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ON FUZZY TOPOLOGICAL d-ALGEBRAS 

Y O U N G B A E J U N * — H E E SiK K I M * * 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. In this paper we introduce the concept of fuzzy topological d-al-
gebras and apply some of Foster's results on homomorphic images and inverse 
images to fuzzy topological d-algebras. 

1. Introduction 

Y. I m a i and K. I s e k i [4] and K. I s e k i [5] introduced two classes of 
abstract algebras: BCK-algebras and F?CI-algebras. It is known that the 
class of BCK-algebras is a proper subclass of the class of F?C/-algebras. 
In [2], [3], Q. P. H u and X. L i introduced a wide class of abstract al
gebras: BCH-algebras. They showed that the class of BCI-algebras is a 
proper subclass of the class of BCH-algebras. J. N e g g e r s and H. S. K i m 
[11] introduced a new notion, called a d-algebra, which is another general
ization of BCK -algebras, and investigated relations between d-algebras and 
BCK-algebras. In [7], Y. B . J u n , J . N e g g e r s and H. S. K i m intro
duced the notions of fuzzy d-subalgebra, fuzzy d-ideal, fuzzy dMdeal and fuzzy 
d*-ideal, and investigated relations among them. The concept of a fuzzy set, 
which was introduced in [13], provides a natural framework for generalizing 
many of the concepts of general topology to what might be called fuzzy topolog
ical spaces. D . H. F o s t e r (cf. [1]) combined the structure of a fuzzy topological 
spaces with that of a fuzzy group, introduced by A. R o s e n f e l d (cf. [12]), 
to formulate the elements of a theory of fuzzy topological groups. In 1993, 
Y. B . Jun [6] combined the structure of a fuzzy topological spaces with that of 
a fuzzy BCK-algebras to formulate the elements of a theory of fuzzy topological 
BCK-algebras. In the present paper, we introduce the concept of fuzzy topolog
ical d-algebras and apply some of F o s t e r ' s results on homomorphic images 
and inverse images to fuzzy topological d-algebras. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F35, 03G25, 94D05. 
K e y w o r d s : (fuzzy) d-algebra, fuzzy topological d-algebra. 
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2. Preliminaries 

A d-algebra ([11]) is a non-empty set X with a constant 0 and a binary 
operation * satisfying the following axioms: 

(I) x* x = 0, 
(II) 0*x = 0, 

(III) x * y = 0 and y * x = 0 imply x = ?/ 

for all x, y, z in X. 
A non-empty subset AT of a d-algebra X is called a d-subalgebra of A" if 

x * y G iV for any x,y €. N. 
A mapping a: X -> F of d-algebras is called a d-homomorphism if a(x*y) = 

a(x) * a(i/) for all x, y G X\ 
We now review some fuzzy logic concepts (see [1] and [13]). Let X be a set. 
A fuzzy set A in X is characterized by a membership function fiA: 

X -> [0,1]. Let a be a mapping from the set X to the set Y and let B 
be a fuzzy set in Y with membership function fiB. 

The inverse image of B, denoted a~l(B), is the fuzzy set in X with mem
bership function Ha-i(B) defined by Ha-itB\(x) = VB{a(x)) f° r a ^ x € X. 
Conversely, let A b e a fuzzy set in X with membership function \xA. Then the 
image of A, denoted by a(A), is the fuzzy set in Y such that 

f sup IIA(Z) if a~l(y) = {x : a(x) = y} ?- 0 , 

*W») = *€a~l(y) 

I 0 otherwise. 
A /uzzy topology on a set X is a family T of fuzzy sets in X which satisfies 

the following conditions: 

(i) for all c G [0,1], kceT, where kc has a constant membership function, 
(ii) if A,B G T, then AnB G T, 

(iii) if A, G T for all j G J , then |J A, G T . 
jeJ ' 

The pair (X, T) is called a fuzzy topological space and members of T are called 
open fuzzy sets. 

Let A be a fuzzy set in X and T a fuzzy topology on X. Then the induced 
fuzzy topology on A is the family of fuzzy subsets of A which are the intersection 
with A of T-open fuzzy sets in X. The induced fuzzy topology is denoted by 
TA , and the pair (A, TA) is called a fuzzy subspace of (X, T) . 

