Tomasz Łuczak On the maximum automorphism group of self-complementary graphs

Mathematica Slovaca, Vol. 50 (2000), No. 1, 17--24

Persistent URL: http://dml.cz/dmlcz/136765

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Math. Slovaca, 50 (2000), No. 1, 17-24

ON THE MAXIMUM AUTOMORPHISM GROUP OF SELF-COMPLEMENTARY GRAPHS

Tomasz Luczak

(Communicated by Martin Škoviera)

ABSTRACT. We find the maximum size of the automorphism group of a selfcomplementary graph on n vertices.

§1. Introduction

In this note by a graph we always mean a finite graph without loops and multiple edges. For such a graph G = (V, E) an *automorphism* σ of G is a permutation of the set of vertices V such that $\{\sigma(v), \sigma(w)\} \in E$ whenever $\{v, w\} \in E$. The group of all automorphisms of G we denote by $\Sigma(G)$ and set $s(G) = |\Sigma(G)|$. An anti-automorphism ψ of G = (V, E) is defined as a permutation of V such that $\{\psi(v), \psi(w)\} \notin E$ for every $\{v, w\} \in E$. Finally, a graph G is selfcomplementary if there exists at least one anti-automorphism of G. Clearly, if G = (V, E) is self-complementary, then $|E| = \frac{1}{2} {|V| \choose 2}$ must be an integer and thus |V| = 0 or 1 (mod 4). Properties of self-complementary graphs have been studied by several authors (see, for instance, [2] - [5]). Balińska and Quintas [1]studied the maximum possible value of $s(G_n)$ for a self-complementary graph G_n on *n* vertices. They noticed that there are self-complementary graphs G_n on *n* 4k vertices for which $s(G_n) = 2(k!)^4$ and conjectured that no other graph of this order has larger automorphism group. They also computed the size of the automorphism group for a number of self-complementary graphs, confirming their claim for small values of n. In this note we settle their conjecture in the affirmative proving the following result.

¹⁹⁹¹ Mathematics Subject Classification: Primary 05C35, 05C25. Key words: self-complementary graph, automorphism group.

Research partially supported by KBN grant 2 P03A 023 09.

THEOREM. Let

$$s_n = \begin{cases} 1 & \text{if } n = 1 \,, \\ 10 & \text{if } n = 5 \,, \\ 72 & \text{if } n = 9 \,, \\ \\ 2(k\,!)^4 & \text{if } \begin{cases} n = 4k \text{ and } k \ge 1 \,, \\ or \\ n = 4k + 1 \text{ and } k \ge 3 \end{cases}$$

Then, $s(G_n) \leq s_n$ for all self-complementary graphs G_n on n vertices.

Furthermore, for n = 1, 4, 5 and 9 there exists only one (up to isomorphism) extremal graph H_n on n vertices for which $s(H_n) = s_n$; if n = 4k, where $k \ge 2$, then the maximum size of the automorphism group is attained for two non-isomorphic self-complementary graphs; while for n = 4k + 1, $k \ge 3$, there exist four non-isomorphic self-complementary graphs with the automorphism group of size s_n .

§2. The structure of decomposable self-complementary graphs

For our argument we shall need some elementary facts on self-complementary graphs which cannot be decomposed into two self-complementary subgraphs. Thus, let G_n be a self-complementary graph on n vertices. If the set V of vertices of G_n can be partitioned into two parts, V' and V'', such that for each automorphisms $\sigma \in \Sigma(G_n)$ we have $\sigma(V') = V'$ (and $\sigma(V'') = V''$), and V' and V'' also remain invariant under each anti-automorphism of G_n , we say that G_n is *decomposable*. In such a case we call the pair of subgraphs H' and H'', induced in G_n by V' and V'' respectively, a *decomposition* of G_n . Let us start with the following elementary fact.

