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INCLUSION THEOREMS FOR SOME SETS 
OF SEQUENCES DEFINED BY (^-FUNCTIONS 

ENNO KOLK — ANNEMAI M O L D E R 

(Communicated by Uubica Holá) 

ABSTRACT. For a sequence space A and a sequence of tp-functions F = (fk) 
let \P(F) = {x = (xk) : F(x/p) G A} (p > 0) , A 3(F) = (J \P(F) and 

p>0 
AV(F) = p | A P (F ) , where F(x) = (fk(\xk\)) . We give necessary and sufficient 

P>0 
conditions for the inclusions of the type A C M P (F), A C M V (F) , Al^(F) C u and 
A 3(F) C p, where A,u G {m,cQ,£ } . Some special cases are also considered. 

1. Introduction 

By the term sequence space we shall mean, as usual, any linear subspace of 
the vector space s of all (real or complex) sequences x = (xk) = (-c^)^^, where 
N = { 1 , 2 , . . . } . A sequence space A is called solid if (xk) G A and \yk\ < \xk\ 
(k G N) yield (yk) G A. Well-known solid sequence spaces are the space m of 
all bounded sequences, the space c0 of all convergent to zero sequences and the 
spaces 

*P = {* = (**)• EKI P <°o} ( 1 < P < O O ) . 

For p = 1 we write £ instead of £l. 
A function / : [0, oo) —> [0, oo) is called a modulus function (or simply 

a modulus) if (see, for example, [22; p. 975]) 
(i) /(£) = o if and only if t = 0, 

(ii) / is non-decreasing, 
(Hi) f(t + u)<f(t) + f(u) ( t , u > 0 ) , 
(iv) / is continuous. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40F05. 
K e y w o r d s : tp-function, modulus, Orlicz function, sequence space of Maddox. 
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It is interesting to remark that the moduli are the same as the moduli of con
tinuity: a function / : [0, oo) -» [0, oo) is a modulus of continuity of a continuous 
function if and only if the conditions (i)-(iv) are satisfied (see [4; p. 866]). 

If in the definition of a modulus the condition (iii) is replaced by the condition 
of convexity 

(v) f(at+(l-a)u) < af(t) + (l-a)f(u) (t,u> 0, 0 < a < 1), 
/ is called an Orlicz function. 

Provided a modulus / , R u c k l e [22] defined and studied the space 

{ o o >. 

x = (xk): Tf{K\)<™} = {x = (xk): (f(\xk\)) G £} . 
k=l J 

For an Orlicz function / , the Orlicz sequence space is determined by (see [14; 
p. 137]) 

£3(f) = {x = (xk) : {3p>0)(Zf{\xk\/p) < oo)} . 

If F — (fk) is a sequence of Orlicz functions, the space 

e3(F) = {x = (xk) : {3p>0)(£fk{\xk\/p) < oo)} 
is called a modular or Musielak-Orlicz sequence space (see [18; p. 173]). Together 
with £3(f) and £3(F) there are examined also the sets 

t 

e 

' ( / ) = {x = (xk) : (Vp>0) ( £ f{\xk\/p) < oo)} , 

\F) = {x = (xk) : {Vp>0)(Zfk{\xk\/p) < oo)} 

In the mathematical literature there exist various modifications of these defi
nitions, where £ is replaced by another solid sequence space (see, for example, 
[!]> [2], [5]-[7], [10]-[13], [15], [17], [19]-[21], [23]). To investigate all such spaces 
from a more general point of view, we use the following notion. 

DEFINITION 1. A function / : [0, oo) -» [0, oo) is called a (p-function if the 
conditions (i) and (ii) are satisfied. 

It should be noted that by our definition, a (^-function is not necessarily 
continuous and unbounded (cf. [18; p. 4]). 

