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PRIME IDEALS AND POLARS IN 
DHi-MONOIDS AND PSEUDO 5L-ALGEBRAS 

JAN KUHR 

(Communicated by Anatolij DvureČenskij ) 

ABSTRACT. Dually residuated lattice ordered monoids (.DH£-monoids) are a 
generalization of lattice ordered groups embracing also algebras closely related to 
logic like pseudo MV-algebras (GMV-algebras) or pseudo BL-algebras. In the 
paper, the concepts of a prime ideal and a polar in a DH^-monoid are estab
lished and their basic properties are shown. Since pseudo BL -algebras are in fact 
the duals of certain bounded DH^-monoids, the analogous properties of pseudo 
BL -algebras are immediately obtained. 

1. Preliminaries 

An algebra A = (A; +, 0, V, A, —-, x-) of type (2,0,2,2,2,2) is a dually resid
uated lattice ordered monoid, simply a DR£-monoid, if 

(1) (A;+,0, V,A) is an ^-monoid, i.e., (.A;+,0) is a monoid, (A;V,A) is a 
lattice and + distributes over V and A; 

(2) for any x,y G A, x -± y is the least s G A such that s + y ^ x, and 
x T- y is the least t G A such that y + t ̂  x; 

(3) A fulfils the identities 

((x - - y) V 0) + y ^ x V y, y + {(x x- y) V 0) ^ x V y. 

In the original definition the validity of the inequalities x —- x ^ 0 and 
x x- x ^ 0 was also desired, but analogously as in [11], one can prove that 
we always have x —^x = xx-x = Q. Notice next that the condition (2) is 
equivalent to the following system of identities (see [18]): 

(x --- y) + y ^ x , y + (x x- y) ^ x , 

x-^y^(xVz)-±y, Xx-y^(xVz)x-y, 

(x + y) -± y ̂  x , (y + x) x- y ̂  x. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i on : Primary 06F05, 03G25. 
Keywords : DRI-monoid, ideal, prime ideal, polar, normal ideal, pseudo HL-algebra, filter, 
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The class of (noncommutative) DR£-monoids includes lattice ordered groups 
and also algebras being in close connection to fuzzy logic. For instance, pseudo 
i?J-algebras and pseudo MF-algebras can be viewed as special cases of bounded 
J)jR^-monoids (see [13] and [18]). Recall that commutative .Dit£-monoids (called 
DR£-semigroups) were introduced by K. L. N. S w a m y in [20] to be a common 
extension of commutative ^-groups and Brouwerian algebras. For basic proper
ties of noncommutative J)i^-monoids, see [10] or [12]. 

Let us recall some concepts from [12]. For any x of a J)i?~?-monoid A, the 
absolute value of x is defined by \x\ = xV(0 —* x) = xV(0 v- x), and x+ = xVO 
is the positive part of x. For each X C A, X + will mean the set of all positive 
elements of X. 

A subset J of a DR£-monoid A is said to be an ideal of A if it satisfies the 
following conditions: 

(11) OGJ; 
(12) if a;, $ / e l , then x + y€l\ 
(13) for all x G J, y G A, \y\ ^ \x\ implies y G J. 

This definition is a natural generalization of the concept of an ideal in com
mutative J}R£-semigroups. Of course, if A is a pseudo MF-algebra, then ideals 
in both algebras coincide. In the case that A is an £ -group, the ideals are just 
the convex ^-subgroups. 

Under the ordering by set inclusion, the set of all ideals becomes an algebraic 
Brouwerian lattice 1(A) in which the relative pseudocomplement of J with 
respect to J is given by 

I*J={aeA: (VxG J)( |a |A|x|G J ) } . 

