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WITH POLYNOMIAL WEIGHT 
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(Communicated by Stanislav Jakubec ) 

ABSTRACT. For arbi trary real a , b, r , r > 1, and a real polynomial p in 
two variables let R(p;a,b;r) = ^Zp(x,y) and T(p;a,b;r) = JJp(x,y) d(x,y), 
where the disk (x — a ) 2 + (y — b)2 < r 2 is the summation and integration domain, 
respectively. We give an upper bound for the "weighted" lattice rest R(p; a, b; r) — 
T(p;a,b;r). 

1. Introduction and statement of results 

Let p be a polynomial in two variables with real coefficients, and let a, 
b, r , r > 1, be arbitrary real numbers. Furthermore, let R(p\a,b\r) be the 
number of lattice points (of the standard lattice 1?) that lie within a circle with 
center (a, 6) and radius r, each lattice point (x,y) being counted with weight 
p(x, y). According to the headline of the present paper we are interested in an 
asymptotic evaluation of the function R(p\ a, b; r) in terms of the coefficients of 
the polynomial and the three circle parameters. 

In a previous article [5] we studied the special case when the polynomial is 
linear. Now we are going to analyse the general case. The aim of this paper is 
to prove the following theorem. 

THEOREM. For arbitrary a,b,r G R, r > 1, and p G M[X, Y] \ R, 

P{x,Y)= J2 "m^y71 

(m,n)£l 

(c>eR\{0}, / c N g , I \ {(0,0)} ^fH finite), 

let 
R(p;a,b]r):= ^ p(x,y) 

(x,y)ez2 

(x-a)2 + (y-b)2<r2 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11P21. 
K e y w o r d s : lattice point, circle problem. 
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Then 
R(p\ ^ b\ r) = T(p] a, b; r) + A(p; a, b; r) 

where 

T(p; a, b; r) = / / p(x, y) d(x, y) 

( x - a ) 2 + ( i / - 6 ) 2 < r 2 

W E EEfDO^,,-"-"""-'^'), 
V (m,n)G1 fc=0 /=0 W W / 

/e/2 —1 Z/2-1 

[u(-.f)(H(-.y)°|M|j,|Hiil 

"*•' 4 2(*+0/2(i±i + i)! 

and £/ie error term A(p; a, b; r) may be estimated as follows. 
Let d = max{m+n | (m, n) G / } > 1 be the degree and let h = max{|a | | 

(m,n) G / } be the height of the polynomial p . Furthermore assume w.l.o.g. that 
\a\ > \b\. Then 

A(p;a,b;r) = d22d / i(o((l + |a |d)r^(logr)™) +0(\a\d'lr^) + 0 ( r d + f ) ) . 

The second and the third O-term may be omitted if either r < |a| 227 y or 
2a,2b G Z and r < |a|ti§ . 

All 0-constants are absolute (provided that the ^-constants are absolute). 

2. Number theoretic applications 

In this section we apply the Theorem to summatory functions where the 
arithmetic function r(n) is involved.1 As usual, 

r(n) = #{(x,y)eZ2\ x2 + y2 = n) ( n G N ) . 

COROLLARY 1. For arbitrary fixed k G N. 

Y* nkr(n) ~ ^rt1+k (t -> 00 ) . 
^ v J 1+fc v J 

Kn<t 

1 See F r i c k e r [2] for an enlightening survey and also R e c k n a g e l [6] for interesting 
results concerning mean value theorems of this arithmetic function. 
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More precisely, for arbitrary fixed k G N, 

J2 nkr(n) = -^—t1+k + 0(tk+1*). 
l<n<t l + k 

P r o o f . We put a = b = 0, r = y/t, and consider the polynomial p(X, Y) %= 
(X2 + r 2 ) f e . Then 

J2 nkr(n) = R(p;0,0;Vi). 
l<n<t 

We compute 
r 

II (x2 + y2)k d(x, y) = 2nl p2kp dp = ^ - (r2k+2). 
x2_|_2 /2<r2 0 

Now we apply the Theorem and this concludes the proof of Corollary 1. Q 

Remark. Of course, the results of Corollary 1 remain valid if k = 0. Further
more, the O-estimate is not best possible. In fact, for k = 0 we have 0(£23/73+e) 
(cf. Proposition 1 in Section 4) and thus, by Abelian summation, one can derive 
0(t / c + 2 3 / 7 3 + E) in the general case. 