Let F = (fk) be a sequence of (D-functions and let F(x) = (fk(\xk\)). For a 
sequence space A we define the sets 

\P(F) = {x = (xk) : F(x/p)e\} (p>0), 

A3(F) = {x = (xk) : (3p>0)(F(x/p) G A)} = | J X"(F), 
p>0 

AV(F) = {x = (xk) : (Vp>0){F(x/p) G A)} = f | X"(F). 
p>0 
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We write X(F) instead of X1(F). If / is a ^-function and fk = f (k e N), we 
write Xp(f), A3( / ) and Av( / ) instead of XP(F), X3(F) and AV(F), respectively. 

For an arbitrary sequence of ^-functions F = (fk) the sets AP(F) , X3(F) 
and AV(F) are different in general, and 

XW(F)CXP(F)CX3(F). (1) 

At the same time, the sets XP(F) (p > 0) may not be linear, i.e., they may 
not be sequence spaces. However, a routine verification shows that, provided A 
is a solid sequence space, the sets XP(F), X3(F) and AV(P) are solid sequence 
spaces whenever all fk satisfy either (iii) or (v). Moreover, the equalities 

\^(F) = Xp(F) = X3(F) (2) 

hold if the sequence of ^-functions F satisfies so-called uniform A2-condition: 
there exists a constant K > 0 such that fk(2t) < Kfk(t) (k G N, t > 0) 
(cf. [14; p. 167]). 

In particular, for a solid sequence space A, the sets XP(F), X3(F) and AV(F) 
are sequence spaces whenever fk (k EN) are either moduli or Orlicz functions. 
Since uniform A2-condition holds (with K = 2) for every sequence of moduli 
F = (fk), we also conclude that (2) is true whenever all fk are either moduli or 
Orlicz functions such that F satisfies uniform A2-condition. 

The aim of this paper is to give necessary and sufficient conditions for the 
inclusions of the type A C pp(F), XP(F) C p, X C pw(F) and X3(F) C p, 
where F = (fk) is a sequence of ^-functions and A,/i G {ra, c0,£p}. Some 
simple special cases are also considered. 

Our theorems generalize the results of [12], where the inclusions A C p(F) 
and X(F) C p have been characterized for a sequence of moduli F = (fk) and 
A, p G {ra, c 0 } . Our investigations are also motivated by the work of G r i n n e 11 
[8] which is devoted to the study of the inclusions A C p, for various sequence 
spaces A and lx, by the assumptions that / : R -» R and p, = [x = (xk) : 

( /K ) ) e / i } . 
Throughout this paper, by an index sequence, we mean any strictly increasing 

sequence of natural numbers. 

2. Inclusions /I C X(F) 

Let F = (fk) be a sequence of y>-functions, 1 < p, q < oo and 

C = {^ = ( ^ ) € ^ : (VA;GN)(xfe>0)}. 

Necessary and sufficient conditions for the inclusions p C X(F) in the case 
A, p G {ra, c0, ^p} we derive from the results on superposition operators given by 
D e d a g i c h and Z a b r e i k o [3]. 
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Recall that every sequence G = (gk) of functions gk: R -> R (k G N) 
defines a superposition operator PQ\ s -> 5 by PG(x) = (gk.(xk)) - ^ is c l e a r 

that P G : /i -> A if and only if /.i C AG, where AG = {x = (zfc) : (gk(xk)) G A} . 
Now, if fk (k G N) are even extensions of our (^-functions fk, i.e., 

/*(') =/fc(l*l) (*eR), 

cind F = (fk), then we have 

\i C X(F) «=-> Pp \ \i -> A 

because of Xp = A(F). So by [3; Theorems 1, 7, 8] we may characterize the 
inclusions £q C £p(F), l Cc 0 (F ) , c0 C tp(F), c0 C c0(F), m C ^ ( F ) , 
m C C0(JF) and m C m(F), using the following classes of (/^-function sequences: 

$0 = 1^ = (/*) : ( 3 K ) € ^ ) (3&>0) (3^0€N) (B6>0) 

