Mathematica Slovaca

Peter J. Grabner; Arnold Knopfmacher
Metric properties of Engel series expansions of Laurent series

Mathematica Slovaca, Vol. 48 (1998), No. 3, 233--243

Persistent URL: http://dml.cz/dmlcz/136725

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

METRIC PROPERTIES OF ENGEL SERIES EXPANSIONS OF LAURENT SERIES

Peter J. Grabner* - Arnold Knopfmacher**
(Communicated by Milan Paštéka)

Abstract

We derive metric properties of the polynomial digits occurring in certain series expansions for Laurent series, analogous to the Engel series representation for real numbers. In particular, we obtain limiting distributions for the degrees of the digit polynomials and the order of approximation by the partial sums of the series.

1. Introduction

Recently A. Knopfmacher and J. Knopfmacher [8] introduced and studied some properties of various unique expansions of formal Laurent series over a field F, as the sums of reciprocals of polynomials, involving "digits" a_{1}, a_{2}, \ldots lying in a polynomial ring $F[X]$ over F. In particular, one of these expansions (described below) was constructed to be analogous to the so-called Engel expansion of a real number, discussed in Perron [15; Chapter 4].

Previously, Artin [1] and Magnus [11], [12] had studied a Laurent series analogue of simple continued fractions of real numbers, involving "digits" x_{1}, x_{2}, \ldots in a polynomial ring $F[X]$. In addition to sketching elementary properties of an n-dimensional "Jacobi-Perron" variant of this, P aysantLeroux and Dubois [13], [14] also briefly outlined certain "metric" theorems analogous to some of Khintchine [7] for real continued fractions, in the case when F is a finite field. The main aim of this paper is to derive similar metric results for the Laurent series Engel-type expansion referred to above. (For analogous results concerning Engel expansions of real numbers, see Erdös, Renyi, Szüsz [2] and Renyi [16], and Galambos [5].)

In the corresponding case of Lüroth type expansions for Laurent series ergodic and other metric properties have recently been investigated by J. Knopfmacher [10] and extended by A. and J. Knopfmacher in [9]. For both

[^0]the continued fraction and Lüroth expansions of Laurent series, ergodicity of the corresponding transformations were used to derive the results. However, in the case of Engel expansions the underlying transformation is not ergodic. The growth conditions satisfied by the polynomial digits suggest that an approach via Markov chains could be used. For the corresponding ideas in the case of Engel, Lüroth and more generally Oppenheim expansions for real numbers we refer to Galambos' book [5].

In order to explain the conclusions, we first fix some notation and describe the inverse-polynomial Engel-type representation to be considered:

Let $\mathcal{L}=F\left(\left(z^{-1}\right)\right)$ denote the field of all formal Laurent series $A=\sum_{n=v}^{\infty} c_{n} z^{-n}$ in an indeterminate z, with coefficients c_{n} all lying in a given field F. (We consider $F\left(\left(z^{-1}\right)\right)$ rather than $F((z))$ as in [8], [9] since it turns out to be more convenient for stating our results.)

We also consider the ring $F[z]$ of polynomials in z, and the field $F(z)$ of rational functions in z, with coefficients in F.

If $c_{v} \neq 0$ we call $v=v(A)$ the order of A, and define the norm (or valuation) of A to be $\|A\|=q^{-v(A)}$, where initially $q>1$ can be an arbitrary constant, but later it will be chosen as $q=\operatorname{card}(F)$, if F is finite. Letting $v(0)=+\infty$, $\|0\|=0$, one has (cf. Jones and Thron [6; Chapter 5]):

$$
\begin{array}{rlrl}
\|A\| & \geqq 0 & & \text { with }\|A\|=0 \Longleftrightarrow A=0 \\
\|A B\| & =\|A\| \cdot\|B\|, & & \text { and } \\
\|\alpha A+\beta B\| & \leqq \max (\|A\|,\|B\|) & & \text { for non-zero } \alpha, \beta \in F \\
& & \text { with equality when }\|A\| \neq\|B\| .
\end{array}
$$

By (1.1), the norm $\|\cdot\|$ is non-Archimedean, and it is well known that \mathcal{L} forms the completion of $F(z)$ at infinity in the same way that \mathbb{R} is the completion at infinity of the rational numbers \mathbb{Q}.

