Mathematic Slovaca

Rudolf Olach; Helena Šamajová

Oscillatory properties of nonlinear differential systems with retarded arguments

Mathematica Slovaca, Vol. 55 (2005), No. 3, 307--316
Persistent URL: http://dml.cz/dmlcz/136918

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATORY PROPERTIES OF NONLINEAR DIFFERENTIAL SYSTEMS WITH RETARDED ARGUMENTS

Rudolf Olach* - Helena Šamajová**
(Communicated by Milan Medved')

Abstract

This paper deals with oscillatory properties of n-dimensional nonlinear differential systems with retarded arguments when $n \geq 3$ is odd. The problem of oscillation of all solutions is treated.

1. Introduction

We will consider the systems of nonlinear differential inequalities with retarded arguments of the form

$$
\begin{align*}
y_{i}^{\prime}(t)-p_{i}(t) y_{i+1}(t) & =0, \quad i=1,2, \ldots, n-2, \\
y_{n \quad 1}^{\prime}(t)-p_{n-1}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \operatorname{sgn}\left[y_{n}\left(h_{n}(t)\right)\right] & =0, \\
y_{n}^{\prime}(t) \operatorname{sgn}\left[y_{1}\left(h_{1}(t)\right)\right]+p_{n}(t)\left|y_{1}\left(h_{1}(t)\right)\right|^{\beta} & \leq 0, \tag{1}
\end{align*}
$$

where the following conditions are always assumed:
$n \geq 3$ is odd, $\alpha>0, \beta>0 ;$
$p_{i}:[a, \infty) \rightarrow[0, \infty), a \in \mathbb{R}, i=1,2, \ldots n$, are continuous functions and not identically zero on any subinterval of $[a, \infty)$;
$\int^{\infty} p_{i}(t) \mathrm{d} t=\infty, i=1,2, \ldots, n-1 ;$
$\stackrel{a}{h_{1}}:[a, \infty) \rightarrow \mathbb{R}, h_{n}:[a, \infty) \rightarrow \mathbb{R}$ are continuous nondecreasing functions and $h_{1}(t)<t, h_{n}(t)<t$ on $[a, \infty)$;
$\lim _{t \rightarrow \infty} h_{1}(t)=\infty, \lim _{t \rightarrow \infty} h_{n}(t)=\infty$.

[^0]
RUDOLF OLACH - hELENA ŠAMAJOVÁ

By W we will denote the set of all solutions $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$ of the system (1) which exist on some ray $\left[T_{y}, \infty\right) \subset[a, \infty)$ and satisfy

$$
\sup \left\{\sum_{i=1}^{n}\left|y_{i}(t)\right|: t \geq T\right\}>0
$$

for any $T \geq T_{y}$.
The oscillatory problem of two-dimensional differential systems with retarded arguments was studied by Ševelo and Varech [5] and in the other papers cited therein. The three-dimensional differential systems with deviating arguments were treated by Špániková in [6]. Our interest is focused on Marušiak's paper [2] where the author considered n-dimensional nonlinear differential systems with retarded arguments and investigated their oscillatory and asymptotic properties. It is to be pointed out that there is no oscillatory result for the system (1) in the case when $n \geq 3$ is odd. It is the reason why our attention in this paper is concentrated on that problem. In addition, Theorems 1 and 2 extend the result of [2; Theorem 3].

2. Main results

DEFINITION 1. A solution $y \in W$ is called oscillatory if each component has arbitrarily large zeros. A solution $y \in W$ is called nonoscillatory (resp. weakly nonoscillatory) if each component (resp. at least one component) is eventually of a constant sign.