(yk>k0) (We[0, J]) (/fe(t) < afe + tTf/p) } , 

F = ( / , ) : (3t0>0)(t(fk(t0))
P<oo)}, 

E(/fcW)p<oo)}, 

E=(/fc): (3fco€N)(<lim^up/fe(t) = 0 ) } , 

F = ( / , ) : (Vt>0)(fclim /,(«) = 0 ) } , 

F = (fk)- (Vt>0)(sup/ f c( t )<oo)}, 
VA;GN ' J 

F = (fk): (3f0>0) ( sup/fc(t0) <*>)}. 
v t e w / J 

ф 1 = 

ф 2 = 

ф = 
^ З 

Ф4 = 

Ф 5 = 

Ф, 
'JfeGN 

THEOREM 1. The following equivalences are true: 

(i) iq c ep(F) 
(2) c0 C y F ) 
(3) mC£p(F) 

F € Ф 0 ; 
F € Ф,; 
F є Ф 

(4) c 0 C c 0 ( F ) 
(5) m C c 0 ( F ) 
(6) m C m ( F ) 

2> 
£pCc0(F) <=-=> Fe<E>3; 
F € $ 
F € $ 

4 ' 

5 ' 

[3; Theorem 7] asserts that a superposition operator PG maps ^ into m if 
and only if 

h
 l im, >*(*) !<<»• (3) 

k—>oo, t—>0 
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It seems that this is not true in general. Defining, for example, gk(0) = 0 and 
gk(t) = 1 - (-l)k if t ^ 0, we clearly have PG: £ —> m but the limit (3) does 
not exist. 

Nevertheless, by [3; Theorem 8], 

c0 c m(F) <=> F G $ 6 • (4) 

We show that the condition F G $ 6 is necessary and sufficient also for £p C m(F). 

THEOREM 2. The following statements are equivalent: 

(a) c0 Cm(F); 
(b) £pCm(F); 
(c) Fe$6. 

P r o o f . Since (a) -=(> (b) is obvious, then by (4) it suffices to prove that 
(b) => (c). Let t C m(F). If F £ $ 6 , then sup fk(t) = oo for any t > 0. We 

ken 
thus can find an index sequence (k{) such that 

4 ( 2 - ^ ) > i ( i € N ) . (5) 

Define 
2-i!P for k = k- (t EN), 

0 otherwise. 
*,. = ' 

Then the sequence x = (xk) belongs to i , but by (5) we get x £ m(F), contrary 
to £p C m(F). Therefore F must be in $ 6 . • 

3. Inclusions X(F) C /I 

Let, as in Section 2, F = (/fc) be a sequence of ^-functions and 1 < p < oo. 
In this section we study the inclusions X(F) C /i, where A E {/^,c0,^p} and 
/i G {m, c0}. At it the following classes of <p-function sequences are important: 

Ь = {? = (Л) = ( - М * ) ( Нт 8ир Ы Д(*) = оо) } 

Ф8 = {I7 = (Л) : (Э*о>0) ( тГ Д(*0) > о) } , 

% = {Р = (!,)•• (М>0)(Ша Д(<) = оо)}, 

*ю = {*" = (Д) = (У*>0)(т*Д(*)>о)}. 
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THEOREM 3. The inclusion m(F) C m holds if and only if F £ &7 . 

P r o o f . 

Necessity. Let m(F) C m. Suppose that F ^ $ 7 . Since the functions 

ip(t) = sup inf fk(t) 
n>kQ

 k>n 

are non-decreasing for every fc0 G N, there exists a number H > 0 such that 
inf fJt) <H i 

(k.) such that 

inf fk(t) < H for all t > 0. Thus, given e > 0, we can choose an index sequence 

fki(x)<H + e ( « 6 N ) . 

So, taking 
i if k = kz ( i 6 N ) , 

0 otherwise, 

we get (xfc) G m(F). But (xfc) ^ m, contrary to m(F) C m. Therefore F must 
be in $ 7 . 