We shall make frequent use of the polynomial $[A]=\sum_{0 \leq n \leq v} c_{n} z^{n} \in F[z]$, and refer to $[A]$ as the integral part of $A \in \mathcal{L}$. Then $v=-v(\bar{A})$ is the degree $\operatorname{deg}[A]$ of $[A]$ relative to z, and the same function [•] was used by Artin [1] and Magnus [11], [12] for their continued fractions.

Given $A \in \mathcal{L}$, note that $[A]=a_{0} \in F[z]$ if and only if $v\left(A_{1}\right) \geq 1$ where $A_{1}=A-a_{0}$. As in [8], if $A_{n} \neq 0(n>0)$ is already defined, we put $a_{n}=\left[\frac{1}{A_{n}}\right]$ and $A_{n+1}=\left(a_{n} A_{n}-1\right)$. If some $A_{m}=0$ or $a_{n}=0$, this recursive process stops. It was shown in [8] that this algorithm leads to a finite or convergent (relative to $\|\cdot\|)$ Engel-type series expansion

$$
\begin{equation*}
A=a_{0}+\frac{1}{a_{1}}+\sum_{r \geq 2} \frac{1}{a_{1} \cdots a_{r}}, \tag{1.2}
\end{equation*}
$$

METRIC PROPERTIES OF ENGEL SERIES EXPANSIONS OF LAURENT SERIES

where $a_{r} \in F[z], a_{0}=[A]$, and $\operatorname{deg}\left(a_{r+1}\right) \geq \operatorname{deg}\left(a_{r}\right)+1$ for $r \geq 1$. Furthermore this expansion is unique for A subject to the preceding conditions on the "digits" a_{r}. For notational convenience we set

$$
\frac{p_{n}}{q_{n}}=a_{0}+\sum_{r=1}^{n} \frac{1}{a_{1} \cdots a_{r}}, \quad \text { where } \quad q_{n}=a_{1} \cdots a_{n}
$$

From now on we assume that $F=\mathbb{F}_{q}$ is a finite field with exactly q elements. Let I denote the valuation ideal $z^{-1} F\left[\left[z^{-1}\right]\right]$ in the ring of formal power series $F\left[\left[z^{-1}\right]\right]$ and let \mathbb{P} denote probability with respect to the Haar measure on \mathcal{L} normalized by $\mathbb{P}(I)=1$. The Haar measure on I is the product measure on $\prod_{n=1}^{\infty} \mathbb{F}_{q}$ defined by $\mathbb{P}(\{x\})=q^{-1}$ for each factor and any element $x \in \mathbb{F}_{q}$.

We now state our main results.

Theorem 1.

(i) $\lim _{n \rightarrow \infty} \mathbb{P}\left(x \in I: \frac{\operatorname{deg} a_{n}-\frac{q}{q-1} n}{\sqrt{n q} /(q-1)}<t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u$.
(ii) For almost all $x \in I$,

$$
\limsup _{n \rightarrow \infty} \frac{\operatorname{deg} a_{n+1}(x)-\operatorname{deg} a_{n}(x)}{\log _{q} n}=1
$$

and

$$
\liminf _{n \rightarrow \infty} \operatorname{deg} a_{n+1}(x)-\operatorname{deg} a_{n}(x)=1
$$

(iii) For almost all $x \in I$,

$$
\left\|x-\frac{p_{n}}{q_{n}}\right\|=q^{-\left(\frac{q}{q-1} \frac{n^{2}}{2}(1+o(1))\right)}, \quad \text { as } \quad n \rightarrow \infty
$$