FACT 1. If a self-complementary graph G_n can be decomposed into graphs H' and H'', then both H' and H'' are self-complementary and

$$s(G_n) \le s(H')s(H'') \,.$$

Proof. Let ψ be an anti-automorphism of G_n . Then $\psi|_{V'}$ and $\psi|_{V''}$ are anti-automorphisms of H' and H'' respectively, so both H' and H'' are self-complementary. Furthermore, since V' and V'' remain invariant under every automorphism σ of G_n , $\Sigma(G_n)$ is a subgroup of the direct product of $\Sigma(H')$ and $\Sigma(H'')$ and consequently $|\Sigma(G_n)| \leq |\Sigma(H')||\Sigma(H'')|$.

It turns out that a self-complementary graph which is not decomposable has ϵ rather special structure. In order to see that let us consider a non-decomposable

graph G_n and let W_1, W_2, \ldots, W_m denote orbits of the automorphism group $\Sigma(G_n)$, i.e. for every $i = 1, 2, \ldots, m$ and $w \in W_i$ we have

$$W_i = \left\{ \sigma(w) : \ \sigma \in \Sigma(G_n) \right\}.$$

Moreover, let $\overrightarrow{D}[G_n]$ be the digraph (possibly with loops) with vertex set $\{W_1, \ldots, W_m\}$ such that $\overrightarrow{W_iW_j}$ is an arc of $\overrightarrow{D}[G_n]$ if for some $w_i \in W_i$ and $w_j \in W_j$ there exists an anti-automorphism ψ such that $\psi(w_i) = w_j$. We list properties of the auxiliary digraph $\overrightarrow{D}[G_n]$ and their consequences in a series of simple observations.

FACT 2. If G_n is non-decomposable self-complementary graph then:

- (i) each vertex of D[G_n] is the tail (and the head) of at least one arc of D[G_n] (which, possibly, is a loop);
- (ii) the underlying graph of $\overrightarrow{D}[G_n]$ is connected;
- (iii) if both arcs $\overrightarrow{W_iW_j}$ and $\overrightarrow{W_jW_\ell}$ belong to $\overrightarrow{D}[G_n]$ then $W_i = W_\ell$.

P r o o f. The fact that G_n is self-complementary and thus has at least one anti-automorphism immediately gives (i).

To see (ii) note that the set of all vertices of G_n which belong to sets from one component of $\overrightarrow{D}[G_n]$ is invariant under each automorphism as well as each anti-automorphism of G_n . Finally, let $w_i \in W_i$, $w_j, w'_j \in W_j$, $w'_\ell \in W_\ell$ be vertices of G_n , ψ , ψ' be anti-automorphisms such that $\psi(w_i) = w_j$ and $\psi'(w'_j) = w'_\ell$, and let $\sigma(w_i) = w'_i$ for $\sigma \in \Sigma(G_n)$. Then $\psi' \sigma \psi$ is an automorphism of G_n which maps w_i into w'_ℓ . Thus, w_i and w'_ℓ belong to the same orbit and so $W_i = W_\ell$.

FACT 3. If G_n is a non-decomposable self-complementary graph, then $\overrightarrow{D}[G_n]$ is either a loop, or a directed cycle of length two. In particular, G_n has at most two orbits.

P r o o f. It is enough to notice that the only two connected digraphs with the minimal out-degree at least one and no proper directed paths of length larger than two are a loop and a directed cycle of length two. Thus, Fact 3 is a straightforward consequence of Fact 2. \Box

FACT 4. Let G_n be a non-decomposable self-complementary graph on n = 4k+1 vertices. Then G_n is a (2k)-regular graph whose automorphism group $\Sigma(G_n)$ is transitive, i.e. for every two vertices v, w of G_n there is an automorphism $\sigma \in \Sigma(G_n)$ such that $\sigma(v) = w$.

Proof. Note that $\overrightarrow{D}[G_n]$ cannot be a directed cycle of length two: in such a case G_n would consist of two orbits of the same size (since each anti-automorphism could serve as a bijection between them) while G_n contains an

TOMASZ ŁUCZAK

odd number of vertices. Thus, due to Fact 3, $\overrightarrow{D}[G_n]$ is a loop and consequently G_n contains only one orbit, i.e. $\Sigma(G_n)$ is transitive. In particular G_n is regular, and since it is self-complementary each of its vertices has degree 2k.

