Mathematic Slovaca

Ján Jakubík

On chains in $M V$-algebras

Mathematica Slovaca, Vol. 51 (2001), No. 2, 151--166

Persistent URL: http://dml.cz/dmlcz/136801

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON CHAINS IN $M V$-ALGEBRAS

JÁn Jakubík
(Communicated by Anatolij Dvurečenskij)

Abstract

Let \mathcal{A} be an $M V$-algebra. Further, let $L=\ell(\mathcal{A})$ be the lattice corresponding to \mathcal{A}. In the present paper we deal with maximal convex chains in L containing the zero element of L. Next, we investigate maximal chains in intervals of the lattice L.

Introduction

The motivation for introducing the notion of $M V$-algebra was to construct an algebraic basis for the Łukasziewicz theory of multivalued logics; cf. [1], [2], [4]. $M V$-algebras are called also Wajsberg algebras (cf. [5], [15]).

For $M V$-algebras we use the notation as in [5] and [10]. Thus an $M V$-algebra is a system $\mathcal{A}=(A ; \oplus, *, \neg, 0,1)$, where A is a nonempty set, $\oplus, *$ are binary operations, \neg is a unary operation and 0,1 are nulary operations on A such that the identities $\left(m_{1}\right)-\left(m_{9}\right)$ from [5] are satisfied.

If no misunderstanding can occur, then we write often A instead of \mathcal{A}. Direct product decompositions of $M V$-algebras have been investigated in [3], [10], [11], [12]. By means of the basic operations mentioned above, there were defined binary operations \vee and \wedge on A under which A turns out to be a distributive lattice with the least element 0 and with the greatest element 1 ; we denote this lattice by $\ell(A)$.

Let \mathcal{C} be the system of all convex chains X in A such that $0 \in X$ and $\operatorname{card} X>1$. The system \mathcal{C} is partially ordered by inclusion. Next let \mathcal{C}_{m} be the system of all maximal elements of \mathcal{C}.

In Section 2 of the present paper we deal with the relations between elements of \mathcal{C}_{m} and direct product decompositions of \mathcal{A}.

[^0]Supported by grant VEGA 2/6087/99.

Analogous questions for lattice ordered groups have been investigated in [9].
The generalized Jordan-Dedekind condition (briefly: condition (JD)) for a lattice L requires that whenever $u, v \in L, u<v$ and C_{1}, C_{2} are maximal chains in the interval $[u, v]$ of L, then C_{1} and C_{2} have the same cardinality. This condition has been investigated by Sz ás z [14] and the author [7], [7a], [8].

In Section 3 we generalize some results of [14] and [6] concerning maximal chains in a distributive lattice L. These results can be applied to the case when $L=\ell(A)$. If A is a finite $M V$-algebra, then the lattice $\ell(A)$ satisfies condition (JD). We show that there exist infinite $M V$-algebras for which this condition is rather strongly violated. One of the results of Section 3 is as follows:
(A) For each cardinal $\alpha>\aleph_{0}$ there exists an $M V$-algebra A_{α} having elements u, v with $u<v$ such that
(i) for each cardinal β with $\aleph_{0} \leqq \beta \leqq \alpha$ there exists a maximal chain C_{β} in $[u, v]$ whose cardinality is β;
(ii) the lattice $\ell(\mathcal{A})$ is completely distributive;
(iii) no element $x \in A$ with $x \neq 0$ is boolean.

1. Preliminaries

Let \mathcal{A} be an $M V$-algebra. For each $x, y \in A$ we put (see [1])

$$
x \vee y=(x * \neg y) \oplus y, \quad x \wedge y=\neg(\neg x \vee \neg y)
$$

Then $\ell(A)=(A ; \vee, \wedge)$ is a lattice with the least element 0 and the greatest element 1 . (Cf. [1].) Further, the lattice $\ell(A)$ is distributive (see [6]). We consider the partial order \leqq on A which is defined in [1] by means of operations V and \wedge on A.

For $a, b \in A$ with $a \leqq b$ let $[a, b]$ be the interval in A with the endpoints a and b. A subset S of A is called convex if, whenever $a, b \in S$ and $a \leqq b$, then $[a, b] \subseteq S$. In what follows, \mathcal{C} and \mathcal{C}_{m} are as above. We suppose that $A \neq\{0\}$.

The notion of direct product of $M V$-algebras is defined in the usual way. For the definition of internal direct product decomposition of \mathcal{A} and internal direct factor of \mathcal{A} cf. [10]. To each direct product decomposition of \mathcal{A} there corresponds in a natural way an internal direct product decomposition of \mathcal{A}. In the present paper we consider only internal direct product decompositions and internal direct factors of \mathcal{A}, therefore the word "internal" will be omitted.

Each $M V$-algebra \mathcal{A} can be represented by means of an appropriate abelian lattice ordered group G with a strong unit u (cf. [13], or [10; 1.3, 1.4]); in this connection we shall use the notation from [10]; a different notation has been used in [4].

An element $x \in A$ is called boolean if the interval $[0, x]$ of $\ell(\mathcal{A})$ is a Boolean algebra.

2. Direct product decompositions

Let \mathcal{A} be an $M V$-algebra and let G be as in Section 1 (i.e., $\mathcal{A}=\mathcal{A}_{0}(G, u)$).
2.0. Lemma. ([9; Lemma 8]) Let R be a maximal convex chain in a lattice ordered group $H, 0 \in H$. Then R is a subgroup of the group H.
2.1. Proposition. Let $Y \in \mathcal{C}_{m}$. Then Y is closed with respect to the operation \oplus.

Proof. Since A is a convex subset of G we infer that Y is a convex chain in G. From Axiom of Choice we obtain that there exists a maximal convex chain Z in G such that $Y \subseteq Z$. According to $2.0, Z$ is closed with respect to the group operation + of G. Let $y_{1}, y_{2} \in Y, y_{1}+y_{2}=z$. Thus $z \geqq 0$. Since Z is convex and $0 \in Z$, we get $z \wedge u \in Z$. Moreover, $z \wedge u \in A$, and clearly $Z \cap A=Y$, whence $z \wedge u \in Y$. We have $y_{1} \oplus y_{2}=\left(y_{1}+y_{2}\right) \wedge u$, therefore $y_{1} \oplus y_{2} \in Y$.
2.2. Lemma. Let $Y \in \mathcal{C}_{m}$ and suppose that Y has a greatest element. Let Z be as in the proof of 2.1. Then Z is not bounded in G.

