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ABSTRACT. A generalization of the property of affine spaces that can be de-
duced from term “midpoint of the line segment” has been done in the paper
[GATIAL, J.: Some geometrical ezamples of an IMC-quasigroup, Mat. Casopis
19 (1969), 292-298]. The main attention in this study was concentrated on auto-
morphisms of an idempotent, medial and commutative quasigroup, which we call
A-structure. In this paper we study a possibility of using a median point of the
system of elements of A-structure.

For binary operation on A-structure (Q,7) we will use the symbol -, that
is, instead of 7(z,y) we will write z - y.
We note that a quasigroup (Q, ) is medial if all elements a, b, c,d € Q satisfy
the next property
(a-b)-(c-d)y=(a-c)-(b-d).

DEFINITION 1. Ordered k-tuple (a,,a,,...,a,) € Q%, where (Q,) is A-struc-
ture, will be called k-gon and a,,a,,...,q; are its vertices.

In affine space A™, the median point of k-gon B = (b,,b,,...,b;) is a point
T(B) € A™ for which
by +by+---+b,

A .

Note. A median point of a triangle B = (b;,by,b;) in an A-structure (Q,-)
can be defined as the element T(B) € Q for which T(B) = (b, - b,) - (b, - T(B))
(see [6]) and a median point of quadrangle B = (b;,b,,b;,b,) € Q* as the
element T'(B) € Q for which T(B) = (b, - b,) - (b5 - b,)

T(B) =
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PROPOSITION 1. For each triangle (b,, b2, b;) € @* and an arbitrary permu-
tation (i,,1,,13) of numbers 1,2,3, T'(b; b,) = T(b,,by,b;).

i1 12’ 13

Proof. It is deducted from medial and commutative operation - . O

PROPOSITION 2. For each quadrangle (b;,b,,b;,b,) € Q* and an arbi-
trary permutation (i,i,,13,i,) of numbers 1,2,3,4, T(b,,b,,b,,b,) =
T(by,by,b3,b,)-

Proof. It is deducted from medial and commutative operation - (see the
proof of Theorem 1). m|

A median point of each quadrangle (b,,b,,b;,b,) € Q* always exists and is
unambiguously determined. The existence and unambiguousness of the median
point of a triangle are not guaranteed (see [6]).

In an affine space A™, for median point ¢ of each pentagon (b,,b,, b;,b,, b5),

it holds that
[(bl “by) - (by - b4)] ) [(bs )(t- t)] =t.
The existence and unambiguousness of median point of a pentagon in an

A-structure are not guaranteed. For example, in the A-structure (Q,-) where
Q = {a,b,c,d, e} and operation - is defined by the table

a b ¢ d e

a a d e ¢ b
b d b a e
c e a ¢ b d

d | ¢ e b d a

e | b e d a e

median point of the pentagon (a, b, ¢, d, e) is each element from @ . The pentagon
(a,b,c,d,d) has no median point.
The property of median point of 2k-gon in affine space:
T(ay,...,a;)+T(by,-..,b)
2
=T(ay,...,a;) - T(by,...,b)
makes it possible to define a median point of 2¥-gon in any A-structure.

T(al, aka 1 k)

DEFINITION 2. A median point of 2F-gon (b,,...,b) € Q*, k€N, isa
point T'(b,...,by) € Q defined by:
T(by) =by,

T(by, -y bors bykpyse oo boian) = T(by, ooy bor)  T(bgnpqs -+ b)) -
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THEOREM 1. For each k € N, each 2*-gon (b,,...,b) € Q?", and each
permutation (i, ..., ) of numbers 1,...,2% we have

T(biys---2b; ) =T (b, ban) -

Proof. It is enough to prove that for each 4,5 € {1,...,2%}, i < j,
T(bl""’bi_l’bi’bi'f'l’.'.’bj—17bj’bj+l’.'.’b2k)
=T(bl"."b‘i"l’bj’bi'f'l""’bj—l’bi’bj-*'l"'"b2k)'
For k =1 we have
T(by,by) =by by =by- by =T (by,b).

For i,j € {1,...,2F*1}, i < j, the following cases can occur:

(1) i,j €{1,...,2%},
(2) 4, € {26 +1,.., 2841,
(3) ie{1,...,2%}, je {2k +1,...,2F1},

In case (1), there holds

T(Bys s Do By Bipyse -+ Bj1s Do Bsns ooy By By s D)

=T(b1""’bi—l’bi’bi+l""’bj—l’bj’b'+l""’b2") ‘T(b2h+1,-..,b2h+1)
=T(bl,-..,bi_l’bj,bi_'_l’-..,bj_l,bi, bj+l""’b2h) -T(b2).+1,-.-,b2k+1)
=T(b1,-- ’bi—l’bj’bi-i-l’“"bj—l’bi7bj+1’“‘7b2"7b2k+1"‘"b2k+l) .