The expansion of ]T nkr(n) yields an insight into the asymptotic be-
l<n<t 

haviour of r(n). It is well known (cf. [2]) that r(n) = 0(n£) and r(n) = 
Q((\ogn)6) for every e > 0 and every 6. Furthermore, for every a > — 1, 

£ n" = ^t1+" + 0(t«)+0(l). 
l<n<t " 

Thus, the main terms of the asymptotic expansions of the summatory func
tion of nkr(n) on one hand, and nk on the other hand, differ by the factor - . 
This yields the following nice formula. 

COROLLARY 2. For every k € N0 , 

5~ nkr(n) 
,. Kn<t 
h m ~ ~ r— = 7T . 

t->oo 2^ nK 

l<n<t 

Remark. By applying Abelian summation, it is straightforward to prove that 
the above formula remains true if the function nk is replaced by an arbitrary 

Iv 
monotonic sequence (an)ne^ of real numbers satisfying the condition ^~ an ^ 

(l + \aN\)N1/3 (N->oo). 
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3. Preparation of the proof. Some lemmata 

Let the rounding error functions i/> and tyx be defined by 

iKz) = z-[z}-\ (z€R) and ^ (z) = { ^ } ' * ^ ' (z€K) 

throughout the paper. ([ ] are Gauss brackets.) 

LEMMA 1. (Abelian summation, cf. [4]) For arbitrary P,Q G Z , P < Q, let 
g, h be real valued functions defined on [P, Q], g being continuous on [P, Q] 
and continuously differentiable on ]P,Q[- Then 

Q Q Q
f / v 

Y,9(k)h(k) = g(Q)Y,h(k)- g'(t)l £ h(k) \ dt. 
k=p k=p p ^p<k<t ' 

LEMMA 2. (Euler summation formula, cf. [2], [4]) For every real valued function 
f continuous on [a, ft] and continuously differentiable on ]a,P[, 

P P 

E /w= [f(t) dt+^(a)f(a)-mi(P)+ [mf(t) M. 
<*<k<P { a 

LEMMA 3. ( v a n d e r C o r p u t , cf. [1], [4]) Let f be a real valued function 
which is twice continuously differentiable on [a, (3] C R. Furthermore, let f" be 
monotonic and nonzero on [a,/3]. Then for ip G {ip,ipi}, 

P 

E *>(/(*))« f\nt)\^t+\na)\-i + \np)rK 
a<k<(3 J

a 

where the ^-constant is absolute. 

The following lemma is an immediate consequence of the second mean value 
theorem. 

LEMMA 4. Let f be a real valued function which is continuous and piecewise 
monotonic on [a, ft] C R. Then for ip G { V ^ i } ; 

P 
c I Ф)f(t) dt < -t max | / ( ť ) | , 

- 4 a < ť < / з u v л ' 

where c is the number of monotonic pieces of f. 
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4. Preparation of the proof. Some propositions 

For fc, / G N0 and a,b,r G R, r > 1, let 

RKl(a,b;r)= £ (x - a)k(y - &)'. 

(z,2/)ez2 

(a:-a)2+(2/-b)2<r2 

For the special case k = I = 0 we are dealing with the circle problem itself. 
Indeed, R0 0 is identical to the number of lattice points that lie within a circle 
of radius r . 

PROPOSITION 1. We have 

R00(a,b\r) = r2n + 0(r^ (log r)™) 

uniformly in a, b. 

This deep result was proved by H u x l e y in 1993. A proof can be found in 
[3; Theorem 18.3.2]. 

PROPOSITION 2. If k and I are even, then 

/ / 

k/2-l 1/2-1 

n (i+2») n (i+2j) 
(x - a)Hy - bY d(x,y) = r*+'+** I = 1

2 ( f e + 0 / 2 ( ^
1

+ l ) , • 
(x-a)* + (y-b)2<r2 2 

The double integral is always zero if either k or I is odd. 

A proof of Proposition 2 is straightforward, if we use a well-known formula 
involving the beta-function. 

PROPOSITION 3. For arbitrary fc, / G N0 , 

Rkil(a, 6; r) - / 7 (x - a)k(y - b)1 d(x, y) + 0(rk+w^) + 0((k + l)rk+l) . 