Proof. Let y^{0} be the greatest element of Y. Then $0<y^{0}$ and hence $2 y^{0}>y^{0}$. Put $z=2 y^{0}$. Since Z is an ℓ-subgroup of G, we have $z \in Z$. By way of contradiction, suppose that Z is bounded in G. Hence there exists a positive integer n such that $z_{1} \leqq n u$ for each $z_{1} \in Z$. Put $z_{1}=n z$; then $z_{1} \in Z$. From $n z \leqq n u$ we obtain $0 \leqq n(u-z)$, whence $0 \leqq u-z$. This yields that $z \in A$, whence $z \in Y$, which is a contradiction.
2.3. Lemma. Let Y and Z be as in 2.2. Then Z is a direct factor of G.

Proof. This is a consequence of 2.2 and [9; Theorem 1].
Under the assumptions as in 2.2 , let us denote by Z^{\prime} the convex ℓ-subgroup of Z generated by the greatest element y^{0} of Y. Hence y^{0} is a strong unit of Z^{\prime}. Thus we can construct the $M V$-algebra $\mathcal{A}_{0}\left(Z^{\prime}, y^{0}\right)$; the underlying set of this $M V$-algebra is Y.
2.4. Theorem. Let $Y \in \mathcal{C}_{m}$. Then the following conditions are equivalent:
(i) Y is a direct factor of \mathcal{A}.
(ii) Y has a greatest element.

Proof.

a) Let (i) be valid. Since \mathcal{A} has a greatest element, the same is valid for Y.
b) Let (ii) hold and let Z be as in 2.3. According to 2.3 , there is a direct product decomposition

$$
\begin{equation*}
G=Z \times G_{1} \tag{1}
\end{equation*}
$$

Thus in view of [10; Lemma 3.2], we have a direct product decomposition

$$
\begin{equation*}
\mathcal{A}=(Z \cap A) \times\left(G_{1} \cap A\right) \tag{1’}
\end{equation*}
$$

Since $Z \cap A=Y$, we obtain that Y is a direct factor of \mathcal{A}.
Let us remark that if Y is as in 2.2, moreover, we have, in fact, the operation \oplus in Y which is inherited from \mathcal{A} (cf. 2.1), and moreover, we have the corresponding operation (let us denote it by \oplus_{1}), which is due to the fact that $Y=\mathcal{A}_{0}\left(Z^{\prime}, y^{0}\right)$.
2.5. Proposition. Let Y be as in 2.2. Then the operations \oplus and \oplus_{1} on Y coincide.

Proof. Consider the direct product decomposition (1'). For each $a \in A$ let a_{1} and a_{2} be the component of a in Y and in $G_{1} \cap A$, respectively. Then a_{1} or a_{2} is, at the same time, the component of a in Z or in G_{1}, respectively (with regard to (1)). Since the operations \vee and \wedge are expressed by the basic operation of the $M V$-algebra \mathcal{A}, the relation (1') can be taken also with respect to $\ell(\mathcal{A})$. Let u be as above (i.e., u is the strong unit of G, and hence it is the greatest element of $\ell(\mathcal{A})$). Hence u_{1} must be equal to y^{0} and u_{2} is the greatest element of $G_{1} \cap A$; moreover, $y^{0} \wedge u_{2}=0$. If $y \in Y$, then $y_{1}=y$ and $y_{2}=0$. Thus for y and y^{\prime} in Y we have

$$
\begin{aligned}
y \oplus y^{\prime} & =\left(y+y^{\prime}\right) \wedge u=\left(y+y^{\prime}\right) \wedge\left(y^{0}+u_{2}\right)=\left(y+y^{\prime}\right) \wedge\left(y^{0} \vee u_{2}\right) \\
& =\left(\left(y+y^{\prime}\right) \wedge y_{0}\right) \vee\left(\left(y+y^{\prime}\right) \wedge u_{2}\right)=\left(y+y^{\prime}\right) \wedge y_{0}=y \oplus_{1} y^{\prime}
\end{aligned}
$$

For the definition of the archimedean property in $M V$-algebras, sce [12].
2.6. Theorem. If \mathcal{A} is archimedean, then each element of \mathcal{C}_{m} is a direct factor of \mathcal{A}.

Proof. Suppose that \mathcal{A} is archimedean and let $Y \in \mathcal{C}_{m}$. Let Z be as above. According to [12], the lattice ordered group G is archimedean as well. Hence, in view of [9; Theorem $\left.1^{\prime}\right], Z$ is a direct factor of G. Now, by applying the same method as in the proof of 2.4 we obtain that Y is a direct factor of \mathcal{A}.
2.7. Lemma. Let Y and Y^{\prime} be distinct elements of \mathcal{C}_{m}. Then $Y \cap Y^{\prime}=\{0\}$.

Proof. Let Z be as above and let Z^{\prime} be defined analogously as Z (with Y replaced by Y^{\prime}). In view of [5; Lemma 6] we have $Z \cap Z^{\prime}=\{0\}$. Therefore $Y \cap Y^{\prime}=\{0\}$.

Let $T \subseteq A, t>0$ for each $t \in T$. The set T will be called disjoint if $t_{1} \wedge t_{2}=0$ whenever t_{1} and t_{2} are distinct elements of T.
2.8. Theorem. Let $\mathcal{C}_{m}=\left\{Y_{i}\right\}_{i \in I}$. Then the following conditions are equivalent:
(i) \mathcal{A} is a direct product of linearly ordered $M V$-algebras.
(ii) \mathcal{A} is a direct product $\prod_{i \in I} Y_{i}$.
(iii)
a) Each Y_{i} has a greatest element;
b) if $\left\{y^{i}\right\}_{i \in I} \subseteq A$ with $y^{i} \in Y_{i}$ for each $i \in I$, then $\bigvee_{i \in I} y^{i}$ does exist
in A;
c) if, moreover, $0<y^{i}$ for each $i \in I$, then $\left\{y^{i}\right\}_{i \in I}$ is a maximal disjoint set in A.