Further, for any ideal J one can assign the binary relations 0 l v J ) and 0 2 (J ) , 
respectively, defined by 

(x,y) G 0 l v J ) *=> {(x - - y) V (y ^ x) G J ) , 

and 

(x,y) G 02(J) <=> {(x T- y) V (y ^ x) G J ) , 

respectively. In general, both 0 l v J ) and 02(J) are congruence relations on the 
distributive lattice £(A) = (A;V,A), and in the quotient lattices £(A)/QX(I) 
and £(A)/Q2(I) we have 

M e l v J ) ^ \n]Qx(T) *=• (x - j/)+ G J , (i.i) 
and 

We2(i) ^ Mea(i) «-* (x - y)+ € / , (i.2) 

respectively. 
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An ideal I of a DR£ -monoid A is normal if either of the following equivalent 
conditions is satisfied: 

(1) ( V x , y e 4 ) ( ( x - * y ) + e l <=* (a T - y ) + e J) ; 
(2) (VxG A)(x + I+ =I++x). 

The normal ideals of any DIZ^-monoid correspond one-to-one to its congruence 
relations. Indeed, if I is a normal ideal, then QX(I) and 02CO coincide and this 
binary relation 0(7) is a congruence on A such that [O]0(J) = I. Conversely, 
for any congruence relation 0 on i , [O]0 is a normal ideal, and in addition, 
0([O]0) = 0 . Thus the mapping I H-» 0(7) gives the isomorphism between the 
lattice M(A) of normal ideals and Con(.4). 

2. Prime ideals 

An ideal I of a DRl-monoid A is said to be prime if it is a finitely meet-
irreducible element in the ideal lattice 1(A), that is, 

(\/J,Kel(A))(l = JnK => (1 = J or I = K)). 
THEOREM 2.1. For any ideal I of A, the following conditions are equivalent: 

(1) I is a prime ideal; 
(2) (VJ,Kel(A))(JnKCI => (J CI or KCI)); 
(3) (Vx,yGi4)( |x |A|y |e J = * (x G / or y G I)) ; 
(4) (Vx,y€ A)(0^xAy el =-» (x G I or y G J) ) . 

P r o o f . 
(1) = » (2): If J n if C / , then J = J V (J n if) = (/ V J) n (J V K), as 

X(.4) is a distributive lattice. Hence I = I\/JOTI = I\/K and, consequently, 
J C J or if CI. 

(2) = > (3): Obviously, |x| A \y\ G / implies 7(|rr| A |y|) = I(x)nl(y) C 7, 
whence /(x) C / or /(y) C i" and therefore x G / or y G / . 

(3) =-> (4): It follows from 0 ^ x A y = \x\ A \y\. 
(4) =.> (1): Let I = J n K. If neither I = J nor J = K, then there are 

x € J\I and y e K\I. Moreover, we can assume x, y ^ 0. Then O ^ x A j / G 
J n K = J, whence x G / or y G / , which is a contradiction. • 

THEOREM 2.2. Pbr any proper ideal I of a DR£-monoid A and for each 
a £ I, there exists a prime ideal P of A such that I C P and a £ P. 

P r o o f . By Zorn's Lemma there is an ideal P which is maximal with respect 
to the required property. Let P = J n K for some J,K G 1(A) \ {P}. Then 
obviously a € J and a G K, whence a G J fl if = P , which is a contradiction. 
This shows that P is prime. • 
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COROLLARY 2.3. Let A be a DM-monoid. 

(1) Every ideal I of A is the intersection of all primes containing I. 
(2) Every maximal ideal of A is prime. 

PROPOSITION 2.4. Let { P J i € / be a chain of prime ideals of a DRl-monoid 
A. Then P = f] P{ is a prime ideal of A. Consequently, every prime ideal 

contains a minimal prime ideal. 

P r o o f . Suppose 0 ^ x A y G P , and x ^ P , i.e., x £ P- for some j G J. 
Then x fi Pk for all k G J with Pk C P.. Hence y G Pk for any such k, and so 
y G P i for all i G / , proving y G P. D 

PROPOSITION 2.5. Let B be a DRU-submonoid of a DRl-monoid A. Then 
any prime ideal Q of B is obtained in the form Q = B n P for some prime 
ideal P of A. 