We define $I_{0}=1$ and

$$
I_{k}\left(t, s ; p_{k}, \ldots, p_{1}\right)=\int_{s}^{t} p_{k}(x) I_{k-1}\left(x, s ; p_{k-1}, \ldots, p_{1}\right) \mathrm{d} x, \quad k=1, \ldots, n-2 .
$$

LEmMA 1. Suppose that

$$
\begin{equation*}
y=\left(y_{1}, \ldots, y_{n}\right) \in W \tag{2}
\end{equation*}
$$

is a nonoscillatory solution of (1) in the interval $[a, \infty)$ and

$$
\begin{equation*}
(-1)^{n+i} y_{i}(t) y_{1}(t)>0 \quad \text { on } \quad\left[t_{0}, \infty\right), \quad t_{0} \geq a, \quad i=2, \ldots . n \tag{3}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left|y_{1}\left(h_{1}(t)\right)\right| \geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x \tag{4}\\
& \text { all large } t
\end{align*}
$$

for all large t.

Proof. Let $t_{0} \leq s \leq t$. It is evident that

$$
y_{1}(s)=y_{1}(t)-\int_{s}^{t} y_{1}^{\prime}(x) \mathrm{d} x=y_{1}(t)-\int_{s}^{t} p_{1}(x) y_{2}(x) \mathrm{d} x
$$

The second integral can be calculated by parts. Denote

$$
v(x)=\int_{s}^{x} p_{1}(\tau) \mathrm{d} \tau=I_{1}\left(x, s ; p_{1}\right), \quad u(x)=y_{2}(x)
$$

Then we have

$$
\begin{aligned}
y_{1}(s) & =y_{1}(t)-y_{2}(t) I_{1}\left(t, s ; p_{1}\right)+\int_{s}^{t} y_{2}^{\prime}(x) I_{1}\left(x, s ; p_{1}\right) \mathrm{d} x \\
& =y_{1}(t)-y_{2}(t) I_{1}\left(t, s ; p_{1}\right)+\int_{s}^{t} y_{3}(x) p_{2}(x) I_{1}\left(x, s ; p_{1}\right) \mathrm{d} x
\end{aligned}
$$

Applying further $(n-3)$ times the method by parts on the integral above we obtain the following identity

$$
\begin{aligned}
y_{1}(s)= & \sum_{j=0}^{n-2}(-1)^{j} y_{j+1}(t) I_{j}\left(t, s ; p_{j}, \ldots, p_{1}\right) \\
& +\int_{s}^{t} p_{n-1}(x)\left|y_{n}\left(h_{n}(x)\right)\right|^{\alpha} \operatorname{sgn}\left[y_{n}\left(h_{n}(x)\right)\right] I_{n-2}\left(x, s ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x \\
& t_{0} \leq s \leq t
\end{aligned}
$$

In view of (3) and the monotonicity of $y_{n}(t)$, we obtain for $T \geq t_{0}$ sufficiently large,

$$
\begin{aligned}
& y_{1}(s) \operatorname{sgn}\left[y_{1}(s)\right]= \sum_{j=0}^{n-2}(-1)^{j} y_{j+1}(t) \operatorname{sgn}\left[y_{1}(t)\right] I_{j}\left(t, s ; p_{j}, \ldots, p_{1}\right) \\
&+\int_{s}^{t} p_{n-1}(x)\left|y_{n}\left(h_{n}(x)\right)\right|^{\alpha} I_{n-2}\left(x, s ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x \\
& T \leq s \leq t \\
&\left|y_{1}\left(h_{1}(t)\right)\right| \geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x \\
& t>T
\end{aligned}
$$

The lemma is proved.

RUDOLF OLACH - helena šamajová

The next notation will be used:

$$
\begin{aligned}
\bar{p}_{i}(t) & =\min \left\{p_{i}(s): h_{1}(t) \leq s \leq t\right\}, \quad t \geq a, \quad i=1, \ldots, n-1, \\
P_{n-1}(t) & =\bar{p}_{n-1}(t) \cdot \bar{p}_{n-2}(t) \cdots \bar{p}_{1}(t) .
\end{aligned}
$$

The next lemma follows from [2; Theorem 3].
LEMMA 2. Suppose that $0<\alpha \beta<1$ and

$$
\begin{equation*}
\int^{\infty}\left(h_{1}(t)\right)^{(n-1) \beta} p_{n}(t)\left[P_{n-1}\left(h_{1}(t)\right)\right]^{\beta} \mathrm{d} t=\infty . \tag{5}
\end{equation*}
$$