Proof.
a_{1}) Suppose that (i) holds. Hence there exists a system $S=\left\{T_{j}\right\}_{j \in J}$ of linearly ordered $M V$-algebras T_{j} such that \mathcal{A} is a direct product of linearly ordered $M V$-algebras $T_{j}(j \in J)$. Without loss of generality we can suppose that $T_{j} \neq\{0\}$ for each $j \in J$. It is obvious that each T_{j} belongs to \mathcal{C}_{m}. Thus $S \subseteq \mathcal{C}_{m}$. We want to verify that $\mathcal{C}_{m} \subseteq S$. By way of contradiction, suppose that there exists $Y \in \mathcal{C}_{m}$ such that $Y \neq T_{j}$ for each $j \in J$. There exists $y \in Y$ with $y>0$. For each $j \in J$ let y_{j} be the component of y in T_{j}. Hence there exists $j \in J$ such that $y_{j}>0$. We have $y_{j} \in T_{j}$ and, moreover, $y_{j} \in[0, y]$ whence $y_{j} \in Y$. In view of 2.7 we arrived at a contradiction. Hence (ii) holds.
a_{2}) Let (ii) be valid. Since A has a greatest element, each Y_{i} must have a greatest element. For each $i \in I$ let $y^{i} \in Y_{i}$. By way of contradiction, suppose that $\left\{y^{i}\right\}_{i \in I}$ fails to be a maximal disjoint subset of A. Thus there exists $a \in A$ with $a>0$ such that $a \wedge y_{i}=0$ for each $i \in I$. There exists $i \in I$ such that $a_{i}>0$, where a_{i} is the component of a in Y_{i}. Then, since Y_{i} is lincarly ordered, we have $a_{i} \wedge y_{i}>0$, which is a contradiction. Next, from (ii) we infer that there exists $y \in A$ such that for each $i \in I, y^{i}$ is the component of y in Y_{i}. Hence we obtain $y=\bigvee_{i \in I} y^{i}$.
a_{3}) Let (iii) hold. If $i \in I$, then according to $2.4, Y_{i}$ is a direct factor of \mathcal{A}. For $a \in A$ we denote by a_{i} the component of a in Y_{i}. Consider the mapping $\varphi: A \longrightarrow \prod_{i \in I} Y_{i}$ such that $\varphi(a)=\left(a_{i}\right)_{i \in I}$ for cach $a \in A$. If $i(1) \in I$ and $y^{i} \in Y_{i}$
for each $i \in I, y^{i}=0$ whenever $i \neq i(1)$, then $\left(y^{i}\right)_{i \in I}$ will be identified with $y^{i(1)}$. The mapping φ is a homomorphism of \mathcal{A} into $\prod_{i \in I} Y_{i}$. Let $\left(y^{i}\right)_{i \in I} \in \prod_{i \in I} Y_{i}$. In view of the assumption, there exists $y=\bigvee_{i \in I} y^{i}$ in A. It is easy to verify that $y_{i}=y^{i}$ for each $i \in I$, hence $\varphi(y)=\left(y^{i}\right)_{i \in I}$. Therefore φ is a surjection.

It remains to verify that φ is a monomorphism. By way of contradiction, suppose that there are distinct elements a and a^{\prime} in A such that $\varphi(a)=\varphi\left(a^{\prime}\right)$. Put $a \wedge a^{\prime}=u_{0}, a \vee a^{\prime}=v$. Hence $u_{0}<v$ and $\varphi\left(u_{0}\right)=\varphi(v)$. There exists $t \in A$ such that $u_{0} \oplus t=v$. Thus $t>0$. Choose, for each $i \in I$, a strictly positive element y^{i} in Y_{i}. Then $\left\{y^{i}\right\}_{i \in I}$ is a maximal disjoint subset of A. Hence there exists $i(1) \in I$ such that $t \wedge y^{i(1)}>0$. We have $t_{i(1)} \geqq t \wedge y^{i(1)}$, whence $t_{i(1)}>0$. On the other hand, the relation $\varphi\left(u_{0}\right)=\varphi(v)$ yields that $\varphi(t)=0$ and so we arrived at a contradiction.

3. Maximal chains

In this section we deal with maximal chains in an interval $[u, v]$ of a distributive lattice L with applications to the case when $L=\ell(\mathcal{A})$, where \mathcal{A} is an $M V$-algebra; we also obtain some results of [14] and [6] as corollaries.

For a lattice L we denote by $\mathcal{C}^{0}(L)$ the system of all chains in L; this system is partially ordered by the set-theoretical inclusion. Let $\mathcal{C}_{m}^{0}(L)$ be the set of all maximal elements of $\mathcal{C}^{0}(L)$. The elements of $\mathcal{C}_{m}^{0}(L)$ are called maximal chains in L.

A linearly ordered set X is called dense if for each $x_{1}, x_{2} \in X$ with $x_{1}<x_{2}$ there exists $x_{3} \in X$ such that $x_{1}<x_{3}<x_{2}$.

A sublattice L_{1} of a lattice L is said to be strongly dense in L if, whenever $a, b \in L$ and $a<b$, then either both a and b belong to L_{1} or there exists $x \in L_{1}$ with $a<x<b$.

Let condition (JD) be as above. It is well known that each finite modular lattice satisfies condition (JD). If \mathcal{A} is an $M V$-algebra, then the lattice $\ell(\mathcal{A})$ is distributive. Hence, if \mathcal{A} is finite, then the lattice $\ell(\mathcal{A})$ satisfies condition (JD).

Let φ be a mapping of a linearly ordered set L_{1} into a linearly ordered set L_{2} such that for each $x, y \in L_{1}$ the relation

$$
x \leqq y \Longleftrightarrow \varphi(x) \leqq \varphi(y)
$$

is valid. Then we say that φ is an isomorphism of L_{1} into L_{2}.
3.1. Lemma. Let L be a distributive lattice and let a, b be elements of L which are incomparable, $a \wedge b=u, a \vee b=v$. Suppose that
(i) $C_{1} \in \mathcal{C}_{m}^{0}([u, a]), C_{2} \in \mathcal{C}_{m}^{0}([u, b])$;
(ii) the chain C_{1} is dense;
(iii) there exists an isomorphism φ of C_{1} into C_{2} such that $\varphi\left(C_{1}\right)$ is a strongly dense sublattice of C_{2} and $u, b \in \varphi\left(C_{1}\right)$.
Then the set $\left\{x \vee \varphi(x): x \in C_{1}\right\}$ is an element of $\mathcal{C}_{m}^{0}([u, v])$.
Proof. Denote

$$
R=\left\{x \vee \varphi(x): x \in C_{1}\right\} .
$$

It is obvious that R is a chain in the lattice $[u, v]$. By way of contradiction, assume that R fails to be an element of $\mathcal{C}_{m}^{0}([u, v])$. Hence there exists $z \in[u, v]$ such that z is comparable with each element of R and $z \notin R$.