Sufficiency. Let x G m(F), i.e., /fc(|a;fc|) < M (k G N) for some M > 0. If 
F G $ 7 , then there exists a number T > 0 such that t >T implies 

Mfk(t)>M ( n > f c 0 ) . 

This yields 
fn(t)>M ( n > f c 0 , t > T ) . (6) 

Assuming x ^ m , we can choose indices k{ > k0 (i G N) such that l ^ | > "̂> 
but 

/ J M < M (ieN), 
contrary to (6). Hence x em and, consequently, m(F) C m . D 

THEOREM 4. The following statements are equivalent: 

(a) c0(F) Cm; 
(b) £p(F)Cm; 
(c) FG$8. 

P r o o f . 
(a) -=-=> (b) follows immediately. 

(b) •=-» (c). Let £p(F) C m . I f F 0 8 , then inf /fc(t) = 0 for all t > 0. 

Thus we can choose an index sequence (kz) with 

/ f c t ( i ) < 2 - i ! p ( i e N ) . 
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So, if 

• { 
i for fc = fc. ( i G N ) , 

0 otherwise, 

we have x G £p(F). But x ^ m, contrary to £ (F) C m. Hence F G $ 8 . 
(c) = > (a). Suppose that F G $ 8 and x = (x .̂) belongs to c0(F). If we 

assume x ^ m, there exists an index sequence (fcj with |rcfc.| > £0 (i G N). 
This gives 

hMo) < hAKl) (-en). 
which by x G c0(F) shows that lim fk.(t0) = 0, contrary to F G $ 8 . Conse-

quently, x € m and the inclusion c0(F) C m holds. • 

THEOREM 5. The inclusion m(F) C c0 /ioZds if and only if F G $ 9 . 

P r o o f . 
Necessity. Let m(F) C c0. Assuming that F1 ^ $ 9 , we can find numbers 

£0 > 0, M > 0 and an index sequence (fcj such that fk.(t0) < M (i G N). So 
the sequence x = (xk), where 

t0 for fc = fci ( t € N ) , 

0 otherwise, - { 
belongs to m(F'). But x ^ c0. Consequently, F1 G $ 9 is necessary for m(F) C c0. 

Sufficiency. Let F G $ 9 and let x = (xfc) belongs to m(F). If x ^ c0, there 
exist a number e0 > 0 and an index sequence (k{) such that |xfc. | > £0 (i G N). 
Now, since the (/^-functions are non-decreasing, by x G m(F) we have, for some 
M > 0 , 

fki(e0)<fki(\xki\)<M ( i 6 N ) , 

contrary to F G $ 9 . Hence x G c0, proving m(F) C c0. D 

THEOREM 6. T/ie following statements are equivalent: 

(a) c0(F) C c 0 ; 
(b) f p ( F ) C c 0 ; 
(c) FG$10. 

P r o o f . 
(a) ------> (b) is clear. 
(b) =->- (c). Let £ (F) C c0. If F ^ $ 1 0 , there exists a number t0 > 0 such 

that inf fk(t) = 0 for all t <t0. Thus, letting t{ = £0
z/(2 +1) > by induction we 

can choose an index sequence (fcf) such that 

4 ( * . ) < 2 - i / p ( . € N ) . 
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Now, if x = (xk), where 

_(t- for k = k. ( i G N ) , 
h 1 0 otherwise, 

then x G tv(F). But by lim a;.. = lim £• = tQ > 0 we have x £ cQ, which 
^ i->oo * z—>oo 

contradicts ^ ( F ) C cQ. So F1 must be in $ 1 0 . 
(c) = > (a). Let F G $ 1 0 and let x = (xfc) belongs to cQ(F). If we suppose, 

that x £ c0 , then there exist a number £Q > 0 and an index sequence (k{) such 
that \xk.\ >eQ (i G N). This yields 

0<fkt(eQ)<fki(\xki\) ( i G N ) , 

cind by x G c0(F) we have lim fk, (eQ) = 0, contrary to F G $ 1 0 . Hence x must 

belong to c0 . Consequently, c0(F) C c0 . • 

4. T h e se t s A^(F), X3(F) a n d AV(F) 

Let F = (fk) be a sequence of <^-functions and A, /i G {m, c0, ^ } . For a fixed 
number p > 0 we consider a new sequence of (^-functions Fp = ( /£) , where 

f£(t) = fk(t/p) ( f c € N ) . 