Then every nonoscillatory solution of system (1) has the property

$$
\lim _{t \rightarrow \infty} y_{k}(t)=0, \quad k=1,2, \ldots, n
$$

and (3) holds.
Lemma 3. Consider the differential inequality

$$
\begin{equation*}
y^{\prime}(t) \operatorname{sgn}[y(\tau(t))]+p(t)|y(\tau(t))|^{\lambda} \leq 0, \quad t \geq a \tag{6}
\end{equation*}
$$

where $0<\lambda<1, p \in C([a, \infty),[0, \infty)), p \not \equiv 0, \tau \in C([a, \infty),(0, \infty))$ ıs nondecreasing function, $\lim _{t \rightarrow \infty} \tau(t)=\infty, \tau(t)<t$ for $t \geq a$ and

$$
\begin{equation*}
\int^{\infty} p(t) \mathrm{d} t=\infty \tag{7}
\end{equation*}
$$

Then every nonoscillatory solution of (6) tends to zero as $t \rightarrow \infty$.
Proof. Suppose that y is a positive solution of (6) and $y(\tau(t))>0$ for $t \geq t_{1} \geq a$. Then $y^{\prime}(t)<0$ for $t \geq t_{1}$. So $\lim _{t \rightarrow \infty} y(t)=L \geq 0$ exists. We show that $L=0$. If $L>0$ we get

$$
\begin{aligned}
y(\infty)-y\left(t_{1}\right) & \leq-\int_{t_{1}}^{\infty} p(s)[y(\tau(s))]^{\lambda} \mathrm{d} s \\
y\left(t_{1}\right) & \geq L+\int_{t_{1}}^{\infty} p(s)[y(\tau(s))]^{\lambda} \mathrm{d} s \\
& \geq L+L^{\lambda} \int_{t_{1}}^{\infty} p(s) \mathrm{d} s
\end{aligned}
$$

and this is a contradiction to condition (7). Thus $y(t) \rightarrow 0$ as $t \rightarrow \infty$.

Now assume that y is a negative solution of (6) and $y(\tau(t))<0$ for $t \geq$ $t_{1} \geq t_{0}$. Then $y^{\prime}(t)>0$ for $t \geq t_{1}, y(t)$ is increasing and $\lim _{t \rightarrow \infty} y(t)=L \leq 0$ exists. We claim that $L=0$. If $L<0$ we obtain

$$
\begin{aligned}
-y\left(t_{1}\right) & \geq-y(\infty)+\int_{t_{1}}^{\infty} p(s)|y(\tau(s))|^{\lambda} \mathrm{d} s \\
-y\left(t_{1}\right) & \geq-L+\int_{t_{1}}^{\infty} p(s)|y(\tau(s))|^{\lambda} \mathrm{d} s \\
& \geq-L+(-L)^{\lambda} \int_{t_{1}}^{\infty} p(s) \mathrm{d} s
\end{aligned}
$$

which is a contradiction to (7). Thus $y(t) \rightarrow 0$ as $t \rightarrow \infty$.
Lemma 4. Assume that $0<\lambda<1$ and conditions of Lemma 3 are satisfied. Then the functional inequality

$$
\begin{equation*}
y^{\prime}(t)+p(t)|y(\tau(t))|^{\lambda} \operatorname{sgn} y(\tau(t)) \leq 0, \quad t \geq a \tag{8}
\end{equation*}
$$

cannot have an eventually positive solution and

$$
\begin{equation*}
y^{\prime}(t)+p(t)|y(\tau(t))|^{\lambda} \operatorname{sgn} y(\tau(t)) \geq 0, \quad t \geq a \tag{9}
\end{equation*}
$$

cannot have an eventually negative solution.
Proof. Assume that y is a positive solution of (8) on $\left[t_{1}, \infty\right), t_{1} \geq a$. Lemma 3 implies that