We put

$$
R_{1}=\{r \in R: r<z\}, \quad R_{2}=\{r \in R: r>z\}
$$

We have $u, v \in R$, whence $R_{1} \neq \emptyset \neq R_{2}$.
Let $x \in C_{1}$. Then $a \wedge \varphi(x)=u$, thus

$$
\begin{equation*}
a \wedge(x \vee \varphi(x))=(a \wedge x) \vee(a \wedge \varphi(x))=a \wedge x=x \tag{1}
\end{equation*}
$$

From (1) we conclude that if $x \vee \varphi(x) \in R_{1}$, then $x \leqq a \wedge z$. Analogously, if $x \vee \varphi(x) \in R_{2}$, then $a \wedge z \leqq x$. Hence $a \wedge z$ is comparable with all elements of C_{1}. Therefore $a \wedge z$ belongs to C_{1}. We denote $x_{1}=a \wedge z$.
a) We have either

$$
\begin{equation*}
x_{1} \vee \varphi\left(x_{1}\right)<z \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1} \vee \varphi\left(x_{1}\right)>z \tag{2}
\end{equation*}
$$

First assume that (a_{1}) holds. Let $x_{2} \in C_{1}, x_{2} \vee \varphi\left(x_{2}\right) \in R_{1}$. Thus

$$
x_{2}=a \wedge\left(x_{2} \vee \varphi\left(x_{2}\right)\right) \leqq a \wedge z=x_{1}
$$

whence $\varphi\left(x_{2}\right) \leqq \varphi\left(x_{1}\right)$ and then $x_{2} \vee \varphi\left(x_{2}\right) \leqq x_{1} \vee \varphi\left(x_{1}\right)$. Therefore $x_{1} \vee \varphi\left(x_{1}\right)$ is the greatest element of R_{1}.

Analogously we verify: the relation (a_{2}) implies that $x_{1} \vee \varphi\left(x_{1}\right)$ is the least element of R_{2}.
b) Assume that there exists $x_{2} \in C_{1}$ such that $b \wedge z=\varphi\left(x_{2}\right)$.

The case $x_{2}=x_{1}$ is impossible, since then we would have

$$
z=(a \wedge z) \vee(b \wedge z)=x_{1} \vee \varphi\left(x_{1}\right) \in R
$$

Suppose that $x_{1}<x_{2}$. In view of (ii) there exists $x_{3} \in C_{1}$ with $x_{1}<x_{3}<x_{2}$. Then $\varphi\left(x_{1}\right)<\varphi\left(x_{3}\right)<\varphi\left(x_{2}\right)$ and $x_{3} \vee \varphi\left(x_{3}\right) \in R$. A simple calculation (using the distributivity of L) shows that the elements

$$
x_{3} \vee \varphi\left(x_{3}\right), \quad x_{1} \vee \varphi\left(x_{2}\right)=z
$$

JÁN JAKUBík

are incomparable, which is a contradiction.
Similarly, the assumption $x_{2}<x_{1}$ leads to a contradiction.
c) In view of b) we conclude that the element $z \wedge b$ does not belong to $\varphi\left(C_{1}\right)$. Suppose that $z \wedge b$ is an element of C_{2}.

If (a_{1}) is valid, then in view of (iii) there exists $x_{2} \in C_{1}$ such that $\varphi\left(x_{1}\right)<$ $\varphi\left(x_{2}\right)<z \wedge b$. Then $x_{1}<x_{2}$ and

$$
x_{1} \vee \varphi\left(x_{1}\right)<x_{2} \vee \varphi\left(x_{2}\right) \leqq z
$$

which contradicts a). Similarly we verify that from (a_{2}) we obtain a contradiction. Hence the element $z \wedge b$ does not belong to C_{2}.
d) We have $z \wedge b \in[u, v]$, thus according to c), there exists $y \in C_{2}$ such that the elements y and $z \wedge b$ are incomparable.

Assume that $\left(\mathrm{a}_{1}\right)$ is valid. Then

$$
\varphi\left(x_{1}\right)<z \wedge b
$$

Since $\varphi\left(x_{1}\right) \in C_{2}$, the elements $\varphi\left(x_{1}\right)$ and y are comparable. If $y \leqq \varphi\left(x_{1}\right)$, then $y<z \wedge b$, which is impossible. Hence $\varphi\left(x_{1}\right)<y$. The element y cannot belong to $\varphi\left(C_{1}\right)$, since each element of $\varphi\left(C_{1}\right)$ is comparable with $z \wedge b$. Therefore in view of (iii), there exists $x_{3} \in C_{1}$ such that

$$
\varphi\left(x_{1}\right)<\varphi\left(x_{3}\right)<y .
$$

Then we have $x_{1}<x_{3}$ and $x_{1} \vee \varphi\left(x_{1}\right)<x_{3} \vee \varphi\left(x_{3}\right)$. According to a) we conclude that $x_{3} \vee \varphi\left(x_{3}\right)>z$, whence $\varphi\left(x_{3}\right) \geqq z \wedge b$ and thus $y>z \wedge b$, which is a contradiction.

Similarly we can verify that by using $\left(\mathrm{a}_{2}\right)$ we arrive at a contradiction. Thus the element z must belong to R.
3.2. Proposition. Let the assumptions of 3.1 be satisfied. Suppose that $\operatorname{card} C_{1} \neq \operatorname{card} C_{2}$. Then L does not satisfy condition (JD).

Proof. In view of the isomorphism φ we conclude that

$$
\operatorname{card} C_{1}<\operatorname{card} C_{2}
$$

Let R be as in 3.1. Then $\operatorname{card} R=\operatorname{card} C_{1}$. Denote

$$
C_{3}=\left\{a \vee y: y \in C_{2}\right\}, \quad R^{\prime}=C_{1} \cup C_{3} .
$$

From the fact that L is distributive we infer that $C_{3} \in \mathcal{C}_{m}^{0}([a, v])$ and that $R^{\prime} \in \mathcal{C}_{m}^{0}([u, v])$. Condition (ii) of 3.1 yields that C_{1} is infinite, whence card $R^{\prime}=$ $\operatorname{card} C_{3}>\operatorname{card} R$. Therefore condition (JD) fails to be valid for the lattice L.