FACT 5. The vertex set of every non-decomposable self-complementary graph G_n on n = 4k vertices can be partitioned into two sets W_1 and W_2 such that:

- (i) W_1 and W_2 are the only orbits of G_n ;
- (ii) all vertices from W_i , i = 1, 2, are of the same degree;
- (iii) every anti-automorphisms of G_n maps W_1 into W_2 and W_2 into W_1 ; in particular $|W_1| = |W_2| = 2k$;
- (iv) all vertices from $W_i\,,\,i=1,2\,,$ have k neighbours in $W_{3-i}\,.$

Proof. Note that in a self-complementary graph G_n on n = 4k vertices each vertex of degree d is mapped by an anti-automorphism into a vertex of degree $4k - d - 1 \neq d$; thus each such graph G_n has at least two orbits. Hence, if G_n is non-decomposable then, due to Fact 3, it contains precisely two orbits, say W_1 and W_2 . Clearly, all vertices from one orbit have the same degree. Let ψ be any anti-automorphism of G_n . As we have already noticed a vertex $w \in W_1$ of degree d is mapped by ψ into a vertex of degree $n - 1 - d \neq d$, so $\psi(w) \notin W_1$. Hence, since every anti-automorphism maps an orbit into an orbit, we have $\psi(W_1) = W_2$, $\psi(W_2) = W_1$, and $|W_1| = |W_2| = 2k$. Furthermore, let

$$[W_1, W_2] = \left\{ \{w_1, w_2\}: \ w_1 \in W_1 \,, \ w_2 \in W_2 \right\}.$$

Then the mapping defined as

$$\hat{\psi} \colon [W_1,W_2] \rightarrow [W_1,W_2] \colon \quad \{w_1,w_2\} \mapsto \left\{\psi(w_1),\psi(w_2)\right\}$$

is a bijection and thus precisely half of the pairs from $[W_1, W_2]$ are edges of G_n . Since all vertices of an orbit have the same number of neighbours in any other orbit, each vertex from W_i , where i = 1, 2, must have precisely k neighbours in W_{3-i} .

$\S3$. Proof of the main result

Proof of Theorem. We shall use induction on n. For n = 1 and n = 4 there is nothing to prove: K_1 is the only graph with one vertex and the path of length three is the only self-complementary graph on four vertices. There are two self-complementary graphs on five vertices: one with only one non-trivial automorphism, and the cycle of length five whose automorphism group consists of ten elements.

Now let us assume the assertion holds for every self-complementary graph $G_{n'}$ on n' = 4k' vertices, where k' < k, and let G_n be a self-complementary

ON THE MAXIMUM AUTOMORPHISM GROUP OF SELF-COMPLEMENTARY GRAPHS

graph on n = 4k vertices, for $k \ge 2$. Let us suppose that G_n can be decomposed into two graphs H' and H''. Then, H' and H'' have 4k' and 4(k-k') vertices respectively, for some k', where $1 \le k' \le k-1$. Hence Fact 1 and the induction hypothesis imply that $s(G_n)$ is bounded from above by

$$\max_{1 \le k' \le k-1} s_{4k'} s_{4(k-k')} = \max_{1 \le k' \le k-1} 2(k'!)^4 2 \left[(k-k')! \right]^4 = 4 \left[(k-1)! \right]^4 < 2(k!)^4 = s_n \,,$$

and the assertion follows.

Thus, it is enough to consider the case when G_n is non-decomposable, with the structure as described in Fact 5. We shall bound from above the number of automorphisms of G_n . Take any vertex v from the set W_1 . In order to construct an automorphism of G_n we first choose an image $v' \in W_1$ of v, which can be done in at most $|W_1| = 2k$ ways. Furthermore, all neighbours of v in W_2 should be transformed into neighbours of v' in W_2 (there are k! ways of doing that) and k non-neighbours of v in W_2 into non-neighbours of v' in W_2 (again we have k! possibilities). Now let us take a vertex $w \in W_2$ adjacent to v for which we have already chosen an image $w' \in W_2$. We must decide how to map k-1 remaining neighbours of w in W_1 into neighbours of w' in W_2 ((k-1)! possibilities) and vertices of W_1 not adjacent to w into vertices of W_1 not adjacent to w' (k! possibilities). Thus, altogether there are not more than

$$2k \cdot k! \, k! \, (k-1)! \, k! = 2(k!)^4$$

automorphisms of G_n . Furthermore, from the proof it is clear that this maximum is achieved only for non-decomposable graphs, such that for i = 1, 2 and each vertex $v \in W_i$:

- all vertices N(v) of W_{3-i} adjacent to v span either a complete subgraph or an independent set;
- the same is true also for the set $W_{3-i} \setminus N(v)$;
- either all pairs of vertices $\{v, w\}$ such that $v \in N(v)$ and $w \in W_{3-i} \setminus N(v)$ are edges of G_n , or none of them is an edge of the graph.

From this description one can immediately identify two extremal graphs $H_{4k}^{(1)}$ and $H_{4k}^{(2)}$ for which the automorphism group has $2(k!)^4$ elements. The vertex set of each of them can be partitioned into four sets V_1 , V_2 , V_3 , V_4 , each of kelements. For j = 1, 2, 3, every vertex from V_j is adjacent to every vertex from V_{j-1} . Finally, in $H_{4k}^{(1)}$ each of the sets V_1 and V_4 spans complete subgraphs, whereas the sets V_2 and V_3 are independent; in $H_{4k}^{(2)}$ these are sets V_1 and V_4 which are independent, while the sets V_2 and V_3 induce complete subgraphs in $H_{4k}^{(2)}$.

Now consider the case when the number of vertices in a self-complementary graph G_n is equal to n = 4k + 1, where $k \ge 2$. Assume first that (H', H'') is

TOMASZ ŁUCZAK

a decomposition of G_n , where H' has 4k' vertices and H'' has 4(k - k') + 1 vertices, for some $1 \le k' \le k$. Then, from Fact 1 and the induction hypothesis, we get

$$s(G_n) \le \max_{1 \le k' \le k-1} s_{4k'} s_{4(k-k')+1}$$

Elementary calculations reveal that the above maximum is not larger that s_{4k+1} and the equality holds if and only if $k' = k \ge 3$ and $s(H') = s_{4k}$, i.e. H' is one of two extremal graphs $H_{4k}^{(1)}$ and $H_{4k}^{(2)}$ described in the first part of the proof. Now it is enough to find all possible ways of adding to each of them a single vertex in such a way that the resulted graph is self-complementary and the size of its automorphism group remains equal to s_{4k} . There are precisely two ways of doing that: either we connect the additional vertex to all vertices from the sets V_1 and V_4 , or join it to all vertices from V_2 and V_3 . Consequently, one can obtain from $H_{4k}^{(1)}$ two extremal graphs $H_{4k+1}^{(1)}$ and $H_{4k+1}^{(2)}$, and two other graphs $H_{4k+1}^{(3)}$ and $H_{4k+1}^{(4)}$ with $s(H_{4k+1}^{(3)}) = s(H_{4k+1}^{(4)}) = 2(k!)^4$ can be constructed out of $H_{4k}^{(2)}$.

Thus, let us suppose that a self-complementary graph $G_n = (V, E)$ on n = 4k + 1 vertices with $k \geq 2$ is non-decomposable. Then, due to Fact 4, the automorphism group of G_n is transitive. Choose any vertex v_0 of G_n , let ψ be any anti-automorphism of G_n and $\sigma \in \Sigma(G_n)$ be such that $\sigma(\psi(v_0)) = v_0$. Then, $\sigma\psi$ is an anti-automorphism of G_n which leaves v_0 invariant. Thus, the graph $G_n - v_0$ obtained from G_n by removing v_0 is self-complementary, and clearly

$$s(G_n) \leq \sum_{v_0 \in V} s(G_n - v_0) = (4k + 1) \max_{v_0 \in V} s(G_n - v_0) \,.$$

As a matter of fact, since $\Sigma(G_n)$ is transitive, for all $v_0 \in V$, graphs $G_n - v_0$ are isomorphic, so it is enough to study properties of one of them.