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

From inequality (8) it follows that there exists $t_{2} \geq t_{1}$ such that y is decreasing on $\left[t_{2}, \infty\right)$. We have

$$
[y(\tau(t))]^{\lambda} \geq[y(t)]^{\lambda}, \quad t \geq t_{3} \geq t_{2}
$$

From (8)

$$
-y^{\prime}(t) \geq p(t)[y(\tau(t))]^{\lambda} \geq p(t)[y(t)]^{\lambda}, \quad t \geq t_{3}
$$

Then we get

$$
\int_{y(t)}^{y\left(t_{3}\right)} \frac{\mathrm{d} u}{u^{\lambda}}=\int_{t_{3}}^{t} \frac{-y^{\prime}(s)}{[y(s)]^{\lambda}} \mathrm{d} s \geq \int_{t_{3}}^{t} p(s) \mathrm{d} s
$$

Letting $t \rightarrow \infty$ we have

$$
\infty>\int_{0}^{y\left(t_{3}\right)} \frac{\mathrm{d} u}{u^{\lambda}} \geq \int_{t_{3}}^{\infty} p(s) \mathrm{d} s
$$

RUDOLF OLACH - HELENA ŠAMAJOVA

which contradicts condition (7).
Assume that y is a negative solution of (9) on $\left[t_{1} . \infty\right), t_{1} \geq t_{0}$. By Lemma 3 we have

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

Inequality (9) implies that there exists $t_{2} \geq t_{1}$ such that y is increasing or $\left[t_{2}, \infty\right)$. Then we get

$$
|y(\tau(t))|^{\lambda} \geq|y(t)|^{\lambda}, \quad t \geq t_{3} \geq t_{2}
$$

From (9) we have

$$
y^{\prime}(t) \geq p(t)|y(\tau(t))|^{\lambda} \geq p(t)|y(t)|^{\lambda}, \quad t \geq t_{3}
$$

Then we obtain

$$
\int_{y\left(t_{3}\right)}^{y(t)} \frac{\mathrm{d} u}{|u|^{\lambda}}=\int_{t_{3}}^{t} \frac{y^{\prime}(s)}{|y(s)|^{\lambda}} \mathrm{d} s \geq \int_{t_{3}}^{t} p(0) \mathrm{d} s .
$$

Letting $t \rightarrow \infty$ we get

$$
\infty>\int_{y\left(t_{3}\right)}^{0} \frac{\mathrm{~d} u}{|u|^{\lambda}} \geq \int_{t_{3}}^{\infty} p(s) \mathrm{d} s,
$$

which contradicts condition (7).
The next lemma is in [2] as Lemma 1.
LEMMA 5. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a weakly nonoscillatory solution of (1). Then y is nonoscillatory.

Theorem 1. Suppose that $0<\alpha \beta<1$, (5) holds and

$$
\int^{\infty} p_{n}(s)\left[\int_{h_{1}(s)}^{s} p_{n-1}(x) I_{n-2}\left(x, h_{1}(s) ; p_{n-2}, \ldots p_{1}\right) \mathrm{d} x\right]^{3} \mathrm{~d} s=\infty
$$

Then all solutions of system (1) are oscillatory.
Proof. Assume that the system (1) has a solution $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ of which at least one component is eventually of a constant sign. Then by Lemma \bar{J}, y is nonoscillatory. We may suppose that $y_{1}(t)>0$ for $t \geq t_{0} \geq a$. By Lemma 2 the solution y has the property

$$
\lim _{t \rightarrow \infty} y_{k}(t)=0, \quad k=1,2, \ldots, n
$$

and (3) holds. Applying Lemma 1 in the nth inequality of the system (1) we obtain

$$
\begin{equation*}
y_{n}^{\prime}(t)+p_{n}(t)\left[\int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x\right]^{\beta} y_{n}^{\alpha \beta}\left(h_{n}(t)\right) \leq 0 \tag{10}
\end{equation*}
$$

$t \geq T \geq t_{0}$, where T is sufficiently large. With regard to the fact that $0<$ $\alpha \beta<1$, by Lemma 4 , the inequality (10) cannot have a positive solution. This contradicts the fact that $y_{n}(t)>0$ for $t \geq T$.