Let L be a lattice, $u \in L$. A nonempty subset $\left\{a_{i}\right\}_{i \in I}$ of L is called u-orthogonal if $a_{i} \geqq u$ for each $i \in I$ and $a_{i(1)} \wedge a_{i(2)}=u$ whenever $i(1)$ and $i(2)$ are distinct elements of I.
3.3. Lemma. Let L be an infinitely distributive lattice. Let $u \in L$ and let $\left\{a_{i}\right\}_{i \in I}$ be an u-orthogonal subset of L such that $u<a_{i}$ for each $i \in I$, and $\bigvee_{i \in I} a_{i}=v$. Suppose that $\operatorname{card} I>1$ and
(i) whenever $\left\{x_{i}\right\}_{i \in I} \subseteq L$ such that for each $i \in I$ the relation $u \leqq x_{i} \leqq a_{i}$ is valid, then $\bigvee_{i \in I} x_{i}$ exists in L;
(ii) for each $i \in I, C_{i} \in \mathcal{C}_{m}^{0}\left(\left[u, a_{i}\right]\right)$ and the chain C_{i} is dense;
(iii) there exists $i(0) \in I$ such that for each $i \in I \backslash\{i(0)\}$ there exists an isomorphism φ_{i} of $C_{i(0)}$ into C_{i} such that $\varphi_{i}\left(C_{i(0)}\right)$ is a strongly dense sublattice of C_{i} and $u, a_{i} \in \varphi_{i}\left(C_{i(0)}\right)$.
Then the set

$$
R=\left\{x \vee \underset{i \in I \backslash\{i(0)\}}{\left.\bigvee \varphi_{i}(x): x \in C_{i(0)}\right\}}\right.
$$

is an element of $\mathcal{C}_{m}^{0}([u, v])$.
Proof. First we verify that if $x \in C_{i(0)}$, then the element

$$
\underset{i \in I \backslash\{i(0)\}}{\bigvee \varphi_{i}}(x)
$$

exists in L. For each $i \in I$ we put

$$
y_{i}= \begin{cases}\varphi_{i}(x) & \text { if } i \neq i(0) \\ u & \text { if } i=i(0)\end{cases}
$$

According to (i), $\bigvee_{i \in I} y_{i}$ exists in L. Since $y_{i} \geqq u$ for each $i \in I$, we have

$$
\bigvee_{i \in I} y_{i}=\underset{i \in I \backslash\{i(0)\}}{\bigvee} y_{i}=\bigvee_{i \in I \backslash\{i(0)\}} \varphi_{i}(x)
$$

It is clear that R is a chain in $[u, v]$. Let z be an element of $[u, v]$ such that z is comparable with each element of R. We have to show that z belongs to R. If I is a one-element set, then the assertion holds trivially. Suppose that $\operatorname{card} I>1$.

Let i be a fixed element of $I, i \neq i(0)$. Put $v_{i}=a_{i(0)} \vee a_{i}$,

$$
R^{i}=\left\{x \vee \varphi_{i}(x): x \in C_{i(0)}\right\}
$$

In view of 3.1 we have

$$
\begin{equation*}
R^{i} \in \mathcal{C}_{m}^{i}\left(\left[u, v_{i}\right]\right) \tag{*}
\end{equation*}
$$

Further, analogously as in the proof of 3.1 we verify that $z \wedge v_{i}$ is comparable with each clement of R^{i}. Hence according to $(*), z \wedge v_{i}$ must belong to R^{i}. Thus there exists $x_{1} \in C_{i(0)}$ such that

$$
z \wedge v_{i}=x_{1} \vee \varphi_{i}\left(x_{1}\right)
$$

JÁN JAKUBÍK

Moreover, we have

$$
x_{1}=\left(z \wedge v_{i}\right) \wedge a_{i(0)}=z \wedge a_{i(0)},
$$

and similarly

$$
\varphi_{i}\left(x_{1}\right)=z \wedge a_{i}
$$

The infinite distributivity of L yields

$$
\begin{aligned}
z & =z \wedge v=z \wedge\left(a_{i(0)} \vee \underset{i \in I \backslash\left\{i_{0}\right\}}{ } a_{i}\right) \\
& =\left(z \wedge a_{i(0)}\right) \vee \underset{i \in I \backslash\left\{i_{0}\right\}}{\vee}\left(z \wedge a_{i}\right)=x_{1} \vee \underset{i \in I \backslash\left\{i_{0}\right\}}{\vee} \varphi_{i}\left(x_{1}\right) .
\end{aligned}
$$

Therefore $z \in R$.
3.4. Lemma. Let the assumptions of 3.3 be satisfied. Let R and $i(0)$ be as in 3.3. Then $\operatorname{card} R=\operatorname{card} C_{i(0)}$.

Proof. For each $x \in C_{i(0)}$ we put

$$
\psi(x)=x \vee \underset{i \in I \backslash\{i(0)\}}{\bigvee} \varphi_{i}(x)
$$

Let $x_{1}, x_{2} \in C_{i(0)}, x_{1}<x_{2}$. Then clearly $\psi\left(x_{1}\right) \leqq \psi\left(x_{2}\right)$. It suffices to show that $\psi\left(x_{1}\right)<\psi\left(x_{2}\right)$. By way of contradiction, assume that $\psi\left(x_{1}\right)=\psi\left(x_{2}\right)$. Then in view of infinite distributivity we have
$x_{2}=x_{2} \wedge \psi\left(x_{2}\right)=x_{2} \wedge \psi\left(x_{1}\right)=\left(x_{2} \wedge x_{1}\right) \vee \underset{i \in I \backslash\{i(0)\}}{\bigvee}\left(x_{2} \wedge \varphi_{i}\left(x_{1}\right)\right)=x_{2} \wedge x_{1}=x_{1}$, since $x_{2} \wedge \varphi_{i}\left(x_{1}\right)=u$ for each $i \in I \backslash\{i(0)\}$. Thus we arrived at a contradiction.
3.5. Proposition. Let the assumptions of 3.3 be valid and let $i \in I$. There exists $T^{[i]} \in \mathcal{C}_{m}^{0}([u, v])$ such that $\operatorname{card} T^{[i]}=\operatorname{card} C_{i}$.

