f-oo, 
||0|| = 0, one has (cf. J o n e s and T h r o n [6; Chapter 5]): 

\\A\\ ^ 0 with ||-4|| = 0 ^=> A = 0, 

\\AB\\ = II-4H-||5||, and 

for non-zero a, /3 G F, 

with equality when ||A|| 7- | |B| | 

(1.1) 

\\aA + /3B\\ímax{\\AUB\\) 

By (1.1), the norm || • || is non-Archimedean, and it is well known that C forms 
the completion of F(z) at infinity in the same way that R is the completion at 
infinity of the rational numbers Q. 

We shall make frequent use of the polynomial [A] = ^ c
n

zU ' ^[A, and 
0<n<v 

refer to [A] as the integral part of A G C. Then v = —v(A) is the degree deg[A] 
of [A] relative to z, and the same function [•] was used by A r t in [1] and 
M a g n u s [11], [12] for their continued fractions. 

Given A G £ , note that [A] = a0 G F[z] if and only if v(A^ > 1 where 
Ax = A — a0. As in [8], if An / 0 (n > 0) is already defined, we put an = [-£-] 
and - 4 n + 1 = (anAn — 1). If some Am = 0 or an = 0, this recursive process stops. 
It was shown in [8] that this algorithm leads to a finite or convergent (relative 
to || • ||) Engel-type series expansion 

1 v ^ 1 
A = a0 + — + y , (1.2) 

ai 4 ^ a- • • • a ' v J 

1 r>2 1 r 
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where ar G F[z], a0 = [A], and deg(ar+1) > deg(ar) + l for r > 1. Furthermore 
this expansion is unique for A subject to the preceding conditions on the "digits" 
ar. For notational convenience we set 

r 

n 1 

— = an + > , where qn = a, • • • an . 
a ° -—' a • • -a n x n 

^n r = 1
 a l ttr 

From now on we assume that F = Fq is a finite field with exactly q elements. 
Let I denote the valuation ideal z~1F1[[^~1]] in the ring of formal power series 
F[[z -1]] and let P denote probability with respect to the Haar measure on C 
normalized by F(I) = 1. The Haar measure on I is the product measure on 

oo 

n Fq defined by P({a;}) = q~l for each factor and any element x €Fq. 
n=1 

We now state our main results. T H E O R E M l. 

<» JSt ' (-e ' • iJm£? < <) = Jr«i<-"''2 *•• 
(ii) Fbr almost all x £ I, 

,. dega n + 1 (x) -dega n (x) 
hm sup -L—: = 1, 

n->oo l 0 g g n 

and 
liminf degan , Jx) - dega (x) = 1. 

n—• oo ~ 

(iii) Fbr almost all x G 7, 

9n 

More precisely 

f . , r T - M - - — - ( n + 1 ? ( w + 2 ) \ i r 

lim Pfx € / : ^X <t;j «-* 2 <t) = -±= e-«2!2 dW) 
n-+°° V y/y^(degqn+1) > ***_{, 

where Var(deggn+1) = (»+-)("+->(»*«> ( ^ ) . 

In particular we see from (i) that for almost all x G J, | |an | |1 /n -r ^ / g _ 1 , as 
n ->> oo. Regarding (i) and (iii) above we recall the similar but weaker results 
shown in [8] holding for all x in 7, 

deg(an) > n 
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and 
Pn 

Яn 

_ ( n + l ) ( n + 2) 

<q 

Furthermore, we consider the random variables 

n = 1,2,3,... . 

a r + 1 ( x ) 

aЛx) 
= Q r = 

1,2,3,... . These are independent and identically distributed with infinite ex
pectation. However, the following result holds. 

THEOREM 2. For any fixed £ > 0, 

lim P < x Є I : —г--
n-»oo 1 П Юg П Ľ 

r = l 

Û Г + I ( - C ) 

a r (x) 
- ( 9 - l ) > £ > = 0 , 

Z'e- nlog„n -C 
r = l 

l^rf^ll -^ ° — 1 ^n probability over I. 

Remark. Since a theorem in [5; p. 46] implies that 
either 

lim sup —: > 
n->oo n\ogqn ^ Г = l 

or 

lim inf — 
n->oo n i o g ^ n 

= oo a.e. 

= 0 a.e., 

the conclusion of Theorem 2 does not carry over to validity with probability one. 

The paper is organized into sections, which split the proofs of the theorems. 
Section 2 gives some elementary probabilities, which will be used in the proofs, 
Section 3 gives the proof of Theorem 1 and Section 4 gives the proof of Theo
rem 2. 