P r o o f . I f P is a prime ideal of A, then certainly Q = B n P is a prime 
ideal of B. 

Conversely, suppose that Q is a prime ideal of B and let I{Q) be the ideal 
of A generated by Q, i.e., 

I{Q) = {aeA: (3w1,...,wne Q){\a\ ^\Wl\ + ... + \wn\)} 

= {aeA: {3weQ+){\a\ <^w)} 

since Q G 1(B). 
If x G B \ Q, then x ^ J(<2), because a: G J(Q) if and only if |x| ^ w for 

some w G Q+, which would mean x 6 Q. Thus J(Q) n (2? \ Q) = 0. Therefore 
by Zorn's Lemma, there exists P G X(̂ 4) that is maximal with the property 
I(Q) C P and P n ( J 5 \ Q ) = 0. It is easy to see that Q = BnP a s Q C BflP 
and (P n B) \ Q = P n (P \ Q) = 0. 

It remains to prove that P is prime. Suppose P = J n K for some J,K G 
X(>t) \ {P}. Obviously, Jn(B\Q) ±% and if n (P \ Q) ^ 0, i.e., there 
are 0 ^ a ,6G i such that a G J n (P \ Q) and 6 G J.T n (B \ Q). Hence 
a A & G J n J . T n ( P \ Q ) = P n ( P \ Q ) = 0, which is a contradiction. We conclude 
that P is a prime ideal of A with the property B n P = Q as required. • 

Remark 2.6. If J is an ideal of A, then any ideal J of J is also an ideal in 
A since J is a convex J)i?£-submonoid of A, and hence we can consider the 
relative pseudocomplement I ^ J. 

PROPOSITION 2.7. Let I be an ideal of a DRl-monoid A. Then the mappings 
(/?: P i-r J n P and -0: Q H> J*Q are mutually inverse order preserving bijections 
between the prime ideals of A not exceeding I and the proper prime ideals of I. 
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P r o o f . Obviously, if P is a prime ideal of A not containing I, then <p(P) = 
I n P is a proper prime ideal of I. 

Let now Q be a proper prime ideal in I; then 

<iP(Q) = \J{Hel(A): inHGQ} 

as tp(Q) = I * Q. In order to show that ip(Q) is prime in A, assume ip(Q) = 
J n K for some J,K e 1(A) \ {^(Q)}. Since the lattice 1(A) is algebraic and 
distributive, it is clear that 

ln^(Q) = ln\J{Hel(A): InHGQ} 
= \/{lnH: He 1(A) k InHCQ} 
cQcm^(Q) 

since Q C I and Q C ^(Q). Thus In^j(Q) = Q. 
Further, Q = I n ^(Q) C / n J and similarly Q C i" n if. (If, for instance, 

J n 7 = Q, then J C ip(Q).) Therefore we can find a,b e A such that a e 
(J n I) \ Q = J n (I \ Q) and b e (K n I) \ Q = Kn (I \ Q). Hence \a\ A \b\ G 
JnKn(I\Q) =i/>(Q)n(I\Q) = (^(Q)nl) \Q = 0. Thus ip(Q) is a prime 
ideal of A and I <£i>(Q). 

Moreover, we have seen that (p(tl;(Q)) = I n ip(Q) = Q. It remains to prove 
that conversely tp(<p(P)) = P for each prime ideal P of A such that I <£. P. 

Obviously, ip((p(P)) = i/>(lnP) = \J{H e 1(A) : inH C InP} and hence 
P C rp((p(P)) • Conversely, if a e ip(<p(P)) and 6 e I \ P , then 

|a|A|6| e i n ^ ( P ) ) =/nV{#eZ(-4): / n i f c / n P } 
= V{-rniJ: ffei(-4) fc/n/Yc/nP} 
cmpcp. 