Let (X, T) and (^ZY) be two fuzzy topological spaces. A mapping a of 
(X, T) into (Y, U) is /wzzu continuous if for each open fuzzy set U m U the 
inverse image a~l(U) is in T . Conversely, a is /nzzy open if for each open fuzzy 
set V in T, the image a(V) is in i/. 
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Let (A, TA) and (B,UB) be fuzzy subspaces of fuzzy topological spaces 
(X,T) and (Y,U) respectively, and let a be a mapping from (X,T) to (Y,U). 
Then a is a mapping of (A,TA) into (B,UB) if a(A) C B. Furthermore a is 
relatively fuzzy continuous if for each open fuzzy set V in UB, the intersection 
a~l(V) H A is in TA. Conversely, a is relatively fuzzy open if for each open 
fuzzy set U' in TA, the image a(Uf) is in UB. 

LEMMA 2.1. ([1]) Let (A, TA), (B,UB) be fuzzy subspaces of fuzzy topological 
spaces (X,T), (Y,U) respectively, and let a be a fuzzy continuous mapping of 
(X,T) into (Y,U) such that a(A) C B. Then a is a relatively fuzzy continuous 
mapping of (A,TA) into (B,UB) . 

3. Fuzzy topological d-algebras 

DEFINITION 3.1. ([7]) A fuzzy set D in a d-algebra X with membership 
function fiD is called & fuzzy d-algebra of X if 

V>D(X*V) -̂  min{//D(.x), fiD(y)} for all x,y € X. 

EXAMPLE 3.2. ([7]) Let X = {0, a, b, c} be a set with the following Cayley table 
(Table 1) as follows: 

* 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b Ь b 0 0 

c c c a 0 

Table 1. 

Then (X, *,0) is a d-algebra. Define a fuzzy set D in X with membership 
function /iD by fiD(0) = liD(a) = fiD(c) = tx and fJ>D(b) = t2 for tx > t2. Then 
D is a fuzzy d-algebra of X. 

EXAMPLE 3.3. ([7]) Let X = {0, a, b, c} be a set with the following Cayley table 
(Table 2) as follows: 
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* 1 ° 
o 10 

a 

т 
b 

т 
c 

т 
a 1 a 0 0 6 

b \ b b 0 0 

c J c c c 0 

Table 2. 

Then (Ar, *,0) is a d-algebra. Define a fuzzy set D in X with membership 
function fiD by /xD(0) = fiD(a) = tx > t2 = fiD(b) = fiD(c), where tl,t2 G [0,1]. 
Then D is a fuzzy d-algebra of X. 

PROPOSITION 3.4. Let a be a d-homomorphism of a d-algebra X into a 
d-algebra Y and G a fuzzy d-algebra of Y with membership function fiG. Then 
the inverse image a~l(G) of G is a fuzzy d-algebra of X. 

P r o o f . Let x,y € X. Then 

i*a-HG)(x * y) = VGia(x * y)) = VGia(x) * a(y)) 

> min{/ iG (a(x)) , fiG(a(y))} 

= min{/iQ_1(G)(a;), na-HG)(y)} • 

This completes the proof. • 

For images, we need the following definition ([12]). 

DEFINITION 3.5. A fuzzy set D in a d-algebra X with membership function 
[iD is said to have the sup property if, for any subset T C I , there exists tQ G T 
such that 

HD(t0) = sup fiD(t). 

PROPOSITION 3.6. Let a be a d-homomorphism of a d-algebra X onto a 
d-algebra Y and let D be a fuzzy d-algebra of X with the sup property. Then 
the image a(D) of D is a fuzzy d-algebra of Y. 

P r o o f . For u,v G Y, let x0 G a~l(u), y0 G a~l(v) such that 

MDOJo) ЏD(XO) = s u P / b r ø > 
tčc*-Ҷu) 

sup џD(t). 
tЄa~l{v) 
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Then, by the definition of ^ Q m) ? w e have 

Va(D)(u*v)= SUP /XDW 
t£a~1(u*v) 

>VD(XO*VO) 

> m i n { / i D ( x 0 ) , fiD(y0)} 

= min i sup nD(t), sup nD(t)} 
^tea-1^) tea-iiv) J 

= mm{fia{D)(u), fia{D)(v)} , 

completing the proof. D 

For any d-algebra X and any element a G X we denote by I?a the right 
translation of X" defined by Ra(x) = x * a for all x G X". It is clear that 
Rx(0) = 0 = Rx(x) for all x G X . 