Proof.
a) Let $i=i(0)$. Then it suffices to put $T^{[i]}=R$ and to apply Lemma 3.4.
b) Let $i \neq i(0)$. Put $J_{i}=\left\{i_{1} \in I: i_{1} \neq i\right\}$. Similarly as in the proof of 3.3 (i.e., by using condition (i) from 3.3) we verify that the element

$$
\bigvee_{j \in J_{i}} a_{j}
$$

exists in L. Denote

$$
\begin{aligned}
v^{[i]} & =\bigvee_{j \in J_{i}} a_{j}, \\
R^{[i]} & =\left\{x \vee \bigvee_{j \in J(i)} \varphi_{j}(x): x \in C_{i(0)}\right\}, \\
Q^{[i]} & =\left\{v^{[i]} \vee y_{i}: y_{i} \in C_{i}\right\}, \\
T^{[i]} & =R^{[i]} \cup Q^{[i]} .
\end{aligned}
$$

We have

$$
\operatorname{card} R^{[i]}=\operatorname{card} C_{i(0)} \leqq \operatorname{card} C_{i}=\operatorname{card} Q^{[i]}
$$

since $C_{i(0)}$ is infinite, we conclude that card $T^{[i]}=\operatorname{card} C_{i}$.
3.6. Lemma. Let the assumptions of 3.3 be valid. Put card $I=\alpha$ and suppose that card $C_{i} \leqq \alpha$ for each $i \in I$. Then there exists $T \in \mathcal{C}_{m}^{0}([u, v])$ such that $\operatorname{card} T=\alpha$.

Proof. We apply the Axiom of Choice; then we can assume that the set I is well-ordered and that I has a greatest element.

Since I is well-ordered, it has the least element which will be denoted by i_{1}. We put $b_{i_{1}}=a_{i_{1}}$ and $C_{i_{1}}^{\prime}=C_{i_{1}}$. Suppose that $i \in I, i>i_{1}$ and that we have defined b_{j} and C_{j}^{\prime} for each $j \in I$ with $j<i$. We put

$$
b_{i}^{0}=\bigvee_{j \in I, j<i} a_{j}
$$

For proving the existence of this element in the lattice L we use an analogous method as in the proof of 3.3. Namely, for each $j \in J$ we denote

$$
y_{j}= \begin{cases}a_{j} & \text { if } j<i \\ u & \text { otherwise }\end{cases}
$$

In view of condition (i) from 3.3, $\bigvee_{j \in I} y_{j}$ exists in L. We have $y_{j} \geqq u$ for each $j \in J$, thus

$$
\bigvee_{j \in I} y_{j}=\underset{j \in I, j<i}{\bigvee} y_{j}=b_{i}^{0}
$$

Now we set

$$
\begin{aligned}
b_{i} & =b_{i}^{0} \vee a_{i} \\
C_{i}^{\prime} & =\left\{b_{i}^{0} \vee x: x \in C_{i}\right\}
\end{aligned}
$$

Further, let us denote

$$
R=\bigcup_{i \in I} C_{i}^{\prime}
$$

Then R is a chain in $[u, v]$. Since I has a least element and a greatest element we conclude that $u, v \in R$. Next, because card $C_{i}^{\prime}=\operatorname{card} C_{i} \leqq \alpha$ for each $i \in I$, we get $\operatorname{card} R=\alpha$.

Let $z \in[u, v]$ and assume that z is comparable with each element of R. Put

$$
R_{1}=\{r \in R: r \leqq z\}, \quad R_{2}=\{r \in R: r>z\}
$$

We have to prove that z belongs to R. If $R_{2}=\emptyset$, then $z=v \in R$. Consider the case when $R_{2} \neq \emptyset$.

JÁN JAKUBÍK

We distinguish two cases.
a) Assume that there exists $i \in I$ and $x, y \in C_{i}^{\prime}$ such that $x \leqq z \leqq y$. The definition of C_{i}^{\prime} yields that C_{i}^{\prime} is a maximal chain in the interval $\left[b_{i}^{0}, b_{i}\right]$ of L. Since $C_{i}^{\prime} \subseteq R$ and $z \in\left[b_{i}^{0}, b_{i}\right]$ we conclude that $z \in C_{i}^{\prime}$ and thus $z \in R$.
b) Suppose that the assumption from a) is not satisfied. Let us denote by I_{1} the set of all $i \in I$ such that there exists $x \in C_{i}^{\prime}$ with $x \leqq z$. Further, put $I_{2}=I \backslash I_{1}$. Similarly as we did for b_{i}^{0} we can prove that the element

$$
\bigvee_{i \in I_{1}} a_{i}
$$

exists in L.
If $I_{2}=\emptyset$, then we would have $z=v$, which is a contradiction. Thus $I_{2} \neq \emptyset$. Hence I_{2} has a least element which will be denoted by i_{2}. Then $b_{i_{2}}^{0}>z$.

From the definition of $b_{i_{2}}^{0}$ we get

$$
b_{i_{2}}^{0}=\bigvee_{i \in I_{1}} a_{i}
$$

For $i \in I_{1}$ we have

$$
a_{i} \leqq b_{i} \leqq z
$$

thus $b_{i_{2}}^{0} \leqq z$, which is a contradiction. Hence z is an element of R. Therefore $R \in \mathcal{C}_{m}^{0}([u, v])$.
3.7. PROPOSITION. Let the assumptions of 3.6 be valid. Then for each cardinal β such that $\beta \leqq \alpha$ and $\beta \geqq \operatorname{card} C_{i}$ for each $i \in I$ there exists $Q \in$ $\mathcal{C}_{m}^{0}([u, v])$ such that $\operatorname{card} Q=\beta$.

Proof. Assume that β is a cardinal with the mentioned properties. If $\beta=\alpha$, then the assertion concerning β is a consequence of 3.6 .

Let $\beta<\alpha$. Similarly as in the proof of 3.6 we suppose that I is a wellordered set. Without loss of generality we can also suppose that $i(0)$ is the greatest element of I. There exists i_{1} in I such that i_{1} is the first element of I with respect to the property that the set $I_{1}=\left\{i \in I: i<i_{1}\right\}$ has the cardinality β. Put $I_{2}=I \backslash I_{1}$. Then $I_{2} \neq \emptyset$. Denote

$$
v_{1}=\bigvee_{i \in I_{1}} a_{i}, \quad v_{2}=\bigvee_{\imath \in I_{2}} a_{i}
$$

The existence of these elements in the lattice L can be proved by a method analogous to that used in the proof of 3.6. We have $v_{1} \wedge v_{2}=u$ and $v_{1} \vee v_{2}=v$.

We construct a chain R in $\left[u, v_{1}\right]$ in the same way as in 3.6 with the distinction that instead of v we now have the element v_{1}. Then $\operatorname{card} R=\beta$.

Next, we construct a chain Q in $\left[u, v_{2}\right]$ in an analogous manner as we constructed R in 3.3 with the distinction that we have v_{2} instead of v. According to 3.4 we have $\operatorname{card} Q=\operatorname{card} \mathcal{C}_{i(0)} \leqq \beta$.