Now assume that $y_{1}(t)<0, t \geq t_{0} \geq a$. By Lemma 2 the solution y satisfies (3). Applying Lemma 1 in the nth inequality of the system (1) we get

$$
\begin{array}{r}
-y_{n}^{\prime}(t)+p_{n}(t)\left[\int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x\right]^{\beta}\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \leq 0 \\
y_{n}^{\prime}(t)-p_{n}(t)\left[\int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x\right]\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \geq 0 \\
y_{n}^{\prime}(t)+p_{n}(t)\left[\int_{h_{1}(t)}^{t} p_{n-1}(x) I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x\right]^{\beta} \\
\cdot\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \operatorname{sgn}\left[y_{n}\left(h_{n}(t)\right)\right] \geq 0
\end{array}
$$

$t \geq T \geq t_{0}$, where T is sufficiently large. Lemma 4 implies that above inequality cannot have a negative solution, which contradicts $y_{n}(t)<0$ for $t \geq T$. The proof is complete.

Lemma 6. Suppose that assumptions (2) and (3) hold. Then

$$
\begin{equation*}
\left|y_{1}\left(h_{1}(t)\right)\right| \geq \frac{\left(t-h_{1}(t)\right)^{n-1}}{(n-1)!} P_{n-1}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \tag{11}
\end{equation*}
$$

for all large t.
Proof. We may assume that $y_{1}(t)>0$ for $t \geq t_{0} \geq a$. In view of (4) we get $\left|y_{1}\left(h_{1}(t)\right)\right|$

$$
\begin{aligned}
& \left.h_{1}(t)\right) \mid \\
& \geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t) \int_{h_{1}(t)}^{t} I_{n-2}\left(x, h_{1}(t) ; p_{n-2}, \ldots, p_{1}\right) \mathrm{d} x \\
& =\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t) \int_{h_{1}(t)}^{t} \int_{h_{1}(t)}^{x} p_{n-2}(s) I_{n-3}\left(s, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} s \mathrm{~d} x .
\end{aligned}
$$

RUDOLF OLACH - hELENA ŠAMAJOVÁ

Denote

$$
u(x)=x, \quad v(x)=\int_{h_{1}(t)}^{x} p_{n-2}(s) I_{n-3}\left(s, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} s
$$

and integrating by parts we obtain

$$
\begin{aligned}
& \left|y_{1}\left(h_{1}(t)\right)\right| \\
& \quad \begin{array}{l}
\geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t)\left[t \int_{h_{1}(t)}^{t} p_{n-2}(s) I_{n-3}\left(s, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} s\right. \\
\\
\left.\quad-\int_{h_{1}(t)}^{t} x p_{n-2}(x) I_{n-3}\left(x, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} x\right] \\
\quad=\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t) \int_{h_{1}(t)}^{t}(t-x) p_{n-2}(x) I_{n-3}\left(x, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} x \\
\quad \geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t) \bar{p}_{n-2}(t) \int_{h_{1}(t)}^{t}(t-x) I_{n-3}\left(x, h_{1}(t) ; p_{n-3}, \ldots, p_{1}\right) \mathrm{d} x \\
\quad \geq \cdots \geq\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha} \bar{p}_{n-1}(t) \ldots \bar{p}_{1}(t) \int_{h_{1}(t)}^{t} \frac{(t-x)^{n-2}}{(n-2)!} \mathrm{d} x .
\end{array}
\end{aligned}
$$

Calculating the above integral we have

$$
\left|y_{1}\left(h_{1}(t)\right)\right| \geq \frac{\left(t-h_{1}(t)\right)^{n-1}}{(n-1)!} P_{n-1}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha}, \quad t \geq T
$$

where T is sufficiently large.
Theorem 2. Suppose that $0<\alpha \beta<1$, (5) holds and

$$
\int^{\infty}\left(s-h_{1}(s)\right)^{(n-1) \beta} P_{n-1}^{\beta}(s) p_{n}(s) \mathrm{d} s=\infty
$$