(x-a)2 + (y-b)2<r2 

The O -constants are absolute. In particular, they do not depend on k or I. 

Proposition 3 is the main result of the present paper. A proof is given in 
Section 6. 

The next proposition deals with the special case that the center coordinates 
of the circle are integers or half odd integers, respectively. Clearly, because of 
symmetry, we have. 

PROPOSITION 4. 
(i) / / 2a G Z and k is odd, then Rk l = 0 for every I. 
(ii) If 2b G Z and I is odd, then Rk { = 0 for every k. 
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5. Proof of Theorem 

Via 

%m = E (t)am~k{x ~a)k' үn = E (,У~'(y -b)l 

k=0 ^ ' 1=0 ^ ' 

we can write 

7i(p;a,6;r)= £ EEfllfflw""'^^^)-
(m,n)<EI A:=0 t=0 V / \ / 

where ^ / ( a , b; r) is defined as in Section 4. Applying Proposition 1 and Propo
sition 3 we obtain 

R{p\ a, b; r) = T{p\ a, b; r) + A(p; a, b; r ) , 

where T(p; a, b; r) is exactly the same as in the Theorem, and 

m n / \ / \ 
A(P;a,b;r)= "T E E h C V ' ^ - W . 

(m,n)(=I fc=0 Z=0 V / \ J 

with (uniformly in a, b, r, fc, /) 

A0>0 = 0(r*-( log r ) " * ) and Afe>( = 0 ( r f c + ' + 2 l 3 ) + 0{(k + /> f c + ' ) . 

(Proposition 2 yields the formula for the double integral in the Theorem.) 
Furthermore, by Proposition 4, Ak { = 0 if either 2a G Z and fc is odd or 

2b G Z and / is odd. 

Now let d be the degree and h be the height of the polynomial p. We 
distinguish the cases fc = / = 0 and (fc, /) ^ (0,0). We have 

|A(p;a ,6;r) | < / i ( A 1 + A 2 ) 

with 

A i = £ Mroi&riA0i0i 
(m,n)£l 

and A
2= E E (T)(z)i-r""i6iB-'i^i-

{m,n)el (fc,0^(0,0) ^ / ^ / 
k<m\ l<n 

Now, for the sake of simplicity and w.l.o.g. we assume \a\ > \b\. Then 

Ax <C d 2 ( l + | a | d ) r ^ ( l o g r ) ^ 

268 



ON THE CIRCLE PROBLEM WITH POLYNOMIAL WEIGHT 

and 

(m,n)6/ (*,/)#(0,0) \ / \ / \ \ ^ . ^ / 
k<m; l<n 

m n / \ / \ 

<r2/3(max7 (ma.{ |ar-V,r^«}) £ £ £ < * + ' ) ( ? ) ( ? ) 
(m,n)el k=0 /=0 > / \ / 

= d22rf(0(r5/3|a|rf"1) + 0(r r f+2/3)) . 

Clearly, if r < |a|M? then 2rfA2 > A2 . 
Finally, we consider the case that 2a, 2b e Z. In that case 

A l ,0 = A0,l = --1,1 = A2,l = A l ,2 = 0 

and (kj) in the inner sum in the estimate of A2 runs through {(0,2), (2,0), 
(2,2),...} and for d > 2 we obtain 

A 2 <d 2 2 r f r 2 / 3 ma* ( m a x { | a r + n - 2 r 2 , r m + n } ) 
2 (m,n)el\ l V 

= d22rf((9(r8/3|a|rf-2) + 0(r r f+2/3)) , 

which is dominated by 2rfA2 if r <C |a| 223. 
Clearly, if d < 2 then the inner sum is empty and thus A2 = 0. 
This concludes the proof of the Theorem. 

6. Proof of Proposition 3 

We have 

Rkl=Rkl(a,b;r)= £ (y - b)< ] T (x - a)k , 
b-r<y<b+r a(y)<x<fi(y) 

where 

a(y) = a - \ / r 2 ~ (v - b)2 a n d f3(y) = a+ yjr2 - (y - b)2 . 

