Mathematic Slovaca

Hikmet Seyhan

A note on summability methods

Mathematica Slovaca, Vol. 49 (1999), No. 2, 201--208

Persistent URL: http://dml.cz/dmlcz/136750

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE ON SUMMABILITY METHODS

Hikmet Seyhan
(Communicated by L'ubica Holá)

ABSTRACT. The purpose of this paper is to establish some relations between the $|C, \alpha ; \delta|_{k}$ and $\left|R, p_{n} ; \delta\right|_{k}$ summability methods, where $\alpha>0$ and $k \geq 1$.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with $\left(s_{n}\right)$ as the sequence of its nth partial sums. We denote by t_{n}^{α} the nth Cesaro means of order α, with $\alpha>-1$, of the sequence $\left(n a_{n}\right)$, i.e.,

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad A_{0}^{\alpha}=1 \quad \text { and } \quad A_{-n}^{\alpha}=0 \quad \text { for } n>0, \quad \alpha>-1 \tag{2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1, \alpha>-1$ and $\delta \geq 0$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

If we take $\delta=0$ (resp. $\delta=0$ and $\alpha=1$), then $|C, \alpha ; \delta|_{k}$ summability is the same as $|C, \alpha|_{k}$ (resp. $|C, 1|_{k}$) summability.

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{4}
\end{equation*}
$$

[^0]
HIKMET SEYHAN

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left(T_{n}\right)$ of the (R, p_{n}) means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [4]). The series $\sum a_{n}$ is said to be summable $\left|R, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta T_{n-1}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

and it is said to be summable $\left|R, p_{n} ; \delta\right|_{k}, k \geq 1$, and $\delta \geq 0$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\Delta T_{n-1}\right|^{k}<\infty, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta T_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 . \tag{8}
\end{equation*}
$$

If we take $\delta=0$, then $\left|R, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability.
The following theorems are known.
Theorem A. ([5]) Let (p_{n}) be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n^{\alpha} p_{n}\right) \quad \text { as } \quad n \rightarrow \infty . \tag{9}
\end{equation*}
$$

If the series $\sum a_{n}$ is summable $\left|R, p_{n}\right|_{k}$, then it is also summable $|C, \alpha|_{k}, k \geq 1$ and $0<\alpha<1$.
Theorem B. ([5]) Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty . \tag{10}
\end{equation*}
$$

If the series $\sum a_{n}$ is summable $\left|R, p_{n}\right|_{k}$, then it is also summable $|C, \alpha|_{k}, k \geq 1$ and $\alpha \geq 1$.

2.

The aim of this paper is to generalize above theorems for $\left|R, p_{n} ; \delta\right|_{k}$ and $|C, \alpha ; \delta|_{k}$ summability methods. Now, we shall prove the following theorem.
Theorem 1. Let $\left(p_{n}\right)$ be a sequence of positive numbers which satisfy condition (9) of Theorem A . If the series $\sum a_{n}$ is summable $\left|R, p_{n} ; \delta\right|_{k}$, then it is also summable $|C, \alpha ; \delta|_{k}, k \geq 1,0<\alpha<1$ and $0 \leq \delta k<1$.

THEOREM 2. Let $\left(p_{n}\right)$ be a sequence of positive numbers which satisfy condition (10) of Theorem B. If the series $\sum a_{n}$ is summable $\left|R, p_{n} ; \delta\right|_{k}$, then it is also summable $|C, \alpha ; \delta|_{k}, k \geq 1, \alpha \geq 1$ and $0 \leq \delta k<1$.

It should be noted that if we take $\delta=0$ in Theorem 1 and Theorem 2, then we get Theorem A and Theorem B, respectively.