Since 6 ̂  P and P is prime, it follows a e P proving i/j(tp(P)) = P. D 

Let I be an ideal of a DP^-monoid A. In view of (1.1), £(A)/Q1(I) is totally 
ordered if and only if 

(Vx,yeA)((x--y)+ el or (y--x)+ e I) . (2.1) 

Similarly, £(A)/@2(I) is totally ordered if and only if 

(Vx,y G A)((x v- y)+ G / or (y *- x)+ G / ) , (2.2) 

by (1.2). 

PROPOSITION 2.8. Let I be an ideal of A. If £(A)/Q1(I) or £(A)/Q2(I) is 
totally ordered, then the set of all ideals exceeding I is totally ordered under set 
inclusion. 
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P r o o f . Suppose that / C J, K for some ideals such that J <£ K and 
K <£ J. Then there exist 0 ^ a, b e A such that ae J\K and b € K \ J . By 
(2.1), (a-^b)+ GJ or (&--• a)+ E J, say (a -* 6)+ € J. Hence 0 ^ a ^ a V 6 = 
(a —-• 6)+ + b e K, so that a e K, which is a contradiction. • 

PROPOSITION 2.9. For any ideal I of A, if {J e 1(A) : I CJ} is linearly 
ordered under inclusion, then I is prime. 

P r o o f . If J = J n # , then I = J oi I = K, because J C K or K C J . 

• 

COROLLARY 2.10. If £(A)/Q1(I) or £(A)/Q2(I) is linearly ordered, then I 
is a prime ideal. 

PROPOSITION 2.11. If A is a totally ordered DR£-monoid, then 1(A) is 
totally ordered under set inclusion. Consequently, any ideal in A is prime. 

P r o o f . If I <£. J and J £ / , then there are a, b ^ 0 such that a e I\J and 
b e J\I. Moreover, a ^ b or b ^ a, say a -̂  6. Therefore we have 0 ^ a ^ 6 € J , 
which yields a e J', which is a contradiction. 

Since Z(*4) is totally ordered under inclusion, it is easily seen that { J e 1(A) : 
I C J} is totally ordered for each ideal J, and so J is prime. • 

In the sequel, we shall characterize the prime ideals of Di?£-monoids satisfy
ing the identities 

( x - y ) + A ( y - - x ) + = 0, 

(x^y)+A(yrx)+=0. W 

For instance, (*) is satisfied by any -?-group, by any linearly ordered DR£-mo-
noid and also by any bounded DR£-monoid which is induced by a GMV -algebra 
(pseudo MV-algebra) or by a pseudo BL -algebra, respectively (see [18] and 
[13]). Note that the above identities are equivalent to the inequalities 

(x-±y)A(y-^x)^0, 

(x v- y) A (y v- x) ^ 0. 

Any completely meet-irreducible ideal of A is called regular. Using a well-
known property of algebraic lattices, we can easily see that any ideal is the 
intersection of a family of regular ideals. 
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THEOREM 2.12. Let A be a DRl-monoid with (*). For any ideal I, the 
following conditions are equivalent: 

(1) J is prime. 
(2) (VJ,Kel(A))(Jf)K C J = > ( J C J or JiT C J) ) . 
(3) (Vx,yG-4)(|x| A|y| el = > (x G J or y e I)). 
(4) (Vx, y G A) (0 ^ x A y G J = > (x G J or y e I)). 
(5) (Vx, y G i ) ( a ; A i / G / = > (x G J or y € I)). 
(6) (Vx, y G A) (x A y = 0 = > ( x G / or y e I)). 
(7) (Vx, i/GA) ((X - - J / ) + G / or (y --. x) + G I). 

(8) (Vx, y G .4) ((x ^y)+ el or (y - - x)+ G J ) . 
(9) £(A)/Q1(I) is linearly ordered. 