More precisely

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(x \in I: \frac{v\left(x-\frac{p_{n}}{q_{n}}\right)-\frac{q}{q-1} \frac{(n+1)(n+2)}{2}}{\sqrt{\operatorname{Var}\left(\operatorname{deg} q_{n+1}\right)}}<t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u
$$

where $\operatorname{Var}\left(\operatorname{deg} q_{n+1}\right)=\frac{(n+1)(n+2)(2 n+3)}{6}\left(\frac{q}{(q-1)^{2}}\right)$.
In particular we see from (i) that for almost all $x \in I,\left\|a_{n}\right\|^{1 / n} \rightarrow q^{q / q-1}$, as $n \rightarrow \infty$. Regarding (i) and (iii) above we recall the similar but weaker results shown in [8] holding for all x in I,

$$
\operatorname{deg}\left(a_{n}\right) \geq n
$$

and

$$
\left\|x-\frac{p_{n}}{q_{n}}\right\| \leq q^{-\frac{(n+1)(n+2)}{2}}, \quad n=1,2,3, \ldots
$$

Furthermore, we consider the random variables $\left\|\frac{a_{r+1}(x)}{a_{r}(x)}\right\| \equiv q^{\Delta_{r}}, r=$ $1,2,3, \ldots$ These are independent and identically distributed with infinite expectation. However, the following result holds.

Theorem 2. For any fixed $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{x \in I: \frac{1}{n \log _{q} n}\left|\sum_{r=1}^{n}\left\|\left|\frac{a_{r+1}(x)}{a_{r}(x)} \|-(q-1)\right|>\varepsilon\right\}=0\right.\right.
$$

i.e. $\frac{1}{n \log _{q} n} \sum_{r=1}^{n}\left\|\frac{a_{r+1}(x)}{a_{r}(x)}\right\| \rightarrow q-1$ in probability over I.

Remark. Since a theorem in [5; p. 46] implies that
either

$$
\limsup _{n \rightarrow \infty} \frac{1}{n \log _{q} n} \sum_{r=1}^{n}\left\|\frac{a_{r+1}(x)}{a_{r}(x)}\right\|=\infty \quad \text { a.e. }
$$

or

$$
\liminf _{n \rightarrow \infty} \frac{1}{n \log _{q} n} \sum\left\|\frac{a_{r+1}(x)}{a_{r}(x)}\right\|=0 \quad \text { a.e. }
$$

the conclusion of Theorem 2 does not carry over to validity with probability one.
The paper is organized into sections, which split the proofs of the theorems. Section 2 gives some elementary probabilities, which will be used in the proofs, Section 3 gives the proof of Theorem 1 and Section 4 gives the proof of Theorem 2.

2. Basic probabilities

We begin by deriving some basic probabilistic results concerning the digits in Engel expansions of Laurent series.

Lemma 1. The digits $a_{n} \in F[z]$ form a Markov chain with initial probabilities

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{deg} a_{1}=j\right)=(q-1) q^{-j} \tag{2.1}
\end{equation*}
$$

and transition probabilities

$$
\mathbb{P}\left(\operatorname{deg} a_{n+1}=k \mid \operatorname{deg} a_{n}=j\right)= \begin{cases}(q-1) q^{j-k}, & k>j \tag{2.2}\\ 0, & \text { else }\end{cases}
$$

METRIC PROPERTIES OF ENGEL SERIES EXPANSIONS OF LAURENT SERIES

Proof. First by the Engel algorithm $A_{1}=x \in I$. Then using the definition of Haar measure $\mathbb{P}\left(v\left(A_{1}\right)<-j\right)=\mathbb{P}\left(\operatorname{deg} a_{1}>j\right)=q^{-j}$. Thus $\mathbb{P}\left(\operatorname{deg} a_{1}=j\right)=$ $\mathbb{P}\left(\operatorname{deg} a_{1}>j-1\right)-\mathbb{P}\left(\operatorname{deg} a_{1}>j\right)=(q-1) q^{-j}$.