2. Basic probabilities 

We begin by deriving some basic probabilistic results concerning the digits 
in Engel expansions of Laurent series. 

LEMMA 1. The digits an G F[z] form a Markov chain with initial probabilities 

P ( d e g a 1 = j ) - - ( g - l ) < r J \ (2.1) 

and transition probabilities 

( a - i y - * , k>j, 

else. 
P ( d e g a n + 1 = k |deg -•-» •{?. (2.2) 
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P r o o f . First by the Engel algorithm Ax — x G I. Then using the definition 
of Haar measure F(v(Ax) < -j) = P(degax > j) = q~i. Thus P(degax = j) = 
P(dega i > j - 1) - P.dega, > j) = (q- l)q~l. 

Next, the coefficients of A2 are obtained from those of Ax by a system of 
linear equations arising from the relation A2 = axAx — 1. Prom this it follows 
that A2 is uniformly distributed in z~H where j = degax. By induction, if 
degan = j then An+1 is uniformly distributed in z~H for all n > 1. Since the 
event degan + 1 > k under the condition that degan = j is described by k — j 
linear equations arising from equating coefficients of z~rn in anAn equal to zero 
we conclude that 

P(degan + 1 > k | degan = j) = q^~k 

and (2.2) follows immediately. • 

Remark. Since the probability in (2.2) depends only on the difference k-j, the 
random variables degan + 1 — degan are independent and identically distributed. 
Thus for 

nx < n2 < • • • < nj and ki > 1, i = 1,2,... j , 

p ( d e g a n J + i = d e g a n , + kp d e S % _ ! + ! = d^a
nj.x + kj-l 

••> d e S a n 1 + l = d e S a n 1 + f c l ) (2-3) 

= (g-l)V(fcl+""+fci). 

COROLLARY 1. Let An = An(x) denote the random variable degan + 1 — 
deg an . with A0 = deg ax. Then 

P ( # { 1 < * < n | A(€) = 1} = k) = Q ( l - ^) f ca f c-" . 

Thus the number of times that degrees of consecutive digits increase by 1 has a 
binomial distribution with mean value n(l — M and variance n^-. 

In particular the lim inf result of part (ii) of Theorem 1 follows immediately. 

COROLLARY 2. The random variables An have mean value and variance 

and 
q Var(An) = 

( « - l ) 2 ' 

P r o o f . By Lemma 1 
oo oo 

E(K) = E « ( d e g a n + 1 - degan = I) = (a - 1) E ^ " ' = ^Z~ • 
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Similarly 
CO 

from which the formula for Var(An) immediately follows. • 

L E M M A 2. 

(i) 

P(deg an = t) = (g - 1)»g~* ( * _ * ) (2.4) 

and therefore 

F(3n:degan=t) = l - - . (2.5) 

(ii) 

P(deg «„+m = « I deg «n = -) = (? " 1)"V-' ( ' " _~ *) • 

P r o o f . 
(i) Since the sequence of degrees of the digits a_, a 2 , . . . is strictly increasing 

we have by Lemma 1 that 

P(dega n = t) 

_ _ P(dega n = 11 dega n _ , = jn_x)P(degan_j = j n _ x | dega n _ 2 = jn_x) 

l<3l<}2<-<jn-l<t 

• • • P(deg a2 = j 2 | deg ax = ̂  )P(deg Oj_ = j \ ) 

= (g - 1)« " T q3r.-l-tqjr,-2-jn-l . . . qh~h q~h > 

l < i l < J 2 < " < j ' n - l « 

= ( g - l ) " g - * __ 1 
l<.7l<.72<"<jn-l<t 

=<«-^(::l) 
Thus 

P(3n : degan = t) = f > - l)"g-< (* _ *) 
n=l ^ ' 

= ( 9 - l ) a - < E ( « - D f ( ^ 1 ) = l - i . 
*=0 \ c / * 
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(ii) 

P(degan + m = t | deg an = s) 

J2 p ( d ega„ + m = * I degan + m_ l = jm_x) 
S<jl<J2<-<jm-l<t 

• • • P(degan+2 = j2 | degan + 1 = j1)P(degan+1 = j \ | dega„ = s) 

= (q-l)mqs-t ~l 1 
« < i i < i 2 < - - - < i m - i « 

Remark. From the proof of (i) we can also deduce the joint probability distri
bution 

P(deg ax = j , , . . . , deg an =jn) = (q- l)nq~^ . 