Case (2) can be proved in an analogous way as case (1). In case (3) we can
assume that i =1, j =251 so

T(bl,...,b2u+1)
= [T(by, -+, bon-1) ‘T(bz"—1+1v--’bzk)] ' [T(b2k+1’---»b3-2*—1) *T(bg.ph=141- -+ 1bgu+1)]
=[T(byy--»bgh=1)  T(bg.ohe141s-- 5 bous1)] - [T(bon—t14gs---1bgn) - T(bohoys-- s bz.00—1)]
=T(b1,. oy bok—1,b3.0k-1 41,5+ ,b21.+1) . T(bzh—1+1,. esborybokg gy ,b3,21.—1)
=T (byus1,bgy -+« bok—1,bg.0k—1415+ s bokt1_1,01) * T(Bgh—141,- -y boksbohp1se- ) b3.08—1)
= [T (bgut1:bgs -1 bgu1) » T (Bggn=1415- -5 bmt1_1,81)]-

[T (bgk=141>---sbok) * T(Bokyys-- ) bg.0n—1)]
= [T(bor+1,bg,- -y bok—1) - T(bor—141,---,b28)]:

*[T(bghgrs-- -1 b3.00-1) ‘T(b3-2"—1+1r--"b2*+1—1’b1)]
=T(b2;.+1,b2, cee ,b2h+l_l,b1) .
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DEFINITION 3. For each a,b € Q and k € N, a*b is defined by:
0
a'b=>b,

a**1b =a - (a*d).

PROPOSITION 3. Let (by,...,b) €Q*, a€ Q, k,meN, k> 0. Then for
a median point of 2¥t™-gon (bv- cos Doy @y.. .0

——

2k+m _ok

T(bl,...,bz.,a,...,a) =a™T(by,...,by) -

ok+m _ok

Proof. (By mathematical induction.) For m = 0 the statement evidently
holds. Let us suppose that it holds for m — 1. Then

T(bl,...,b2,.,a,...,a) =T(b1,...,b2,,, ay...,a )-T(a,...,a)
N — N—— N——

2k+m _ok Qk4+m—1_19k 2k+m—1
= [a™ 7T (by,...,by)] - a=a™T(by,...,b) .
O
PROPOSITION 4. Let k = 2F + 2%2 where k;,k, € N, 0 < k, < ky, let
a€Q, and (bi,...,b,,) € Q" forie {1,2}. Then
T(ﬂr“ﬁ;”ﬁv“,%hmv“,a
2k2 —2k1
= [T (0, B)| T, ).
Proof. From Proposition 3 and the definition of a median point, it can be
deduced that
[T (0}, b)) | - TR, 0,)

=T(ﬂV”J§“@””a>-T@i””@h)

2k2 —2k1
=T(b bli,,a a,b’ b2
172Uk s Uy ey lyUgyeeeyUgko
N —r
2k2 —2k1
=T(b1 bl , b2 b2.,,a a)
17 1Yk Yy ey Ugkay By e v ey
——

2k2 —2kq
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DEFINITION 4. Let k,m € N, 2™ < k < 2™*1. Then a median point of k-gon
(by,---,b) € Q% is the point t € Q satisfying the condition

t=T<b1,...,bk,t,...,t)

2m+1_k

THEOREM 2. For each k-gon (b,,...,b,) € Q% and each permutation (i, ...
.,1) of numbers 1,...,k we have

T(bi,eoosby ) =T(by,e - by)-
Proof. A median point of k-gon is defined with help of median point of
2m+1.gon that does not depend on the order of the vertices. O

Dcfinition 4 is an extension of the term a median point in an affine space A™
to any A-structure because in A™,

I e O L
- om+1 ’

t=T(b1,...,bk,t,...,t
N——r
om+1_k
from where
b+t b
="t "

The existence and definiteness of median point of k-gon are not guaranteed.
For cxample, in the A-structure (Z(2), -), where Z(2) = {2% :p€EZ, me€ N}
and z-y = %Q , number 5 is the median point of the 9-gon (1, 2,3,4,5,6,7,8,9),
but the median point of the 9-gon (1,2,3,4,5,6,7,8,10) does not exist.

t
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