Next, the coefficients of A_{2} are obtained from those of A_{1} by a system of linear equations arising from the relation $A_{2}=a_{1} A_{1}-1$. From this it follows that A_{2} is uniformly distributed in $z^{-j} I$ where $j=\operatorname{deg} a_{1}$. By induction, if $\operatorname{deg} a_{n}=j$ then A_{n+1} is uniformly distributed in $z^{-j} I$ for all $n>1$. Since the event $\operatorname{deg} a_{n+1}>k$ under the condition that $\operatorname{deg} a_{n}=j$ is described by $k-j$ linear equations arising from equating coefficients of z^{-m} in $a_{n} A_{n}$ equal to zero we conclude that

$$
\mathbb{P}\left(\operatorname{deg} a_{n+1}>k \mid \operatorname{deg} a_{n}=j\right)=q^{j-k}
$$

and (2.2) follows immediately.
Remark. Since the probability in (2.2) depends only on the difference $k-j$, the random variables $\operatorname{deg} a_{n+1}-\operatorname{deg} a_{n}$ are independent and identically distributed. Thus for

$$
\begin{align*}
& n_{1}<n_{2}<\cdots<n_{j} \quad \text { and } \quad k_{i} \geq 1, \quad i=1,2, \ldots j \\
& \mathbb{P}\left(\operatorname{deg} a_{n_{j}+1}=\operatorname{deg} a_{n_{j}}+k_{j}, \operatorname{deg} a_{n_{j-1}+1}=\operatorname{deg} a_{n_{j-1}}+k_{j-1}, \ldots\right. \\
& \left.\ldots, \operatorname{deg} a_{n_{1}+1}=\operatorname{deg} a_{n_{1}}+k_{1}\right) \tag{2.3}\\
& =(q-1)^{j} q^{-\left(k_{1}+\cdots+k_{j}\right)} .
\end{align*}
$$

Corollary 1. Let $\Delta_{n}=\Delta_{n}(x)$ denote the random variable $\operatorname{deg} a_{n+1}-$ $\operatorname{deg} a_{n}$, with $\Delta_{0}=\operatorname{deg} a_{1}$. Then

$$
\mathbb{P}(\#\{1 \leq \ell \leq n \mid \Delta(\ell)=1\}=k)=\binom{n}{k}\left(1-\frac{1}{q}\right)^{k} q^{k-n}
$$

Thus the number of times that degrees of consecutive digits increase by 1 has a binomial distribution with mean value $n\left(1-\frac{1}{q}\right)$ and variance $n \frac{q-1}{q^{2}}$.

In particular the liminf result of part (ii) of Theorem 1 follows immediately.
COROLLARY 2. The random variables Δ_{n} have mean value and variance

$$
E\left(\Delta_{n}\right)=\frac{q}{q-1}
$$

and

$$
\operatorname{Var}\left(\Delta_{n}\right)=\frac{q}{(q-1)^{2}}
$$

Proof. By Lemma 1

$$
E\left(\Delta_{n}\right)=\sum_{\ell=1}^{\infty} \ell \mathbb{P}\left(\operatorname{deg} a_{n+1}-\operatorname{deg} a_{n}=\ell\right)=(q-1) \sum_{\ell=1}^{\infty} \ell q^{-\ell}=\frac{q}{q-1}
$$

Similarly

$$
E\left(\Delta_{n}^{2}\right)=(q-1) \sum_{\ell=1}^{\infty} \ell^{2} q^{-\ell}=\frac{q}{q-1}+2 \frac{q}{(q-1)^{2}}
$$

from which the formula for $\operatorname{Var}\left(\Delta_{n}\right)$ immediately follows.

Lemma 2.