3. Proof of Theorem 1 

Since we can write deg an as the sum of independent random variables 

n—1 n—1 
d e S a n = Y^(degaW - d e g a j + dega-. = ~~]Ai, 

i=l i=0 

it follows from Corollary 2 that deg an has mean and variance 

#(degan) = ^Zjn-

and 
q Vax(degan) = n- , 

respectively. 
Hence by the central limit theorem (see e.g. F e l l e r [4; p. 253]) part (i) of 

Theorem 1 follows. 
(ii) The events degan + 1 — degan > k(n) are independent with probabilities 

P(An > k(n)) = q~k^ . The Borel-Cantelli lemmas then yield 
oo 

0? zC q~k<<n>} converges, 
P(An > k(n) for infinitely many n) = n~ 

1 > ~Z q~k^ diverges. 
n = l 
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By choosing k(n) = c log n we see that with probability 1 the events (deg a n + 1 — 
deg an)/ logg n > c occur infinitely often if c < 1 and only finitely often if c > 1. 
The limsup result then follows. The corresponding liminf result was already 
shown in Section 2. 

(iii) We first compute the mean and variance of ||x — * H | . In [8] it is shown 
that 

-degg n +i A-ЬL 
Чn = ч 

Now 

£(deg„„+1) = X>(dcga„) = - V + 1)
2
(" + 2). 

r=l q L * 

To compute the variance we make use of the fact that 

n-f-l n-fl r—1 

deS<Wl = .E a r = E E A i 
r=l r=l 1=0 

n 

= $> . ( - . + i - O -
1=0 

We now remark that the last sum has the same distribution as the sum 

£( l + l)Ar 

Thus we have for the variance 

Now we check that the random variables (/-F 1)A/ satisfy Lindeberg's condition 
(cf. [4; p. 256]): since sn = Var(degqn+1) is of order of magnitude n3 , we have 
to compute the integrals 

j y2 dFk(y) = (k + l)2 J x2 dF(x) <(k + l )2 f x2 dF(x), 

M>*n3'2 \x\>^ M>fv^ 

where Fk is the distribution function of (k + 1)(AA. ^--) and F = FQ. Thus 
the last integral is equal to the sum 

2 

^ T r т + åч/n" 
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for n sufficiently large, and we have 

ІУІ>**л 

for any t > 0. Thus 
d e f f ( 7 _ _JL_>+1)("+ 2 ) 
Q e g ^ n + 1 g-1 2 

yfyar(deggn+1) 

has asymptotically normal distribution and the proof is completed. 

4. Proof of Theorem 2 

We first notice that by Lemma 1 the random variables || a ^+ff || = qAr 

are independent and identically distributed with infinite expectation. We write 
5 = loggy if and only if y — q3 and use the truncation method of F e l l e r [3; 
Chapter 10, §2], applied to the random variables Ur, Vr {r <n) defined by 

Ur{x) = \\ar+1/ar(x)\\, Vr(x)=0 if | | a r + 1 /a r (x) | | < loggn , 

^ r W = 0. Vr{x) = | | a r + 1 /a r (x) | | if | | o r + 1 /a r (x) | | > log g n . 

Then 

x Є I : 
n log n 

r = l 

ar+ï(x) 

ar{x) 
- (q - 1) > є 

< P { X : \U1 + ... + Un- (q- l)n\oggn\ > en\oggn} 

+ P{x: V1 + --- + Vn^o}, 

and using Lemma 1, 

P{x : Vx + • • • + v-'",}-,*WI>-k«.»} 
fc, Ì0&aП 

0 ( 1 ) . 

q >nlog n 

Now note that 

E{Ul + - + Un) = nE{Ux), Var(f/1 + • • • + UJ = n V ar([/ 1 ), 
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where 

E(Ur) = E ^P(Ai = &) = E ?"*(« - ^ 
l l5^=}ll<nlog,n g*<nlog ,n 

= (q-l)\ogq([n\ogqn}), 

and 
Var(/7j) < £({/?) = E (<l " ^ < <ln loS<7n • 

7 f c<nlog, n 

Chebyshev's inequality then yields 

F{x : \U1+--- + Un- nE(Ux)\ > enE{Ux)} 

< nVartjJ,) < qn2\ogqn = 

~ (en£7(Ct.))2 (e (g- l)nlog([nlog(Jn]))2 

Since EiJJ^ ~ {q — 1) log n as n -» oo, Theorem 2 follows. 
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