DEFINITION 3.7. Let X be a d-algebra and T a fuzzy topology on X . 
Let D be a fuzzy d-algebra of X with induced topology TD. Then D is 
called a / i -^u topological d-algebra of X if for each a G X the mapping I?a: 
(D,TD) —r (D,TD) is relatively fuzzy continuous. 

THEOREM 3.8. Given d-algebras X , V and a d-homomorphism a: X —> V , 
/e£ ZY and T be tte /uzzu topologies on Y and X respectively, such that T = 
a -1(ZV). Le£ G be a fuzzy topological d-algebra of Y with membership func
tion \xG. Then a~*(G) is a fuzzy topological d-algebra of X with membership 
function /x a _i ( G ) . 

P r o o f . We have to show that, for each a G X , the mapping 

Ra: ( a " ] ( G ) , TQ_1(G)) —> (a~\G), Ta_l(G)) 

is relatively fuzzy continuous. Let U be an open fuzzy set in Ta-i^ on a~l(G). 
Since a is a fuzzy continuous mapping of (X", T) into (V, U), it follows from 
Lemma 2.1 that a is a relatively fuzzy continuous mapping of ( « _ 1 ( G ) , 7 a _ i ( G ) ) 
into (G,UG). Note that there exists an open fuzzy set V G UG such that 
a - 1 ( V ) = L7. The membership function of R~X(U) is given by 

^R-'iU)^) = P i / ^ a W ) = Vu(x * a ) = /V-MV)(X * a ) 

= iiv (a(x * a)) = fiv (a(x) * a(a)) . 

Since G is a fuzzy topological d-algebra of V, the mapping 

Rb: (G,UG)-> {G,UG) 
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is relatively fuzzy continuous for each b € Y. Hence 

A-R-W-O = !V («(*) * «(«)) = !V (-*a(o) ( a ( x ) ) ) 

= /*«-; jv)ia(x)) = PC-UR-} .{./)) ( x ) ' 
«(<•) ( V j V ^ n - ^ a - Ҷ я - ^ d / ) ) ^ 

which implies that R~l(U) = a'1 ( - R ^ ^ V ) ) so that 

R;\U)na-HG) = «-1K"w^)n«"1(G) 
is open in the induced fuzzy topology on a~l (G). This completes the proof. • 

The membership function / J G of a fuzzy d-algebra G of a d-algebra X is said 
to be a -invariant ([12]) if, for all x , y G l , a(x) = a(?/) implies fiG(x) = / i G (y) . 

THEOREM 3.9. Given d-algebras X. y and a d-homomorphism a of X 
onto Y y let T be the fuzzy topology on X and let U be the fuzzy topology on 
Y such that a(T) = U. Let D be a fuzzy topological d-algebra of X. If the 
membership function \xD of D is a -invariant, then a(D) is a fuzzy topological 
d-algebra of Y. 

P r o o f . It is sufficient to show that the mapping 

Rb:{a(D),Ua{D))-^{a(D),Ua{D)) 

is relatively fuzzy continuous for each b £ Y. Note that a is relatively fuzzy 
open; for if U' € TD, there exists U G T such that [/' = [/ n D, and by the 
a-invariance of / i F , 

a ( t / ' ) - - a ( t / ) n a ( D ) € u Q ( X , ) . 

Let V be an open fuzzy set in Ua{D). Since a is onto, for each b £ Y there 
exists a £ X such that b = a ( a ) . Hence 

»«-i(R^{V>))W = ^ - i ( R - ) ( V ' ) ) W = ^ ) ( V 0 M * ) ) 

= Mr (Ra(a) {a(X))) = AV ia(X) * a(a)) 

= \iv, (a(x * a)) = / iQ_ 1 ( v / ) (x * a) 

= / i Q - i ( v o ( i - f l W ) = / ^ - ( a - - ( v ' ) ) ( x ) ' 

which implies that a " 1 ( i ? " 1 ^ ' ) ) = # a l ( a _ 1 ( y ' ) ) • BY hypothesis, Ra is a rela
tively fuzzy continuous mapping from (D,TD) to (D,TD) and a is a relatively 
fuzzy continuous mapping from (D, TD) to (a(D), Ua{D)). Hence 

a-1 ( V ( O ) n G = R;1 {a-^v')) n D 
is open in 7 ^ . Since a is relatively fuzzy open, 

a{a-1{Rb-
1(V'))nD)=Rb-

1(V')na(D) 

is open in uQ(£)). This completes the proof. • 
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