(i)

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{deg} a_{n}=t\right)=(q-1)^{n} q^{-t}\binom{t-1}{n-1} \tag{2.4}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathbb{P}\left(\exists n: \operatorname{deg} a_{n}=t\right)=1-\frac{1}{q} \tag{2.5}
\end{equation*}
$$

(ii)

$$
\mathbb{P}\left(\operatorname{deg} a_{n+m}=t \mid \operatorname{deg} a_{n}=s\right)=(q-1)^{m} q^{s-t}\binom{t-s-1}{m-1}
$$

Proof.
(i) Since the sequence of degrees of the digits a_{1}, a_{2}, \ldots is strictly increasing we have by Lemma 1 that

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{deg} a_{n}=t\right) \\
= & \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{n-1}<t} \mathbb{P}\left(\operatorname{deg} a_{n}=t \mid \operatorname{deg} a_{n-1}=j_{n-1}\right) \mathbb{P}\left(\operatorname{deg} a_{n-1}=j_{n-1} \mid \operatorname{deg} a_{n-2}=j_{n-1}\right) \\
& \cdots \mathbb{P}\left(\operatorname{deg} a_{2}=j_{2} \mid \operatorname{deg} a_{1}=j_{1}\right) \mathbb{P}\left(\operatorname{deg} a_{1}=j_{1}\right) \\
= & (q-1)^{n} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{n-1}<t} q^{j_{n-1}-t} q^{j_{n-2}-j_{n-1}} \cdots q^{j_{1}-j_{2}} q^{-j_{1}}, \\
= & (q-1)^{n} q^{-t} \sum_{\quad 1 \leq j_{1}<j_{2}<\cdots<j_{n-1}<t} 1 \\
= & (q-1)^{n} q^{-t}\binom{t-1}{n-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{P}\left(\exists n: \operatorname{deg} a_{n}=t\right) & =\sum_{n=1}^{\infty}(q-1)^{n} q^{-t}\binom{t-1}{n-1} \\
& =(q-1) q^{-t} \sum_{\ell=0}^{t-1}(q-1)^{\ell}\binom{t-1}{\ell}=1-\frac{1}{q} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{deg} a_{n+m}=t \mid \operatorname{deg} a_{n}=s\right) \\
&= \sum_{s<j_{1}<j_{2}<\cdots<j_{m-1}<t} \mathbb{P}\left(\operatorname{deg} a_{n+m}=t \mid \operatorname{deg} a_{n+m-1}=j_{m-1}\right) \\
& \cdots \mathbb{P}\left(\operatorname{deg} a_{n+2}=j_{2} \mid \operatorname{deg} a_{n+1}=j_{1}\right) \mathbb{P}\left(\operatorname{deg} a_{n+1}=j_{1} \mid \operatorname{deg} a_{n}=s\right) \\
&=(q-1)^{m} q^{s-t} \sum_{s<j_{1}<j_{2}<\cdots<j_{m-1}<t} 1 \\
&=(q-1)^{m} q^{s-t}\binom{t-s-1}{m-1} .
\end{aligned}
$$

Remark. From the proof of (i) we can also deduce the joint probability distribution

$$
\mathbb{P}\left(\operatorname{deg} a_{1}=j_{1}, \ldots, \operatorname{deg} a_{n}=j_{n}\right)=(q-1)^{n} q^{-j_{n}}
$$