(10) £(A)/Q2(I) is linearly ordered. 
(11) {J e 1(A) : J C J } is linearly ordered by set inclusion. 
(12) J is egwa/ £o i/ie intersection of a chain of regular ideals. 

P r o o f . The conditions (l)-(4) are equivalent by Theorem 2.1. 

(4) =-> (5): Since 

(x -^ (x A y)) A (y -^ (x A y)) = ((x - - x) V (x -^ y)) A ((y -^ x) V (y -^ y)) 

= ( 0 V ( x - - y ) ) A ( ( y - - x ) V 0 ) = 0 , 
by (*), it follows that x —- (x A y) G J or y - - (x A y) G J, say x -^ (x A y) G J. 
Then 

(x —̂  (x A y)) + (x A y) = x V (x A y) = x 

belongs to J whenever x A y G J, proving (5). 
(5) = > (6): Obvious. 
(6) = > (7) and (6) = > (8): It follows from (*). 
(7) = > (9): By (2.1). 
(8) = > (10): By (2.2). 
(9) =-> (11) and (10) = > (11): By Proposition 2.8. 
(11) = > (12): By the previous remarks, J is equal to the intersection of 

some set of regular ideals which is a chain by (11). 
(12) = > (1): It is a consequence of Proposition 2.4 since any regular ideal 

is prime. • 

A poset (P; ^) is a root-system if for each p G P , {x G P : x ^ p} is totally 
ordered. 

For instance, the prime ^-subgroups of any ^-group form a root-system (see 
e.g. [1]). Theorem 2.12 provides the following generalization of this fact: 

COROLLARY 2.13. If A fulfils (*), then any ideal including a prime ideal is 
prime and the set of all prime ideals (and hence also the set of all regular ideals) 
is a root-system. 
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3. Polars and minimal prime ideals 

Let A be a jD^-monoid and X C A. The set 

XL = {a£A: (Vi G X)(|a| A \x\ = 0)} 

is called the polar of X. For any a G A, we write briefly a 1 instead of {a}1-. 
A subset X of A is a po/ar in A if X = F 1 for some F C A. 

PROPOSITION 3.1. Let A be a DRt-monoid and X , y C A. Tften 

(1) I C I 1 1 ; 
(2) I C 7 ==> F k l 1 ; 
(3) X-L = X 1 ± ± ; 
(4) X 1 = / ( X ) 1 . 

P r o o f . The properties (l)-(3) are straightforward. To prove (4), it is suf
ficient to check XL C I(X)-L since the other inclusion follows from (2). Let 
x G X1 and y G J(X), that is, |y| ^ \xx\ H f- \xn\ for some xli... ,xn G X, 
n G N. Then 

N A | y | < M A ( | x 1 | + .-- + |xn|) 

< ( N A | x 1 | ) + - . - + (|rr|A|a:n|) 

= o + --- + o = o. 

Thus x G / ( X ) x showing X 1 C J(X)1-. D 

COROLLARY 3.2. A subset X of a DRi-monoid A is a polar in A if and 
only if X = X1-1. 

P r o o f . If X = YL for some Y C A, then XL± =Y±L± = F x = X . D 

Recall that a prime ideal I is called minimal if there exists no prime ideal J 
properly contained in J. 

PROPOSITION 3.3. Let A be a DRl-monoid and X C A. Then X x is equal 
to the intersection of all minimal prime ideals M of A such that X <JL M. 

P r o o f . Let M be a minimal prime ideal with X $£ M. Let a G X1- and 
b G X \ M. Obviously, |a| A |6| = 0, whence a e M, because M is prime and 
6 ^ M . Thus X 1 C M . 