We need the following lemma for the proof of our theorems.
Lemma. ([6]) If $\sigma>\beta>0$, then

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} \frac{(n-v)^{\beta-1}}{n^{\sigma}}=O\left(v^{\beta-\sigma}\right) \tag{11}
\end{equation*}
$$

3. Proof of Theorem 1

Let t_{n}^{α} be the nth (C, α) means of the sequences $\left(n a_{n}\right)$, with $0<\alpha<1$. By (8), we have that

$$
\begin{equation*}
a_{n}=-\frac{P_{n}}{p_{n}} \Delta T_{n-1}+\frac{P_{n-2}}{p_{n-1}} \Delta T_{n-2} \tag{12}
\end{equation*}
$$

If we put (12) in (1), then we have that

$$
\begin{aligned}
& t_{n}^{\alpha}= \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v\left\{-\frac{P_{v}}{p_{v}} \Delta T_{v-1}+\frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2}\right\} \\
&=- \frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1} \\
&-\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} v A_{n-v}^{\alpha-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1} \\
&+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}(v+1) A_{n-v-1}^{\alpha-1} \frac{P_{v-1}}{p_{v}} \Delta T_{v-1} \\
&=-\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \frac{1}{p_{v}} \Delta T_{v-1}\left\{-v P_{v} A_{n-v}^{\alpha-1}+(v+1) A_{n-v-1}^{\alpha-1} P_{v-1}\right\}
\end{aligned}
$$

Since

$$
-v P_{v} A_{n-v}^{\alpha-1}+(v+1) A_{n-v-1}^{\alpha-1} P_{v-1}=-v P_{v} \Delta_{v} A_{n-v}^{\alpha-1}-v p_{v} A_{n-v-1}^{\alpha-1}+P_{v-1} A_{n-v-1}^{\alpha-1}
$$

we have

$$
\begin{aligned}
t_{n}^{\alpha}= & -\frac{n P_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}-\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}} \Delta_{v} A_{n-v}^{\alpha-1} \Delta T_{v-1} \\
& -\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} v A_{n-v-1}^{\alpha-1} \Delta T_{v-1}+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} A_{n-v-1}^{\alpha-1} \Delta T_{v-1} \\
= & t_{n, 1}^{\alpha}+t_{n, 2}^{\alpha}+t_{n, 3}^{\alpha}+t_{n, 4}^{\alpha}
\end{aligned}
$$

Since

$$
\left|t_{n, 1}^{\alpha}+t_{n, 2}^{\alpha}+t_{n, 3}^{\alpha}+t_{n, 4}^{\alpha}\right|^{k} \leq 4^{k}\left(\left|t_{n, 1}^{\alpha}\right|^{k}+\left|t_{n, 2}^{\alpha}\right|^{k}+\left|t_{n, 3}^{\alpha}\right|^{k}+\left|t_{n, 4}^{\alpha}\right|^{k}\right)
$$

to complete the proof of Theorem 1, it is sufficient to show that

$$
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad r=1,2,3,4
$$

Firstly, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, 1}^{\alpha}\right|^{k} & =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left(P_{n} / n^{\alpha} p_{n}\right)^{k}\left|\Delta T_{n-1}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left|\Delta T_{n-1}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 1.
Since $P_{n}=O\left(n^{\alpha} p_{n}\right)$ for $0<\alpha<1$ implies $P_{n}=O\left(n p_{n}\right)$, when $k>1$, by Hölder's inequality, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\delta k-1}\left|t_{n, 2}^{\alpha}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}}\left|\Delta_{v} A_{n-v}^{\alpha-1}\right|\left|\Delta T_{v-1}\right|^{k}\right. \\
= & O(1) \sum_{n=2}^{m+1} \frac{1}{n^{\alpha k-\delta k+1}}\left\{\sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-2}\left|\Delta T_{v-1}\right|^{k}\right\} \times \\
= & \left.\left.O(1) \sum_{n=2}^{m+1} \frac{1}{n^{\alpha k-\delta k+1}} \sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-2} \right\rvert\, \Delta T_{v-1}^{n-1}(n-v)^{\alpha-2}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-2}}{n^{\alpha k-\delta k+1}} \\
= & O(1) \sum_{v=1}^{m} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} v^{\delta k-\alpha k-1} \sum_{n+v}^{m+1}(n-v)^{\alpha-2} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v^{\alpha} p_{v}}\right)^{k} v^{\delta k+k-1}\left|\Delta T_{v-1}\right|^{k}
\end{aligned}
$$