3. Proof of Theorem 1

Since we can write $\operatorname{deg} a_{n}$ as the sum of independent random variables

$$
\operatorname{deg} a_{n}=\sum_{i=1}^{n-1}\left(\operatorname{deg} a_{i+1}-\operatorname{deg} a_{i}\right)+\operatorname{deg} a_{1}=\sum_{i=0}^{n-1} \Delta_{i}
$$

it follows from Corollary 2 that $\operatorname{deg} a_{n}$ has mean and variance

$$
E\left(\operatorname{deg} a_{n}\right)=\frac{q}{q-1} n
$$

and

$$
\operatorname{Var}\left(\operatorname{deg} a_{n}\right)=n \frac{q}{(q-1)^{2}},
$$

respectively.
Hence by the central limit theorem (see e.g. Feller [4; p. 253]) part (i) of Theorem 1 follows.
(ii) The events $\operatorname{deg} a_{n+1}-\operatorname{deg} a_{n}>k(n)$ are independent with probabilities $\mathbb{P}\left(\Delta_{n}>k(n)\right)=q^{-k(n)}$. The Borel-Cantelli lemmas then yield

$$
\mathbb{P}\left(\Delta_{n}>k(n) \text { for infinitely many } n\right)= \begin{cases}0, & \sum_{n=1}^{\infty} q^{-k(n)} \text { converges }, \\ 1, & \sum_{n=1}^{\infty} q^{-k(n)} \text { diverges. }\end{cases}
$$

PETER J. GRABNER - ARNOLD KNOPFMACHER

By choosing $k(n)=c \log _{q} n$ we see that with probability 1 the events ($\operatorname{deg} a_{n+1}-$ $\left.\operatorname{deg} a_{n}\right) / \log _{q} n>c$ occur infinitely often if $c \leq 1$ and only finitely often if $c>1$. The limsup result then follows. The corresponding liminf result was already shown in Section 2.
(iii) We first compute the mean and variance of $\left\|x-\frac{p_{n}}{q_{n}}\right\|$. In [8] it is shown that

$$
\left\|A-\frac{p_{n}}{q_{n}}\right\|=q^{-\operatorname{deg} q_{n+1}}
$$

Now

$$
E\left(\operatorname{deg} q_{n+1}\right)=\sum_{r=1}^{n+1} E\left(\operatorname{deg} a_{n}\right)=\frac{q}{q-1} \frac{(n+1)(n+2)}{2}
$$

To compute the variance we make use of the fact that

$$
\begin{aligned}
\operatorname{deg} q_{n+1} & =\sum_{r=1}^{n+1} a_{r}=\sum_{r=1}^{n+1} \sum_{l=0}^{r-1} \Delta_{l} \\
& =\sum_{l=0}^{n} \Delta_{l}(n+1-l)
\end{aligned}
$$

We now remark that the last sum has the same distribution as the sum

$$
\sum_{l=0}^{n}(l+1) \Delta_{l}
$$

Thus we have for the variance

$$
\operatorname{Var}\left(\operatorname{deg} q_{n+1}\right)=\sum_{l=0}^{n}(l+1)^{2} \operatorname{Var} \Delta_{l}=\frac{(n+1)(n+2)(2 n+3)}{6}\left(\frac{q}{(q-1)^{2}}\right)
$$

Now we check that the random variables $(l+1) \Delta_{l}$ satisfy Lindeberg's condition (cf. [4; p. 256]): since $s_{n}^{2}=\operatorname{Var}\left(\operatorname{deg} q_{n+1}\right)$ is of order of magnitude n^{3}, we have to compute the integrals

$$
\int_{|y| \geq t n^{3 / 2}} y^{2} \mathrm{~d} F_{k}(y)=(k+1)^{2} \int_{|x| \geq \frac{n^{3 / 2}}{k+1}} x^{2} \mathrm{~d} F(x) \leq(k+1)^{2} \int_{|x| \geq \frac{t}{2} \sqrt{n}} x^{2} \mathrm{~d} F(x)
$$

where F_{k} is the distribution function of $(k+1)\left(\Delta_{k}-\frac{q}{q-1}\right)$ and $F=F_{0}$. Thus the last integral is equal to the sum

$$
\sum_{k \geq \frac{q}{q-1}+\frac{t}{2} \sqrt{n}}\left(k-\frac{q}{q-1}\right)^{2} q^{-k}=O\left(n q^{-\frac{t}{2} \sqrt{n}}\right)
$$