If a £ XL, then \a\ A \b\ > 0 for some 6 G X. By Theorem 2.2 there exists a 
prime ideal not containing \a\ A |6|, and since any prime ideal includes a minimal 
prime ideal, there is a minimal prime ideal M such that \a\ A |6| ^ M. Therefore 
neither \a\ nor |b| belongs to M, and hence X $£ M and a £ M. D 
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COROLLARY 3.4. Let A be a DRi-monoid, X C A. 

(1) X1- is the intersection of all prime ideals not containing X. 
(2) X1- is an ideal of A. 
(3) If X"1 is a proper prime ideal, then it is minimal. 

P r o o f . By the first part of the proof of the previous proposition, XL is 
included in the intersection of all prime ideals not containing X. However, it 
is a subset of the intersection of all such minimal prime ideals which is equal 
to X1. 

The statements (2) and (3) are evident, since any polar is the intersection of 
minimal prime ideals. • 

As proved in [12], 1(A) is a Brouwerian lattice in which the pseudocomple-
ment of an ideal J is given as follows: 

J* = {a e A : (Vx G I)(\a\ A \x\ = 0)} . 

Hence it can be easily seen that J* = J 1 whenever J is an ideal. Conversely, any 
polar P in A is the pseudocomplement of some ideal of A; in fact, P = (P 1 )* . 
Summarizing, the polars in A are precisely the pseudocomplements in the lattice 
1(A). Therefore, by the Glivenko-Frink Theorem (e.g. [7]), it follows that: 

THEOREM 3.5. The set V(A) of all polars in a DRi-monoid A, ordered by 
set inclusion, is a complete Boolean algebra. 

By [17; Theorem 8], if J is a prime ideal of a representable commutative 
DRi-semigroup, then either J 1 1 = A or J is minimal prime. 

PROPOSITION 3.6. If I is a proper prime ideal of a DRi-monoid A, then 
either I±A- = A or I±L = J . In the latter case, I is minimal prime. 

P r o o f . Suppose I±A- ^ A, that is, IL ^ {0}. Let x e J 1 1 \ J; then 
\x\ A \y\ = 0 for any y e J 1 . As x £ J, we have y e I. However, J fl J-1 = {0} 
yields y = 0. Consequently J 1 = {0}, which is a contradiction. Thus I1-1- = J. 
The rest follows immediately from Corollary 3.4(3). • 

PROPOSITION 3.7. Let I be a linearly ordered ideal of a DRi-monoid A. 
Then J 1 is a prime ideal. 

P r o o f . Suppose x,y £ J 1 , that is, |rr| A \a\ > 0 for some a e I and 
|y| A |6| > 0 for some b e J . Since J is linearly ordered, it follows 0 < \x\ A \a\ A 
|y| A |6| = \x\ A \y\ A \a\ A |6|. But \a\ A |6| G J, and so \x\ A \y\ £ J 1 , proving 
that I1 is a prime ideal of A. D 

In conclusion, we examine minimal prime ideals and polars of DRi-monoid 
satisfying the identities (*). 
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LEMMA 3.8. An ideal I of a DIU-monoid A with (*) is totally ordered if and 
only if x A y = 0 entails x = 0 or y = 0 for all x,y G J. 

P r o o f . The part " = > " is obvious. Conversely, (*) provides (x —- y)+ 
= 0 or (y —̂  x) + = 0, whence a; ^ y or a; ^ y for any x,y G I. O 

THEOREM 3.9. Let I 7̂  {0} be an ideal of a DRt-monoid A satisfying (*). 
Then the following conditions are equivalent: 

(1) J is linearly ordered. 
(2) J 1 z8 a prime ideal. 
(3) J 1 zs a minimal prime ideal. 
(4) J 1 is a maximal polar. 
(5) J 1 1 zS a minimal polar. 
(6) J 1 1 is linearly ordered. 

P r o o f . We have already proved (1) ==> (2) =-=> (3) (see Corollary 3.4 
and Proposition 3.7). 

(3) = > (4): Assume J 1 C P for some P G P(-4), P ^ .4. Since J 1 

is prime, so is P . Further, considering P = P 1 1 , P is minimal prime, and 
therefore P = I1. 