Put

$$
Q^{\prime}=\left\{v_{1} \vee q: q \in Q\right\}, \quad T=Q \cup R
$$

Similarly as in the proof of 3.2 we can verify that T is an element of $\mathcal{C}_{m}^{0}([u, v])$. We obviously have card $T=\beta$.

In view of 3.7 we introduce the following definition.
Let α_{1}, α_{2} be cardinals with $\alpha_{1}<\alpha_{2}$ and let L be a lattice. We say that L satisfies condition $c\left(\alpha_{1}, \alpha_{2}\right)$ if there are elements $u, v \in L, u<v$ such that for each cardinal β with $\alpha_{1} \leqq \beta \leqq \alpha_{2}$ there exists a chain $C_{\beta} \in \mathcal{C}_{m}^{0}([u, v])$ whose cardinality is β.

Let L_{0} be a lattice. Let I be a set of indices and for each $i \in I$ let $L_{i}=L_{0}$. Then the direct product

$$
\prod_{i \in 1} L_{i}
$$

will be called a direct power of the lattice L_{0} and it will be denoted by L_{0}^{α}, where $\alpha=\operatorname{card} I$. An analogous notation will be applied for $M V$-algebras.

Suppose that $u_{0}, v_{0} \in L_{0}, u_{0}<v_{0}$. We define u, v and $a_{i}(i \in I)$ in L_{0}^{α} as follows:

$$
\begin{gathered}
u(i)=u_{0}, \quad v(i)=v_{0} \quad \text { for each } \quad i \in I \\
a_{i}(j)= \begin{cases}u_{0} & \text { if } j \neq i, \\
v_{0} & \text { if } j=i\end{cases}
\end{gathered}
$$

where j runs over the set I.
3.8. Lemma. Suppose that there exists $C_{0} \in \mathcal{C}_{m}^{0}\left(\left[u_{0}, v_{0}\right]\right)$ such that the chain C_{0} is dense. Further, suppose that the lattice L_{0} is infinitely distributive. Then the lattice L_{0}^{α} is infinitely distributive and (under the notation as above) the assumptions of 3.6 are satisfied.

Proof. The assertion is an immediate consequence of the definition of the elements u, v and $a_{i}(i \in I)$.

From 3.7 and 3.8 we obtain the following proposition:
3.9. Proposition. Let L_{0} be an infinitely distributive lattice. Further, suppose that there are $u_{0}, v_{0} \in L_{0}$ with $u_{0}<v_{0}$ and $C_{0} \in \mathcal{C}_{m}^{0}\left(\left[u_{0}, v_{0}\right]\right)$ such that C_{0} is dense and card $C_{0}=\alpha_{1}$. Let α_{2} be a cardinal with $\alpha_{1}<\alpha_{2}$. Then the lattice $L_{0}^{\alpha_{2}}$ satisfies condition $c\left(\alpha_{1}, \alpha_{2}\right)$.
[14; Theorem 3] is a corollary of 3.9. Further, let L_{0} be the interval [0,1] of reals. Then L_{0} is complete and completely distributive. Hence for each cardinal α, L_{0}^{α} is complete and completely distributive. This yields that the following result is also a corollary of 3.9.
3.9.1. COROLLARY. ([7]) Let α be a cardinal, $\alpha \geqq c$. There exists a complete and completely distributive lattice with the last element f_{0} and the greatest element f_{1} which has the following property: for any cardinal number β with $c \leqq \beta \leqq \alpha$ there exists in S_{α} a maximal chain R_{β} the length of which is β.

If \mathcal{A} is an $M V$-algebra, then the lattice $\ell(\mathcal{A})$ is infinitely distributive. Thus we have:
3.10. Corollary. Let \mathcal{A} be an $M V$-algebra. Suppose that there are $u_{0}, v_{0} \in$ A with $u_{0}<v_{0}$ and $C_{0} \in \mathcal{C}_{m}^{0}\left(\left[u_{0}, v_{0}\right]\right)$ such that C_{0} is dense and card $C_{0}=\alpha_{1}$. Let α_{2} be a cardinal with $\alpha_{1}<\alpha_{2}$. Then the lattice $(\ell(\mathcal{A}))^{\alpha_{2}}$ satisfies condition $c\left(\alpha_{1}, \alpha_{2}\right)$.

Now let (A) be as in Introduction.
Proofof (A).
It is well known that there exists an $M V$-algebra \mathcal{A} such that $\ell(A)$ is the set of all rational numbers x with $0 \leqq x \leqq 1$ (under the natural linear order). Put $\alpha_{1}=\aleph_{0}$ and let α_{2} be a cardinal with $\alpha_{2}>\alpha_{1}$. In view of 3.10, the lattice $\ell\left(\mathcal{A}^{\alpha_{2}}\right)$ satisfies condition $c\left(\alpha_{1}, \alpha_{2}\right)$. Further, $\ell\left(\mathcal{A}^{\alpha_{2}}\right)$ is completely distributive. Let $0<y \in \mathcal{A}^{\alpha_{2}}$. Then there exist $z_{1}, z_{2} \in \mathcal{A}^{\alpha_{2}}$ such that $0<z_{1}<z_{2}$ and the interval $\left[0, z_{2}\right]$ of $\mathcal{A}^{\alpha_{2}}$ is linearly ordercd. Hence z_{1} has no complement in $\left[0, z_{2}\right]$. Thus the element y fails to be boolean in $\mathcal{A}^{\alpha_{2}}$.

Similarly, there exists an $M V$-algebra \mathcal{A}_{2} such that the lattice $\ell\left(\mathcal{A}_{2}\right)$ is the interval $[0,1]$ of reals. By using \mathcal{A}_{2} we can obtain an analogous result to (A) with the distinction that:
(i) instead of \aleph_{0} we have the power of the continuum;
(ii) the lattice $\ell\left(\mathcal{A}_{2}^{\alpha_{2}}\right)$ turns out to be complete.

In view of condition (iii) from (A) let us conclude this section by some remarks concerning the question what is the situation in the case when there exists a boolean element in \mathcal{A}.

It is well known that for each Boolean algebra B there exists an $M V$-algebra \mathcal{A} such that $\ell(\mathcal{A})=B$; then each element of \mathcal{A} is boolean.
3.11. Proposition. ([7a]) Let S be an infinite Boolean algebra which is complete and completely distributive. Then S does not satisfy condition (JD).