for n sufficiently large, and we have

$$
\frac{1}{s_{n}^{2}} \sum_{k=0}^{n} \int_{|y| \geq t s_{n}} y^{2} \mathrm{~d} F_{k}(y)=O\left(\frac{1}{n} q^{-\frac{t}{2} \sqrt{n}}\right) \rightarrow 0
$$

for any $t>0$. Thus

$$
\frac{\operatorname{deg} q_{n+1}-\frac{q}{q-1} \frac{(n+1)(n+2)}{2}}{\sqrt{\operatorname{Var}\left(\operatorname{deg} q_{n+1}\right)}}
$$

has asymptotically normal distribution and the proof is completed.

4. Proof of Theorem 2

We first notice that by Lemma 1 the random variables $\left\|\frac{a_{r+1}(x)}{a_{r}(x)}\right\| \equiv q^{\Delta_{r}}$ are independent and identically distributed with infinite expectation. We write $s=\log _{q} y$ if and only if $y=q^{s}$ and use the truncation method of Feller [3; Chapter $10, \S 2]$, applied to the random variables $U_{r}, V_{r}(r \leq n)$ defined by

$$
\begin{array}{lll}
U_{r}(x)=\left\|a_{r+1} / a_{r}(x)\right\|, & V_{r}(x)=0 & \text { if }\left\|a_{r+1} / a_{r}(x)\right\| \leq \log _{q} n \\
U_{r}(x)=0, & V_{r}(x)=\left\|a_{r+1} / a_{r}(x)\right\| & \text { if }\left\|a_{r+1} / a_{r}(x)\right\|>\log _{q} n
\end{array}
$$

Then

$$
\begin{aligned}
& \mathbb{P}\left\{x \in I: \frac{1}{n \log _{q} n}\left|\sum_{r=1}^{n}\right|\left|\frac{a_{r+1}(x)}{a_{r}(x)} \|-(q-1)\right|>\varepsilon\right\} \\
& \leq \mathbb{P}\left\{x:\left|U_{1}+\cdots+U_{n}-(q-1) n \log _{q} n\right|>\varepsilon n \log _{q} n\right\} \\
& \quad+\mathbb{P}\left\{x: V_{1}+\cdots+V_{n} \neq 0\right\},
\end{aligned}
$$

and using Lemma 1 ,

$$
\begin{aligned}
\mathbb{P}\left\{x: V_{1}+\cdots+V_{n} \neq 0\right\} & \leq n \mathbb{P}\left\{\left\|\frac{a_{2}(x)}{a_{1}(x)}\right\|>n \log _{q} n\right\} \\
& =n \sum_{\substack{k, q^{k}>n \log _{q} n}}(q-1) q^{-k} \ll \frac{1}{\log _{q} n}=o(1) .
\end{aligned}
$$

Now note that

$$
E\left(U_{1}+\cdots+U_{n}\right)=n E\left(U_{1}\right), \quad \operatorname{Var}\left(U_{1}+\cdots+U_{n}\right)=n \operatorname{Var}\left(U_{1}\right)
$$

PETER J. GRABNER - ARNOLD KNOPFMACHER

where

$$
\begin{aligned}
E\left(U_{1}\right) & =\sum_{\left\|\frac{a_{2}(x)}{a_{1}(x)}\right\| \leq n \log _{q} n} q^{k} \mathbb{P}\left(\Delta_{1}=k\right)=\sum_{q^{k} \leq n \log _{q} n} q^{-k}(q-1) q^{k} \\
& =(q-1) \log _{q}\left(\left[n \log _{q} n\right]\right) ;
\end{aligned}
$$

and

$$
\operatorname{Var}\left(U_{1}\right)<E\left(U_{1}^{2}\right)=\sum_{q^{k} \leq n \log _{q} n}(q-1) q^{k}<q n \log _{q} n .
$$