A NOTE ON SUMMABILITY METHODS

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} v^{\delta k+k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 1.
Also we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\delta k-1}\left|t_{n, 3}^{\alpha}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v A_{n-v-1}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k-1-\alpha}\left\{\sum_{v=1}^{n-1} v^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k}\right\}\left\{\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{n-v}^{\alpha-1}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-1}}{n^{\alpha+1-\delta k}} \\
= & O(1) \sum_{v=1}^{m} v^{\delta k-1} v^{k}\left|\Delta T_{v-1}\right|^{k} \\
= & O(1) \sum_{v=1}^{m} v^{\delta k+k-1}\left|\Delta T_{v-1}\right|^{k} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 1 and Lemma.
Finally, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\delta k-1}\left|t_{n, 4}^{\alpha}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} A_{n-v-1}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{A_{n}^{\alpha}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} A_{n-v}^{\alpha-1}\left|\Delta T_{v-1}\right|^{k}\right\}\left\{\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{n-v}^{\alpha-1}\right\}^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} n^{\delta k-1-\alpha} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-1}}{n^{\alpha+1-\delta k}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{\delta k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{\delta k+k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 1 and Lemma. Therefore, we get that

$$
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad r=1,2,3,4
$$

This completes the proof of Theorem 1.

4. Proof of Theorem 2

The case $\alpha=1$ is easy, so consider $\alpha>1$. We show only that

$$
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad r=1,2
$$

since the other case is the same as in Theorem 1. We have that

$$
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, 1}^{\alpha}\right|^{k} \leq \sum_{n=1}^{m} n^{\delta k+k-1}\left(P_{n} / n^{\alpha} p_{n}\right)^{k}\left|\Delta T_{n-1}\right|^{k}
$$

By the fact that $P_{n}=O\left(n p_{n}\right)$ implies $P_{n}=O\left(n^{\alpha} p_{n}\right)$ for $\alpha \geq 1$, it follows that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|t_{n, 1}^{\alpha}\right|^{k} & =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left|\Delta T_{n-1}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

If $\alpha=1$, then $\triangle_{v} A_{n-v}^{\alpha-1}=0$, hence $t_{n, 2}^{\alpha}=0$. Now, we shall consider the case $\alpha>1$. Since

$$
\sum_{v=1}^{n-1}(n-v)^{\alpha-2}=O(1) \int_{1}^{n-1}(n-x)^{\alpha-2} \mathrm{~d} x=O\left(n^{\alpha-1}\right)
$$

A NOTE ON SUMMABILITY METHODS

by Hölder's inequality, we have for $k>1$

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|t_{n, 2}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{n^{\delta k-1}}{\left(A_{n}^{\alpha}\right)^{k}}\left\{\sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}}\left|\Delta_{v} A_{n-v}^{\alpha-1}\right|\left|\Delta T_{v-1}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{\alpha k-\delta k+1}}\left\{\sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-2}\left|\Delta T_{v-1}\right|^{k}\right\} \times \\
& \times\left\{\sum_{v=1}^{n-1}(n-v)^{\alpha-2}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{\alpha+k-\delta k}} \sum_{v=1}^{n-1} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}(n-v)^{\alpha-2}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-2}}{n^{\alpha+k-\delta k}} \\
& =O(1) \sum_{v=1}^{m} v^{\delta k-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{\delta k+k-1}\left|\Delta T_{v-1}\right|^{k} \\
& =O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma.

REFERENCES

[1] BOR, H. : On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 1009-1012.
[2] BOR, H. : A note on two absolute summability methods, Proc. Indian Acad. Sci. 102 (1992), 125-128.
[3] FLETT, T. M.: Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc. 8 (1958), 357-387.
[4] HARDY, G. H. : Divergent Series, Clarendon Press, Oxford, 1949.
[5] SARIGÖL, M. A.-BOR, H.: On two summability methods, Math. Slovaca 43 (1993), 317-325.

HIKMET SEYHAN

[6] SULAIMAN, W. T. : A study on a relation between two summability methods, Proc. Amer. Math. Soc. 115 (1992), 303-312.

Received January 7, 1997
Revised July 25, 1997

Department of Mathematics
Erciyes University
TR-38039 Kayseri
TURKEY
E-mail: seyhan@zirve.erciyes.edu.tr

[^0]: AMS Subject Classification (1991): Primary 40D25, 40F05, 40G05, 40 G 99.
 Key words: absolute summability, Riesz summability, Cesaro summability, infinite series.