Note that if $G_n - v_0$ is decomposable then the above inequality and the induction hypothesis give

$$s(G_n) \le (4k+1) \max_{1 \le k' \le k-1} 2(k'!)^4 2 \left[(k-k')! \right]^4 = 4(4k+1) \left[(k-1)! \right]^4$$

which, for $k \geq 2$, is less than the value of s_n . Hence, assume that $G_n - v_0$ is non-decomposable. Then, the structure of $G_n - v_0$ is characterized by Fact 5. Note that in the partition (W_1, W_2) described in Fact 5, W_1 must be the set of all neighbours of v_0 in G_n (all these vertices have degree k - 1 in $G_n - v_0$) and W_2 consists of vertices of $G_n - v_0$ which are not adjacent to v_0 (each of them has degree k in $G_n - v_0$). Consequently, each vertex v of G_n adjacent to v_0 shares with v_0 precisely k - 1 neighbours in G_n , and for every vertex w non-adjacent to v_0 there is exactly k common neighbours of v_0 and w. Since $\Sigma(G_n)$ is transitive, this fact implies that G_n is a conference graph: a (2k)-regular graph on 4k + 1 vertices in which each pair of adjacent vertices has k-1 common neighbours, and for each pair of non-adjacent vertices there exist k vertices joined to both of them. We shall show that this property significantly affects the size of $\Sigma(G_n - v_0)$, and thus $s(G_n)$.

Let w', w'' be two neighbours of v_0 and let W'_2 and W''_2 denote the sets of vertices of W_2 adjacent to w' and w'' respectively. Since $G_n - v_0$ is non-decomposable, Fact 5(iv) implies that $|W'_2| = |W''_2| = k$. Furthermore, since G_n is a conference graph and both w' and w'' are adjacent to v_0 we must have $W'_2 \neq W''_2$. Hence each neighbour of v_0 can be uniquely identified by its neighbourhood in W_2 and so the automorphisms of $G_n - v_0$ are uniquely determined by the automorphisms of the subgraph J_2 of $G_n - v_0$ induced by W_2 . But J_2 is a k-regular graph on 2k vertices and so

$$s(J_2) \le 2k(k)! (k-1)! = 2(k!)^2$$
.

Consequently,

$$s(G_n) \le (4k+1)s(G_n - v_0) = (4k+1)s(J_2) \le 2(4k+1)(k!)^2.$$
 (*)

One can easily see that for $k \geq 3$

$$2(4k+1)(k!)^2 < 2(k!)^4 = s_{4k+1},$$

while for k = 2 the inequality (*) becomes $s(G_9) \leq 72 = s_9$. Thus, to complete the proof, it is enough to observe that among four self-complementary 4-regular graphs on nine vertices for only one, call it H_9 , the automorphism group is transitive and $s(H_9) = 72$. (As a matter of fact, H_9 is also the unique conference graph on nine vertices.)

Acknowledgment

I would like to thank Krystyna Balińska, Louis V. Quintas and Andrzej Ruciński for their remarks and comments.

REFERENCES

- BALIŃSKA, K. T.—QUINTAS, L. V.: Two problems on self-complementary graphs. In: 1996 Prague Midsummer Combinatorial Workshop (M. Klazar, ed.), KAM Series 97-339, Department of Applied Mathematics, Charles University, Prague, 1997, pp. 8–14.
- [2] FRONČEK, D.-ROSA, A.-ŠIRÁŇ, J.: The existence of selfcomplementary circulant graphs, European J. Combin. 17 (1996), 625–628.
- [3] GIBBS, R. A.: Selfcomplementary graphs, J. Combin. Theory Ser. B 16 (1974), 106–123.
- [4] SACHS, H.: Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962), 270 288.

TOMASZ ŁUCZAK

[5] SUPRUNENKO, D. A.: Selfcomplementary graphs, Cybernetica 21 (1985), 559-567.

Received December 3, 1996 Revised May 15, 1998 Department of Discrete Mathematics Adam Mickiewicz University Matejki 48/49 PL-60 769 Poznań POLAND E-mail: tomasz@amu.edu.pl

24