Chebyshev's inequality then yields

$$
\begin{aligned}
& \mathbb{P}\left\{x:\left|U_{1}+\cdots+U_{n}-n E\left(U_{1}\right)\right|>\varepsilon n E\left(U_{1}\right)\right\} \\
\leq & \frac{n \operatorname{Var}\left(U_{1}\right)}{\left(\varepsilon n E\left(U_{1}\right)\right)^{2}}<\frac{q n^{2} \log _{q} n}{\left(\varepsilon(q-1) n \log \left(\left[n \log _{q} n\right]\right)\right)^{2}}=o(1) .
\end{aligned}
$$

Since $E\left(U_{1}\right) \sim(q-1) \log _{q} n$ as $n \rightarrow \infty$, Theorem 2 follows.

Acknowledgement

This work was done during the first author's visit at the Centre for Applicable Analysis and Number Theory at the University of the Witwatersrand, where he encountered great hospitality.

REFERENCES

[1] ARTIN, E.: Quadratische Körper in Gebiete der höheren Kongruenzen, I-II, Math. Z. 19 (1924), 153-246.
[2] ERDŐS, P.-RÉNYI, A.-SZÜSZ, P.: On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 7-12.
[3] FELLER, W.: An Introduction to Probability Theory and its Applications, Vol. 1 (3rd ed.), J. Wiley, New York, 1968.
[4] FELLER, W.: An Introduction to Probability Theory and its Applications, Vol. 2, J. Wiley, New York, 1966.
[5] GALAMBOS, J.: Representations of Real Numbers by Infinite Series, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[6] JONES, W. B.-THRON, W. J.: Continued Fractions, Addison-Wesley, London-Amsterdam-Don Mills-Sydney-Tokyo, 1980.
[7] KHINTCHINE, A. Y.: Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382.
[8] KNOPFMACHER, A.-KNOPFMACHER, J.: Inverse polynomial expansions of Laurent series, I-II, Constr. Approx. 4 (1988), 379-389; J. Comput. Appl. Math. 28 (1989), 249-257.

METRIC PROPERTIES OF ENGEL SERIES EXPANSIONS OF LAURENT SERIES

[9] KNOPFMACHER, A.-KNOPFMACHER, J.: Metric properties of algorithms inducing Lüroth series expansions of Laurent series, Astérisque 209 (1992), 237-246.
[10] KNOPFMACHER, J. : Ergodic properties of some inverse polynomial series expansions of Laurent series, Acta Math. Hungar. 60 (1992), 241-246.
[11] MAGNUS, A.: Certain continued fractions associated with the Padé table, Math. Z. 78 (1962), 361-374.
[12] MAGNUS, A.: p-fractions and the Padé table, Rocky Mountain J. Math. 4 (1974), 257-259.
[13] PAYSANT-LEROUX, R.-DUBOIS, E. : Algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad. Sci. Paris Sér. A 272 (1971), 564-566.
[14] PAYSANT-LEROUX, R.-DUBOIS, E. : Étude métrique de l'algorithme de Jacobi-Perron dan un corps de séries formelles, C. R. Acad. Sci. Paris Sér. A 275 (1972), 683-686.
[15] PERRON, O.: Irrationalzahlen, W. de Gruyter, Berlin, 1939.
[16] RENYI, A.: A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), 25-32.

Received March 20, 1996

* Institut für Mathematik
Technische Universität Graz
Steyrergasse 30
A-8010 Graz
AUSTRIA
E-mail: grabner@weyl.math.tu-graz.ac.at

** Department of Computational
G Applied Mathematics
University of the Witwatersrand
Private Bag 3
WITS 2050
SOUTH AFRICA
E-mail: arnoldk@gauss.cam.wits.ac.za

[^0]: AMS Subject Classification (1991): Primary 11K55, 11 T06.
 Key words: Engel series, Laurent series, finite field, metric result.