Further, there exist infinite Boolean algebras B having no atom; if B has this property and $u=0, v \in B, v>0$ and if $C \in \mathcal{C}_{m}^{0}([u, v])$, then C must be dense. If α_{2} is a cardinal with $\alpha_{2}>\alpha_{1}$, then according to 3.10 we get that $\mathcal{A}^{\alpha_{2}}$ is an $M V$-algebra such that $\ell\left(\mathcal{A}^{\alpha_{2}}\right)$ satisfies condition $c\left(\alpha_{1}, \alpha_{2}\right)$ and each element of $\mathcal{A}^{\alpha_{2}}$ is boolean.

4. Examples

The examples given in this section concern the investigation performed in Section 2.
4.1. Let G be the lattice ordered group of all bounded continuous real functions defined on the set of all reals (the group operation is the addition, lattice operations are defined component-wise). Let $u \in G$ such that u is identically equal to 1 . If $\mathcal{A}=\mathcal{A}_{0}(G ; u)$, then $\mathcal{C}=\mathcal{C}_{m}=\emptyset$.

The following examples $4.2,4.3$ and 4.4 show that conditions a), b) and c) from 2.8(iii) are independent.
4.2. Let Z be the additive group of all integers with the natural linear order. Put $G=Z \circ(Z \times Z)$, where o denotes the operation of lexicographic product and \times is the symbol of the operation of the direct product. Put $u=(1,0,0)$ and let $\mathcal{A}=\mathcal{A}_{0}(G ; u), Y_{1}=\{(0, z, 0)\}_{z \in Z}, Y_{2}=\{(0,0, z)\}_{z \in Z}$. Then $\mathcal{C}_{m}=\left\{Y_{1}, Y_{2}\right\}$. Neither Y_{1} nor Y_{2} has a greatcst element. Conditions b) and c) from 2.8(iii) are satisfied.
4.3. Let G and u be as in 2.1. Put $G^{\prime}=G \times Z \times Z, u^{\prime}=(u, 1,1), \mathcal{A}^{\prime}=$ $\mathcal{A}_{0}\left(G^{\prime}, u^{\prime}\right)$. Denote $Y_{1}=\{(0, z, 0)\}_{z \in\{0,1\}}, Y_{2}=\{(0,0, z)\}_{z \in\{0,1\}}$. Then $\mathcal{C}_{m}=$ $\mathcal{C}=\left\{Y_{1}, Y_{2}\right\}$. Conditions a) and b) from 2.8(iii) are satisfied, but condition c) fails to hold.
4.4. Let $I=Z$ and for each $i \in I$ let $G_{i}=Z, G=\prod_{i \in I} G_{i}$. Let H be the subgroup of G consisting of all $g \in G$ which satisfy the following condition: there exists a finite subset $I(g)$ of I such that, whenever $i(1)$ and $i(2)$ belong to $I \backslash I(g)$, then $g(i(1))=g(i(2))$. Then H is an ℓ-subgroup of G. Let $u \in G$, $u(i)=1$ for each $i \in I$. We have $u \in H$; moreover, u is a strong unit of H. Denote $\mathcal{A}=\mathcal{A}_{0}(H, u)$. For each $i(1) \in I$ let $g^{i(1)} \in G$ such that $g^{i(1)}(i(1))=1$ and $g^{i(1)}(i)=0$ if $i \neq i(1)$; next, let $Y_{i(1)}=\left\{0, g^{i(1)}\right\}$. Then $\mathcal{C}=\mathcal{C}_{m}=$ $\left\{Y_{i(1)}\right\}_{i(1) \in I}$. Conditions a) and c) from 2.8 (iii) are satisfied. Let $I(1)$ be an infinite subset of I such that $I \backslash I(1)$ is infinite as well. Put $y^{i(1)}=g^{i(1)}$ if $i(1) \in I(1)$ and $y^{i(1)}=0$ otherwisc. The element $\bigvee y^{i(1)}$ does not exist in \mathcal{A}, hence condition b) is not satisfied.

REFERENCES

[1] CHANG, C. C. : Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.

JÁN JAKUBÍK

[2] CHANG, C. C.: A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 89 (1959), 74-80.
[3] CIGNOLI, R.: Complete and atomic algebras of the infinite valued Lukasiewicz logic, Studia Logica 50 (1991), 375-384.
[4] CIGNOLI, R.-D'OTTAVIANO, I. M. I.-MUNDICI, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[5] GLUSCHANKOF, D.: Cyclic ordered groups and MV-algebras, Czechoslovak Math. J. 43 (1993), 249-263.
[6] GRIGOLIA, R.: Algebraic analysis of n-valued logical systems. In: Selected Papers on Łukasiewicz Sentential Calculi (R. Wójcicki, G. Malinowski, eds.), Polish Acad. of Sciences, Ossolineum, Wroclaw, 1977, pp. 81-92.
[7] JAKUBÍK, J.: On the Jordan-Dedekind chain condition, Acta Sci. Math. 16 (1955), 266-269.
[7a] JAKUBÍK, J.: Remark on the Jordan-Dedekind condition in Boolean algebras, Časopis Pěst. Mat. 82 (1957), 44-46. (Slovak)
[8] JAKUBÍK, J. : On chains in Boolean algebras, Mat.-Fyz. Časopis SAV 8 (1958), 193-202. (Slovak)
[9] JAKUBÍK, J. : Konvexe Ketten in ℓ-Gruppen, Časopis Pěst. Mat. 83 (1958), 53-63.
[10] JAKUBÍK, J. : Direct product decompositions of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[11] JAKUBÍK, J.: On complete MV-algebras, Czechoslovak Math. J. 45 (1995), 473-480.
[12] JAKUBÍK, J. : On archimedean MV-algebras, Czechoslovak Math. J. 48 (1998), 575-582.
[13] MUNDICI, D.: Interpretation of $A F C^{*}$-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.
[14] SZÁSZ, G.: Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices, Acta Sci. Math. 16 (1955), 89-91.
[15] WAJSBERG, M. : Beiträge zum Metaaussagenkalkül I, Monatsh. Math. Phys. 42 (1935), 221-242.

Received November 26, 1999
Revised March 20, 2000

Matematický ústav SAV
Grešákova 6
SK-040 01 Košice SLOVAKIA

E-mail: musavke@.saske.sk

[^0]: 2000 Mathematics Subject Classification: Primary 06F35.
 Key words: $M V$-algebra, lattice, maximal chain, maximal convex chain, boolean element, complete distributivity.

