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(Communicated by Miloslav Duchon) 

ABSTRACT. Let X0 be a locally compact Hausdorff space, C0(X0) the space of 
all scalar-valued bounded continuous functions on X0 vanishing at infinity, and X 
a one-point compactification of XQ. We prove that weak compactness property 
of unconditionally convergent opera tors on C0(X0) can be easily deduced by 
considering the space C(X) and its dual M(X). The result is proved for the vector 
case C0(XQ,F), F being a reflexive Banach space. It is also proved that, for a 
quasi-complete locally convex space E, if c0 ^ E, then every linear continuous 
operator u: C0(X0,F) —> E is weakly compact. 

1. Introduction and notations 

We start with some notations. In this paper X0 is a locally compact Hausdorff 
space, K the field of real or complex numbers (called scalars), and X a one-
point compactification of X0; this point is called the point at infinity and we 
will denote it by q. For a Banach space F , C0(X0,F) denotes the space of 
all F-valued bounded continuous functions on X0 vanishing at infinity, and 
C(X,F) denotes the space of all F-valued continuous functions on X. We 
have C0(X0,F) = {/ G C(X,F) : f(q) = 0 } . The duals of C0(X0,F) and 
C(X,F) are denoted by M0(X0,F') and M(X,F'). Elements of M(X,F') are 
F' -valued regular Borel measures of finite variations on X ([5]) (the variation 
o f a / i G M(X,F') is denoted by \/i\). Also M0(X0,F') = {M e M(X,F') : 
|/i|({f/}) = 0} and M0(X0,F') is a closed subspace, with induced norm, of 
the Banach space M(X,F'). For an / G C(X,F), | | / | | will be considered an 
element of C(X), \\f\\(x) = | | / (* ) | | ([5]). 

For locally convex spaces, the notations and results of [9] will be used. For 
topological measure theory, notations and results of [2], [8] and [5] will be used. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 46G10, 47B10, 28C05; Secondary 
46E10, 28B05. 
K e y w o r d s : variation of a vector measure, quasi-complete. 
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All locally convex spaces are assumed to be Hausdorff and over K. For a locally 
convex space G, C and G" will denote its dual and bidual. 

E will always stand for a quasi-complete locally convex space whose topology 
is generated by an increasing family of semi-norms {p : p G P } . For an h G E' 
and PGP, h < p means |/i(p_1([0,1]))| < 1. It is obvious that, for a p G P , 
{h G E' : h < p} is equicontinuous. For two locally convex spaces (?1 , G2, 
a linear continuous mapping u: Gx —r G2 is called unconditionally convergent 

oo oo 

if for any weakly unconditionally Cauchy series ^ xn in G1 , ^ n ( x
n ) *s 

unconditionally convergent in G2.
 n=1 n=1 

2. Main results 

We start with a simple lemma which is an immediate consequence of the fact 
that a continuous mapping between two Banach spaces is weakly compact if and 
only if its adjoint is weakly compact ([3; p. 485, Theorem 8]). 

LEMMA 1. Suppose F is a Banach space and u: F —> E. a linear continuous 
mapping. Assume that the adjoint mapping u'': E' —» F' maps equicontinuous 
subsets of E' into relatively weakly compact subsets of the Banach space F'. 
Then the mapping u is weakly compact. 

P r o o f . For every p G P , let E be the completion of the normed space 
arising from the quasi-norm p , and (j> : E -» E be the canonical mapping. 
Then E C n E . For every p G P , the mapping 0 o u: F —>• E is weakly 

compact since, by the given hypothesis, its adjoint is weakly compact. Since E 
is quasi-complete, the result follows. • 

Now we state and prove the main theorem. 

THEOREM 2. Let F be a reflexive Banach space and u: C0(X0,F) —> E be a 
linear unconditionally convergent operator. Then it is weakly compact. 

P r o o f . Fix a p G P . We first prove that {hou : h G E', h < p} is rela
tively weakly compact in M(X,F'). For that we use [1; p. 151, Theorem 3.1]. 
To prove relatively weak compactness, we have to prove that {\h o u\ : he E', 
h < p} is relatively weakly compact in M(X). Suppose there is a disjoint se
quence {Vn}n

<>
=1 of open sets in X, a c > 0, and a sequence {hn}n

<)
=1 C E', 

hn < p for all n , such that \hn o u\(Vn) > c for all n. Taking Un — Vn \ {q}, 
we have \hn o u\(Vn) = \hn o u\(Un) for all n. Take { / n }^ = 1 C C(X,F) such 
that 0 < | | /n | | < xUn and \(hnou)(fn)\ > c for all n ([5; p .198, Theorem 2.1]). 

oo oo 

Since ]T fn is unconditionally weakly Cauchy in C0(XQ,F), we get YJ uUn) 
n = l n = l 
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is unconditionally convergent in E. This means p(u(fn)) —» 0, which is a con
tradiction. Thus {h o u : h G Ef, h < p} is relatively weakly compact in 
M ( X , F ' ) . Since M 0 (X 0 ,F ' ) is closed in M ( X , F ' ) , { / i o « : h e Ef, h < p} 
is relatively weakly compact in M0(X0,F'). The result follows from Lemma 1. 

• 

Remark 3. This result contains main part of the [7; Theorem 1]; see also [6; 
p. 4864, Theorem 12]. 

When c0 ^ E, we get the following corollary: 

COROLLARY 4. Let F be a reflexive Banach space and c0^-E. Then every 
linear continuous u: C0(XQ,F) -> E is weakly compact. 

oo 

P r o o f . Let { / n }~ = 1 C C0(X0,F) be such that £ | M ( / J | < oo for 
n=l 

every /x G M 0 ( K 0 , F ' ) . Since for every h G Ef, hou G M 0 ( X 0 , F ' ) , we get 
oo 

zC |M^( / n ) ) l < °°> f° r e v e rY h ^ ^ ' - Since c0 ^ 17, by [10; Theorem 4], u is 
n 1 
unconditionally convergent. By Theorem 2, u is weakly compact. • 
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