It is not difficult to see that AP(F) = A(EP) and 

F ' € $ i ^ F 6 $ j ( i = 0 , l , 2 , . . . , 1 0 ) . 

Thus 
H C A(F) «*-=> n C Ap(F), A(F) C n <=*• A^(F) C /x (7) 

and, therefore, all our Theorems 1-6 remain true if there A(F) is replaced by 

A W 
Further, because of (1) it is clear that for a sequence of (^-functions F — (fh) 

we have 

A c /iV(F) = > A c fi(F), X3(F) C p =-» X(F) C fi. 

It turns out that these implications are reversible. 

THEOREM 7. For a sequence of ip -functions F = (fk) and a pair of sequence 
spaces A,// we have 

X c i^(F) <==> X C fi(F), X3(F) C ii <=» X(F) C fi. 
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P r o o f . I t suffices to prove that 

M C \(F) - ^ / i C AV(F), \(F) C / i = » \3(F) C p . 

But these implications follow immediately from the equalities AV(F) = f] \P(F), 
p>0 

\3(F) = IJ \P(F) because of the fact that A and p as vector spaces contain 
p>0 

together with an element x also the element x/p, and conversely. D 

The equivalences (7) and Theorem 7 show that we can give extended versions 
of all Theorems 1-6, replacing there \(F) by \P(F) and adding to each state
ment of the type p C \P(F) or \P(F) C p the equivalent statement p C AV(F) 
or \3(F) C p , respectively. Here we formulate extended versions of Theorems 2 
and 6 only. 

THEOREM 8. Let 1 < p < oo and p > 0. The following statements are 
equivalent: 

(a) c0CmP(F), 
(b) c0 C m v ( F ) 
(c) £p C m"(E) 

(d) lp C m v ( F ) 

(e) FG<I>6. 

THEOREM 9. Lei 1 < p < oo and p > 0. T/ie following statements are 
equivalent: 

(a) C 3 ( F ) C c 0 ; 

(b) c g ( F ) C c 0 ; 

(c) ^ ( F ) c c 0 ; 

(d) ^ ( F ) c c 0 ; 

(e) F e f 1 0 . 

5. Some consequences 

First let F = (/fe) be a constant sequence of (/^-functions, i.e., fk = f 
(k € N). In this case we write A(/) instead of X(F), and / € 5>j instead 
of F e $ f for i = 0 , 1 , 2 , . . . , 10. It is clear that for an arbitrary (^-function / 
we have 

f i ^ i (i = 1,2,4,9) and / e <b. ( . = 5 ,6 ,8 ,10) . 
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Moreover, 

/ € $ 0 «=» (3a>0) (35>0) (Vt€[0, o]) (/(*) < erf*'*) , 

/ G $ 3 ^ > ^lim / ( t ) = 0, 

/ G $ 7 <=> lim f(t) = oo. 
t->oo 

Thus our results permit to formulate: 

COROLLARY 1. Let f be a (p-function, 1 < p, q < oo and p > 0. Tbe 
following statements are true: 

(i) *, c < ( / ) <=* eqc ip
p(f) 

<=> (3a>0) (3<5>0) (VtG[0,5\) (f(t) < atq/p) ; 
(2) c 0

3 ( / ) C c 0 ; 
(3) c 0 C c v ( / ) ^=> c0 = c*(f) = cp

0(f) = 4(f) ^=> lhn+f(t) = 0; 

(4) m C m v ( / ) ; 
(5) m3(f) C m <=> m v ( / ) = m p ( / ) = m3(f) = m ««=> lim /(£) = oo. 