(4) => (5): It holds that P C J 1 1 if and only if P 1 D J 1 for each 
P G P(-A), P -J-- {0}. However, P1- D I1 yields P1 = I1, and thus P = IL±. 

(5) =-» (6): Let x,y G J 1 1 and a; A y = 0. If x ^ 0, then x 1 ^ A and 
hence x 1 1 ^ {0}. Further, x G J 1 1 implies a;1 D J 1 whence x 1 1 C J 1 1 . 
Since J 1 1 is minimal, we have a:11 = J 1 1 . Thus y G a;11 = J 1 1 . But also 
y G a;1. Hence y G a:1 n x 1 1 = {0}, showing y = 0. Thus, by the preceding 
lemma, J 1 1 is a chain. 

(6) -=> (1): It is clear as J C J 1 1 . • 

Remark 3.10. We remark that one also defines (using the property in Corol
lary 3.2 and the condition (2) of Theorem 2.1) polars and prime elements in 
algebraic, distributive lattices (see [14], [19]). The conditions (2) through (5) 
of Theorem 3.9 are equivalent in lower-bounded Brouwerian lattices by [14; 
Lemma 2.1] and in certain algebraic, distributive lattices by [19; Proposition 5.2] 
(if A fulfils (*), then 1(A) is such a lattice). In addition, (2)-(5) are equivalent 
to the condition that J (respectively, J 1 1 ) is a basic element in the ideal lattice 
1(A), that is, J = {0} or K = {0} whenever J n K = {0} for J, K C J. It 
follows from Lemma 3.8 that an ideal J of a DR£-monoid A satisfying (*) is 
basic in 1(A) exactly if J is linearly ordered. Therefore, under the premises of 
Theorem 3.9, the statements (l)-(6) are equivalent. 
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Let us notice further that Proposition 3.3 is also in fact only a particular 
case of a similar statement from [19]. Indeed, by [19; Lemma 2.4], in an alge
braic distributive lattice L, the pseudocomplement a* of a G L equals to the 
intersection of all minimal prime elements of L not exceeding a. 

COROLLARY 3.11. Given a DRl-monoid A satisfying (*), the following 
statements are equivalent: 

(1) A is linearly ordered. 
(2) 1(A) is linearly ordered. 
(3) Any ideal is prime. 
(4) {0} is a prime ideal. 

P r o o f . By Proposition 2.11 we have (1) ====> (2) ======> (3) and the 
implication (3) =====> (4) is evident. Finally, (4) ====> (1) follows by Theorem 3.9 
as A is totally ordered if and only if {0} = AL is prime. • 

4. Pseudo BL-algebras 

In this section, we apply the previous results to pseudo BL -algebras that 
constitute a noncommutative abstraction of .BL-algebras (see [8], [2] and [3]) 
and that can be regarded as a special case of JDJR~?-monoids (see [13]). Recall the 
notion of a pseudo BL -algebra and some further concepts. 

An algebra (A\ V, A,O,-r,-w,0,1) of the type (2,2,2,2,2,0,0) is called a 
pseudo BL-algebra if and only if (A; V, A, 0,1) is a bounded lattice, (A; 0,1) is 
a monoid and the following conditions are satisfied, for all x, y, z G A: 

(1) xQy ^ z 4==> x ^ y - » z <$===> y ^ x ~> z, 
(2) xAy=(x-±y)Ox = xO(x^y), 
(3) (x -> y) V (y —r x) = (x **> y) V (y ^ x) = 1. 

A subset F of a pseudo BL -algebra A is said to be a filter of A if 

0) l e - F , 
(ii) x © y e F for all x, y G F , 

(iii) F contains together with any x also all y such that y ^ x. 

A filter is prime (regular) if it is finitely (completely) meet-irreducible in the 
lattice of filters F(A). 