We apply Lemma 2 to the inner sum and obtain 

( P(y) P(y) 

f (x~a)k dx + k f (x - a)k~ V(-r) da: 
+ ( - 1 ) ^ - 5 2 , 
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where 

S, = £ (y - b)l(r2 -(y- b)2)k/\(a(y)) 
b—r<y<b+r 

and 

-72= E (y-^(r2-(y-t)2)fc/V(/?(y)). 
6—r<2/<&+r 

First we concentrate on the integrals. By Lemma 4 we have 

P(y) 

^ (y- b)lk f (x - a)k-^(x) dx« Y, (y - h)lkrk~1«krl+k • 
6-r<i/<6+r Jy) b-r<y<b+r 

Since a(b ± r) = a = fi(b ± r) , by Lemma 2, 

/3(2/) 

£ (y-b)1 í(x-a)kdx 
^ b + Г a(y) 

b+r 

jj (x - af(y - b)1 d(x,y) + j F(y)ф(y) dy, 
(x-a)2 + (y~b)2<r2 b-r 

where 
P(y) 

F(y) = ^l(y-b)1 I (x-a)kdx 
a(y) 

Now for b-r <y <b + r, 

F(У) = 

l + (-l) f c d 

= ^ t ^ t o - Ч'-1 (r2 - (s - б)2)**1 (l(r2 - (» - Ь)2) - (Ł + i)(s - Ь)2) 

(Ŕl+1кłl-« 

and thus, by Lemma 4, 

Rk,i -

(x-a)2 + (y-b)2<r2 

270 
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Now we estimate the sums Sx and S 2 . For t G [b — r,b + r], let 

*i(0 = E î (a " Vr2-(y-b)*) . 
b—r<y<t 

Then, by Lemma 1, with g(y) = (y — 6)'(r2 — (y — 6)2) , 

[H-r] 

^ = 5([6+ r])^([6+ r ] ) - | 5'W^iWdt 
- [ r - 6 ] 

« ( „ m,aAo- l * i ( 0 l ) ( » * ' + * + J i max |5(*)|) 
\ 6—r<t<6+r / V 6—r<t<6+r / 

< r * + i max | * - f t ) | , 
6 - r < * < 6 + r ' 1 W I ' 

all ^ -cons tants being absolute. 
Now we apply v a n d e r C o r p u t ' s method (Lemma 3) on ^ (t) for every t 

and obtain *-_(£) < r 2 / 3 uniformly in t and this yields Sx < rfc+M~2/3. Clearly, 
the sum S2 can be treated analogously and we obtain S2 <^ r f c + / + 2 / 3 , too. 

This concludes the proof of Proposition 3. 

R e m a r k . One might expect that with the help of the Discrete Hardy-Littlewood 
Method2 the estimates of Sx, S2 might be sharpened by improving the upper 
bound r 2 / 3 of #-_(£) to r™ (logr) 140. 

Unfortunately, this is not possible as explained in [5], where we had similar 
-0-sums to estimate. 

R E F E R E N C E S 

[1] C O R P U T VAN DER, J. G. : Zahlentheoretische Abschdtzungen mit Anwendungen auf 
Gitterpunktsprobleme, Math . Z. 17 (1923), 250-259. 

[2] FRICKER, F. : Einfuhrung in die Gitterpunktlehre, Birkhaeuser Verlag, Basel-Boston-
Stut tgar t , 1982. 

[3] HUXLEY, M. N . : Area, Lattice Points and Exponential Sums, Clarendon Press, Oxford, 
1996. 

[4] KRATZEL, E . : Lattice Points, Kluwer Academic Publishers, Dordrecht-Boston-London, 
1988. 

[5] KUBA, G. : On the circle problem with linear weight, Abh. Math. Sem. Univ. Hamburg 68 
(1998), 1-8. 

2See H u x l e y [3] for a profound presentation of the method and its various applications 
to important problems of geometry and analytic number theory . 

271 



GERALD KUBA 

[6] RECKNAGEL, W.: Varianten des Gaußschen Kreisproblems, Abh. Math, Sem. Univ. 
Hamburg 59 (1989), 183-189. 

Received January 14, 1998 Institut fur Mathematik u.a.St. 
Universitdt fur Bodenkultur 
Gregor Mendel-Strafie 33 
A-1180 Wien 
AUSTRIA 

272 


		webmaster@dml.cz
	2012-08-01T13:11:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