t—>CO 

It should be noted that the inclusion m C m(f) and the equivalences 

lq C * p ( / ) <=> (3a > 0) (35 > 0) (Vt€[0, <*]) (/(*) < at*'*) , 

c 0 C c 0 ( / ) 4==> ^lim / ( t ) = 0 

follow also from the corresponding results of G r i n n e 11 [8] because of A(/) = A,-. 
As an example of non-constant sequence of (^-functions we consider the se

quence F(r) = (fk ) of (^-functions /^ r )( t) = tTk, where r = (rk) is a bounded 
sequence of positive numbers, i.e., 

0 < rk < sup f = I? < oo . 

For F = F ( r ) the sequence spaces m ( F ) , c0(F) and ^(F) are the sequence 
spaces of M a d d o x (see, for example, [9]) 

m(r) = \x = (жfc) : sup |xJГ f c < oo} , 

c 0 ( r ) = {x = (xk) : Hm K P = o ) , 
^ k—юo J 

^(r) = {ж = (Жfc) . g [ajjг* < 0 O ì 
k=\ 

c(r/s), respectively. Since the functions fk
,s](t) = trk/s (k G N) with s = max{l,J t} 

are moduli, and for p > 0 we have 

m^(F^) = m ^ r / 5 ) ) , cp
0(F^) ^ cp

0(F^r/s)) , ^ r ) ) = ^ ( F ^ 5 ) ) , 
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the equalities (2) hold if F = F^ and A G {m,c0,£}. 
To apply our theorems for sequence spaces of M a d d o x, we must describe 

the classes of sequences r = (rk) with P(r/5) e $0 (for p = s) and F ( r ) G $• 
for i = 1,2,..., 10. By 

min{l,tK} < tTk < max{l,tH} 

it is easy to see that for any r = (rk) we have 

F^e$l (i = 5,6,8,10) and P(r) £ $• (i = 1,2,4,9). 

Further, from the definitions of the sets $0 and $ 3 it follows that 

F(r/s) e $ Q ^ r G ^ g a n d F(r) G ^ ^ ^ r E ? j i ^ 

where 

Kl = {r = {rk) • (3(%)G^+) {3k0eN) (36>0) (35>0) 

(Vfc>/c0) (VtG[0,S\) {trk <ak + bt")} , 

W l = {r = (rfc): i n f r f c > 0 } . 

We claim that the (^-function sequences P(r) from $ 7 are also characterized by 
r e7Zl. Indeed, for t > 1 and k0 G N we have 

sup inf rk 

sup inf trk =t^k°k-n , 
n>k0

 k>n 

which gives that F^ G $ 7 if and only if 

(3fc0GN)(sup infT, > 0 ) . (8) 
^n>k0

k>n ' 

It is clear that inf T, > 0 yield (8). Conversely, let (8) be true. If T ^ 1ZX, then 
k£N 

for some index sequence (k{) we have lim T,. = 0 , contrary to (8). 
i—>oo % 

Consequently, from Theorems 1, 3 and 6 we get: 
COROLLARY 2. Let 1 < q < oo and let r = (rk) be a bounded sequence of 
positive numbers. Then 

(1) £qc£(r) <=> relZq
0; 

(2) £qCc0(r) *=* reKi; 

(3) c0(r) C c0 & m C m(r); 
(4) c0(T) = c0 <==> m(T) = m <=> r elZx. 

Corollary 2 shows that £ C £(r) if and only if T G TZ\. A different necessary 
and sufficient condition for the inclusion £ C £(r) is contained in a (more general) 
result of M a d d ox (see [16; Theorem 1]). 

277 



ENNO KOLK — ANNEMAI MOLDER 

REFERENCES 

[1] BHARDWAJ , V. K.—SINGH, N . : Some sequence spaces defined by Orlicz functions, 

Demonstratio Math. 3 3 (2000), 571-582. 