The copolar of X C A is the set 

XL = {a G A : (VxG X)(a V x = 1)} . 

A subset X of .4 is called a copolar in A ii X = YL for some Y C .A. 
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By [13], pseudo BL -algebras are categorically equivalent to bounded 
Di?£-monoids satisfying the identities (*). In fact, if (A; V, A,©, -», ~*,0,1) 
is a pseudo BL-algebra and if we put ld = 0, Od = l , x V d y = x A y , 
xAdy = xVy,x-^y = y->x and x v- y = y ~* x for any x,y e A, 
then (A; ©, 0d, Vd, Ad, —--, v-) is a bounded .Di^-monoid whose greatest element 
is ld. Of course, this DR£-monoid fulfils (*). 

Conversely, if (A; +, 0, V, A, --•, T-) is bounded .Di^-monoid with the greatest 
element 1 satisfying (*) and if we define the operations Vd, Ad, ->, ~» as above, 
then (A; Vd, Ad, +, ->, ^ , 0d, ld) becomes a pseudo .BL-algebra. 

Considering the duality between the mentioned classes of algebras, the fol
lowing consequences of Theorem 2.12, Proposition 3.3, Proposition 3.6, and The
orem 3.9 are obtained. 

Just as in the case of Z)1W-monoids, for any filter F of a pseudo BL -algebra 
A we define 

e,(F) = {(x,y) eA2: (x -> y) A (y -> x) G F} 
and 

92(F) = {(x,y) eA2: (x ~> y) A (y ~> x) e F} . 

THEOREM 4.1. If A is a pseudo BL-algebra, then for any filter F of A, the 
following conditions are equivalent: 

(1) F is prime. 
(2) (VG,HeF(A))(GnHCF ==> (G C F orHCF)). 
(3) (Vx,yeA)(xVy eF = > (x e F or y e F)). 
(4) (Vz,yG.A)(a;V?/ = 1 = > (x G F or y e F)). 
(5) (Vx, y G ;l)(x ->y eF or y -> x e F). 
(6) (\/x,y e A)(x ~> y e F or y ^ x e F). 
(7) ^ ( ^ / © ^ F ) is linearly ordered. 
(8) ^(*A)/02(.F) z8 linearly ordered. 
(9) T/ie 8ef o/ a// filters including F is linearly ordered by set inclusion. 

(10) F is the intersection of some chain of regular filters. 

Remark 4.2. In [2], the concept of a prime filter was established be means of 
the condition (3) and it was shown that (3), (5), (6), (7) and (8) are equivalent. 

COROLLARY 4.3. The set of all prime filters and so also the set of all regular 
filters of any pseudo BL-algebra is a root-system. 

PROPOSITION 4.4. Let A be a pseudo BL-algebra and X C A. Then X1 is 
equal to the intersection of all minimal prime filters M of A such that X <£ M. 
Consequently, any copolar XL is a filter, and moreover, X1 is a minimal prime 
filter whenever XL is proper prime. 
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PROPOSITION 4.5. If F is a proper prime filter of a pseudo BL-algebra A, 
then either FLA- = A or F1-1- = F and F is minimal prime. 

THEOREM 4.6. Let F / {1} be a filter of a pseudo BL-algebra A. Then the 
following conditions are equivalent: 

(1) F is linearly ordered. 
(2) F1- is a prime filter. 
(3) FL is a minimal prime filter. 
(4) F1 is a maximal copolar. 
(5) F1-1 is a minimal copolar. 
(6) F1-1 is linearly ordered. 

Remark 4.7. The equivalence of the statements (1) and (2) was also proved 
in [2]. 

COROLLARY 4.8. The following statements are equivalent in any pseudo 
BL-algebra A: 

(1) A is linearly ordered. 
(2) J7 (A) is linearly ordered. 
(3) Every filter of A is prime. 
(4) {1} is a prime filter. 
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