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ABSTRACT. The paper deals with polynomial cycles in the rings of integers of 
cyclic algebraic number fields for polynomials with integral rational coefficients. 
In the first par t , a connection between the existence of cycles and the existence 
of power basis is shown. In the second part , properties of cycles for quadratic 
polynomials with rational integral coefficients are described. 

Let K be a ring. Recall that a finite subset {xx,x2,... , x n } of K is called 
a cycle for a polynomial f(x) if for i = 1, 2 , . . . , n — 1 one has f(xi) = xi+l, 
f(xn) = xx and xi ^ x- for i ^ j . The number n will be called the length of 
the cycle, and x^s, cyclic elements of order n. Denote by fi the zth iterate of / 
for i = 1, 2 , . . . , i.e. /-_ = / and / . + 1 = f(f{) for i = 1, 2 , . . . . Let K be an 
algebraic number field; denote by 7LK the ring of integers of K. 

The possible cycle-lengths in the rings of integers in quadratic number fields 
were determined independently by J. B o d u c h and by G. Baron. The result 
can be found in [6]. 

For fields K of larger degrees, the problem of determining all cycle-lengths 
in their rings of integers Z ^ is still open. Cycles of quadratic polynomials were 
recently studied by P. M o r t o n [5] and P. R u s s o , R. W a l d e [11]. 

In this paper, only cycle-lengths for polynomials with rational integral co
efficients in the rings of integers 7LK of an algebraic number field K will be 
studied. First, a connection between the existence of power basis for 7LK over 
rational integers 7L and polynomial cycles for a polynomial f(x) G 7L\x\ will be 
investigated. 

Recall the definition of an order. 
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DEFINITION 1. Let K/Q be an algebraic number field of degree n. An order 
of K is a subring of Z K which contains an integral basis of length n. 

THEOREM 1. Let K/Q be a cyclic algebraic number field of degree n and let 
a be a generator of its Galois group G. There exists a polynomial f(x) G 7L[x] 
of degree less than n with a cycle {a1, a2,..., an} in ZK) where a- = a°x 

for i — 1,2,. . . , n ; if and only if there exists an order of K with a power basis 
{l,a, a2,... ,an~1} which is a G-module. 

P r o o f . Let f(x) = an_1x
n~1 + an_2x

n~2 + • • • + a0 , a- G Z , be a poly
nomial with a cycle {a1,a2,... ,an} in ZK where a{ = a a ' . So ai+l = 
f(a{). Clearly, any a- G Z[l, ava\,..., an~x], and so Z[l,ava\,... ,an~l] 

is a G-module. Now let the order Z[l, a, a2,..., a n _ 1 ] be a G-module. De
note a{ = a°x . So a i + 1 = an_la

n~1 + an_2a
n~2 + • • • + axa{ + a0 where 

a- E Z . From above it follows that {al,a2,..., an} is a cycle for the polynomial 
f(x) = an-\

xn~l + an-2
xn~2 + ' ' * + aix + ao • D 

R e m a r k . If the assumption of Theorem 1 holds, then for any d such that d\n, 
there exists a polynomial g(x) G Z[x] of degree less then n with a cycle length 
d in ZK. It is ^ th iteration of f(x) modulo a minimal polynomial of a-. 

EXAMPLE 1. Let ( be a primitive 7th root of unity and let K = Q(() be the 
7th cyclotomic field. The degree of Q(C) over Q is n = 6. Let ZQ^Q be the ring 
of integers of Q((). Then ZQ ( C ) = Z[(, (2,..., (6] = Z[l, (, C2, • • •, C5] • Using the 
fact that a : C ~> C3 is a generator of the Galois group G(Q(()/Q) it follows that 
a polynomial f(x) = x3 has the cycle {C, C3, C2,C6, C4, C5}- P u t 9(x) equal to 
the second and h(x) the third iteration of f(x) modulo the minimal polynomial 
of C,so g(x) = x2 and h(x) = -x5 - x4 - x3 - x2 - x - 1. Then {C,C2,C4} is 
the cycle of length 3 for g(x) and {C, C6} is a cycle of length 2 for h(x). 

EXAMPLE 2. Let K be a cyclic algebraic number field of degree 3 over Q with 
the conductor 31 . With regard to the fact (shown by Kostra) that for a cyclic 
algebraic number field of an odd prime degree / with the conductor wrhich is a 
power qs of Mersenne prime q = 2 r - 1, where / and rq are coprime numbers, 
there is no power basis for any G-submodule of the ring of integers, we can say 
that in the field K there is no power basis for any G-submodule of ZK, so by 
Theorem 1 there is no polynomial cycle for f(x) G Z[x] in the ring of integers 
ZK, the elements of which are conjugated. 

The following Theorem 2 will show that if a quadratic polynomial of Z[x] 
has a cycle of length 3 in a cubic algebraic number field, then it is the case of 
Theorem 1. 
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THEOREM 2. Let K be a cubic algebraic number field and let the quadratic 
polynomial f(x) G Z[x] have a cycle { a 1 , a 2 , a 3 } of length 3 in ZK. Then K 
is normal and a17 a2, a 3 are conjugated. 

P r o o f . By [6; Lemma 12.1.(v)], f3(x) = x + (f(%) — x)g(x) and with 
regard to the fact that f(x) is quadratic, it follows that g(x) is of degree 6. 
By fz(ai) = ai w e n a v e 9(x) = 0 m ° d fa., where /Q . is a minimal polynomial 
for a- for i = 1,2,3. By [6; Lemma 12.9], the degree of f cannot be 1, so 
it has to be 3. So at least two of fa. are the same. Without loss of generality, 
put fa = fa . So there exists an isomorphism a from Q(a1) to Q(a 2 ) over Q 
such that aG — a2. We have a2 — aG

x — f(a^) and a2 = f(ax)
G = f(aG) = 

f(a2) = a 3 . Hence a 1 , a 2 , a 3 G rLK and they are conjugated. • 

COROLLARY 1. Let K be an algebraic number field, let f(x) G Z[x] be a 
quadratic polynomial and let { a 1 , a 2 , a 3 } be its polynomial cycle of length 3 in 
7LK. Then a1,a2,as G Z M . where M is a subfield of K such that [M : Q] = 3 
or 6 and a{ are conjugated. 

P r o o f . If f(x) is a quadratic polynomial over Z , then f3(x) — x = 
(f(x) — x)g(x) and the degree of g(x) is 6. By [6; Lemma 12.9], g(x) can
not have a linear factor, and by [5; Theorem 3], f(x) does not have a quadratic 
factor. So if fa(x) is an irreducible factor of g(x), then the degree of fa(x) is 
3 or 6. Now the result follows immediately. • 

COROLLARY 2. Let K be an algebraic number field of degree n over Q and 
3 { n. Then there is no quadratic polynomial with cycle of length 3 with conju
gated elements. 
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