[2] CONNOR, J . : On strong matrix summability with respect to a modulus and statistical 

convergence, Canad. Math. Bull. 32 (1989), 194-198. 

[3] DEDAGICH, F .—ZABREIKO, P . P . : On superposition operators in £p spaces, Sibirsk. 
Mat. Zh. 28 (1987), 86-98. (Russian) 

[4] Encyclopaedia of Mathematics, Vol. 1 (M. Hazewinkel, ed.), Kluwer Academic Publishers, 
Dortrecht, 1995. 

[5] ESI, A. : Some new sequence spaces defined by a modulus function, Math . Slovaca 49 

(1999), 53-61. 

[6] ESI, A. : Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math . Acad. 
S in i ca27 (1999), 71-76. 

[7] GHOSH, D.—SRIVASTAVA, P . D . : On some vector valued sequence space using Orlicz 

function, Glas. Mat. Ser. I l l 34 (1999), 253-261. 

[8] GRINNELL, R. J . : Functions preserving sequence spaces, Real Anal. Exchange 25 

(1999/2000), 239-256. 

[9] GROSSE-ERDMANN, K.-G.: The structure of the sequence spaces of Maddox, Canad. 
J. Math. 44 (1992), 298-302. 

[10] KOLK, E . : Sequence spaces defined by a sequence of moduli. In: Abstracts of conference 
"Problems of Pure and Applied Mathematics", Tartu, 1990, pp. 131-134. 

[11] KOLK, E . : On strong boundedness and summability with respect to a sequence of moduli, 
Tartu Ul. Toimetised 960 (1993), 41-50. 

[12] KOLK, E. : Inclusion theorems for some sequence spaces defined by a sequence of moduli, 

Tartu Ul. Toimetised 970 (1994), 65-72. 

[13] KOLK, E. : F-seminormed sequence spaces defined by a sequence of modulus functions 

and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547-1566. 

[14] LINDENSTRAUSS, J .—TZAFRIRI , L.: Classical Banach Spaces. I. Sequence Spaces. 
Ergeb. Math . Grenzgeb. 92, Springer-Verlag, Berlin-New York, 1977. 

[15] MADDOX, I. J . : Sequence spaces defined by a modulus, Math. Proc. Cambr idge Philos. 
Soc. 100 (1986), 161-166. 

[16] MADDOX, I. J . : A class of dual sequence spaces, Tartu Ul. Toimetised 960 (1993), 67-74. 

[17] MALKOWSKY, E.—SAVAS, E . : Some X-sequence spaces defined by a modulus, Arch. 

Math. (Brno) 36 (2000), 219-228. 

[18] MUSIELAK, J . : Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, 

Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. 

[19] PARASHAR, S. D.—CHOUDHARY, B. : Sequence spaces defined by Orlicz functions, 

Indian J. Pure Appl. Math. 25 (1994), 419-428. 

[20] PEHLIVAN, S.: On strong almost convergence and uniform statistical convergence, Acta 

Comment. Univ. Tar tu . Math. 2 (1998), 19-22. 

[21] PEHLIVAN, S.—FISHER, B . : Some sequence spaces defined by a modulus, Math . Slovaca 

45 (1995), 275-280. 

[22] RUCKLE, W. H. : FK spaces in which the sequence of coordinate vectors is bounded, 
Canad. J. Math. 25 (1973), 973-978. 

278 



THEOREMS FOR SOME SETS OF SEQUENCES DEFINED BY tp-FUNCTIONS 

[23] SOOMER, V.: On sequence spaces defined by a sequence of moduli and an extension of 
Kuttner's theorem, Acta Comment. Univ. Tartu. Math. 2 (1998), 29-38. 

Received February 6, 2003 Institute of Pure Mathematics 
University of Tartu 
50090 Tartu 
ESTONIA 

E-mail: ekolk@math.ut.ee 
annemai@math.ut.ee 

279 


		webmaster@dml.cz
	2012-08-01T17:30:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