Then all solutions of system (1) are oscillatory.
Proof. Assume that the system (1) has a solution $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ of which at least one component is nonoscillatory. Then by Lemma 5, y is nonoscillatory. We may suppose that $y_{1}(t)>0$ for $t \geq t_{0} \geq a$. Due to Lemma 2 the solution y has the property

$$
\lim _{t \rightarrow \infty} y_{k}(t)=0, \quad k=1,2, \ldots, n
$$

NONLINEAR DIFFERENTIAL SYSTEMS WITH RETARDED ARGUMENTS

and (3) holds.
Applying (11) in the nth inequality of (1) we get

$$
\begin{equation*}
y_{n}^{\prime}(t)+\frac{\left(t-h_{1}(t)\right)^{(n-1) \beta}}{[(n-1)!]^{\beta}} P_{n-1}^{\beta}(t) p_{n}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \leq 0, \quad t \geq T \geq t_{0} \tag{12}
\end{equation*}
$$

where T is sufficiently large. According to the condition $0<\alpha \beta<1$, by Lemma 4, the inequality (12) cannot have a positive solution. This is a contradiction with property (3).

Assume that $y_{1}(t)<0, t \geq t_{0} \geq a$. Then for solution y, (3) holds. Applying (11) in the nth inequality of (1) we have

$$
\begin{array}{r}
-y_{n}^{\prime}(t)+\frac{\left(t-h_{1}(t)\right)^{(n-1) \beta}}{[(n-1)!]^{\beta}} P_{n-1}^{\beta}(t) p_{n}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \leq 0 \\
y_{n}^{\prime}(t)+\frac{\left(t-h_{1}(t)\right)^{(n-1) \beta}}{[(n-1)!]^{\beta}} P_{n-1}^{\beta}(t) p_{n}(t)\left|y_{n}\left(h_{n}(t)\right)\right|^{\alpha \beta} \operatorname{sgn}\left[y_{n}\left(h_{n}(t)\right)\right] \geq 0 \\
t \geq T \geq t_{0}
\end{array}
$$

where T is sufficiently large. By Lemma 4 the above inequality cannot have a negative solution. This contradicts (3).

REFERENCES

[1] ERBE, L. H. KONG, Q.-ZHANG, B. G. : Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York-Basel-Hong Kong, 1995.
[2] MARUŠIAK, P.: On the oscillation of nonlinear differential systems with retarded arguments, Math. Slovaca 34 (1984), 73-88.
[3] MARUŠIAK, P. OLACH, R.: Functional Differential Equations, University of Žilina/ /EDIS, 2000. (Slovak)
[4] OLACH, R.: Observation of a Feedback mechanism in a population model, Nonlinear Anal. 41 (2000), 539-544.
[5] ŠEVELO, V. N. VARECH, N. V.: On the conditions of the oscillation of the solutions of differential system with retarded arguments. In: Qualitative Methods of Theory of Differential Equations with Deviating Argument, Math. Inst. Ukrain. Acad. Sci., Kiev, 1977, pp. 26 44. (Russian)

RUDOLF OLACH - HELENA ŠAMAJOVÁ

[6] ŠPÁNIKOVÁ, E.: Oscillatory properties of the solutions of three-dimensional nonlinear differential systems with deviating arguments, Acta Math. Univ. Comenian. 54-55 (1998), 173-183.

Received June 20, 2003
Revised January 15, 2004

* Department of Mathematical Analysis and Applied Mathematics
Faculty of Sciences
University of Žilina
J. M. Hurbana 15

SK-010 26 Žilina
SLOVAKIA
E-mail: olach@fpv.utc.sk
** Department of Applied Mathematics
Faculty of Mechanical Engineering
University of Žilina
J. M. Hurbana 15
SK-010 26 Žilina
SLOVAKIA
E-mail: helena.samajova@fstroj.utc.sk

[^0]: 2000 Mathematics Subject Classification: Primary 34K15, 34K40.
 Keywords: nonlinear differential system, retarded arguments, oscillatory (nonoscillatory) solution.

 This research was supported by the grant $1 / 8055 / 01$ and $1 / 0026 / 03$ of Scientific Grant Agency of Ministry of Education of Slovak Republic and Slovak Academy of Sciences.

