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AN ORDER FOR QUANTUM OBSERVABLES 

STAN GUDDER 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. The set of bounded observables for a quantum system is repre
sented by the set of bounded self-adjoint operators 5(H) on a complex Hilbert 
space H. The usual order A < B on S(H) is determined by assuming that the 
expectation of A is not greater than the expectation of B for every state of the 
system. We may think of < as a numerical order on S(H). In this article we 
introduce a new order _< on S(H) that may be interpreted as a logical order. 
This new order is determined by assuming that A _< B if the proposition that 
A has a value in A implies the proposition that B has a value in A for every 
Borel set A not containing 0. We give various characterizations of this order 
and show that it is generated by an orthosum 0 that endows S(H) with the 
structure of a generalized orthoalgebra. We also show that the usual order < 
cannot be generated by an orthosum. We demonstrate that if we restrict 0 to 
an interval [0, A] C 5(H) , then we obtain a structure that is isomorphic to an 
orthomodular lattice of projections on H. The lattice structure of S(H) is inves
tigated and unlike (5(H), <) it is shown that (5(H), _<) is a near-lattice in the 
sense that if A, B _< C, then A A B and A\/ B exist. Moreover, we show that if 
dim(H) < oo, then A A B always exists. We also consider the commutative case 
in which observables are represented by fuzzy random variables. 

1. Introduction 

In this article we introduce a new order for quantum observables. In some 
respects this order is more natural and has better properties than the usual 
order of observables while in other respects the usual order appears to be more 
suitable. In any case it is useful to compare the two orders and perhaps to employ 
one or the other depending on the applications or circumstances involved. 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i c a t i o n : Primary 81P15; Secondary 03G12. 
Keywords : observable, quantum effect, generalized effect algebra. 
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The set of bounded observables for a quantum system is usually represented 
by the set S(H) of bounded self-adjoint operators on a complex Hilbert space H. 
In the traditional order for A,Be S(H) we define A < B if (Ax,x) < (Bx,x) 
for every x G H. This order has the physical interpretation that the expectation 
of A is not greater than the expectation of B in every state of the system. We 
may think of < as a numerical order on S(H). Under this order (5(H) , < ) 
becomes a partially ordered set or poset. However, a well-known theorem due to 
R. K a d i s o n [8] shows that (5(H) , < ) is not a lattice. In fact, (5(H) , < ) is 
as far from being a lattice as possible in the sense that the greatest lowrer bound 
A AH exists if and only if A < B or H < A in which case A AH is the smaller of 
the two. This is unfortunate because lattices have a much stronger structure than 
posets and A A H and the least upper bound A V H have physical significance. 
The new order •< introduced in this paper remedies this situation in the sense 
that A AH and A\/B exist if there is a C G 5(H) such that A, B •< C. We call 
such a structure a near-lattice. In this way, (5(H) , <) becomes a near-lattice 
ordered generalized cr-orthoalgebra. 

We present various characterizations of •< and compare this partial order 
with the usual partial order. Physically, the most interesting characterization 
states that A •< B if and only if PA(A) < PB(A) for every Borel set A with 
0 ^ A where PA is the spectral measure for A. This characterization may be 
interpreted as saying that the event (or proposition) PA(A) implies the event 
PB(A). We conclude that •< is a logical order for observables. It is also observed 
that •< is algebraic in the sense that •< is generated by the orthosum 0 of an 
orthoalgebra whereas the usual order < cannot be generated by an orthosum. 

We demonstrate that if we restrict 0 to an interval [0, A] C 5 ( H ) , then we 
obtain a structure that is isomorphic to an orthomodular lattice of projections 
on H. We also show that if dim(H) < oo, then [0, A] is the cartesian product 
of projection lattices. Moreover, in the finite dimensional case it is shown that 
A A H always exists. We also consider the commutative case in which observ
ables are represented by fuzzy random variables. This case further motivates 
our definition of •< and provides intuition for results and proofs of the general 
noncommutative case. As we shall see, most of our results in the commutative 
case have noncommutative counterparts. A possible exception is that / A g al
ways exists for random variables / and g while we do not know whether A A H 
always exists for A, B G 5 ( H ) . 

Finally, we point out that in both the commutative and noncommutative 
cases the numerical order < and the logical order •< agree on sharp elements. 
In the commutative case the sharp elements are given by the measurable subsets 
(or events) of the sample space and we have the equivalent statements A C H, 
A < B and A •< B. In the noncommutative case the sharp elements are given by 
the set of orthogonal projections (quantum events) V(H) and for P, Q G V(H) 
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we have the equivalent statements, PQ = P , P < Q, P _ _ Q . 

2. Effect algebras 

The study of measurements is an important part of any physical theory. 
The simplest type of measurement is a yes-no measurement or effect ([1], [2], 
[7], [9], [10]). More general measurements and observables can be constructed 
using these effects. The set of effects for a quantum system can be organized 
into a mathematical structure called an effect algebra, which has recently been 
introduced for foundational studies in quantum mechanics ([3], [4], [5], [6]). This 
section reviews the definition of an effect algebra and the related concepts of 
generalized effect algebra and orthoalgebra. The main algebraic operation in 
these structures is an orthosum a 0 b, which is a partial binary operation on 
the set of effects. If a 0 b is defined, we write a ± b and say that a and b are 
orthogonal. Roughly speaking, a 0 b corresponds to a parallel combination of 
the two effects a and b. 

A generalized effect algebra is an algebraic system (E, 0, 0 ) where E is a 
set, 0 G E and 0 is a partial binary operation on E that satisfies the following 
conditions. 

(GEA1) If a _L b, then b _L a and b^a = a^b. 

(GEA2) If b_Lc and a_L(b0c), then a_Lb, c_L(a0b) and (a^b)^c = a®(b^c) 

(GEA3) 0 _L a for all a G E and 0 0 a = a. 

(GEA4) If a 0 b = a 0 c, then b = c. 

(GEA5) If a 0 b = 0, then a = b = 0. 

A generalized orthoalgebra is a generalized effect algebra (_5,0, 0 ) that also 
satisfies: 

(OA) If a_La, then a = 0. 

An effect algebra is an algebraic system (E, 0 ,1 , 0 ) where E is a set, 0 , l G F 
with 0 7- 1 and 0 is a partial binary operation on E that satisfies (GEA1), 
(GEA2) and: 

(EA1) For every a G E there exists a unique a' G E such that a J_ a' and 
a 0 a' = 1. 

(EA2) If a_L 1, then a = 0. 

An orthoalgebra is an effect algebra that satisfies (OA). 
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LEMMA 2.1. ([3]) Every effect algebra is a generalized effect algebra and every 
orthoalgebra is a generalized orthoalgebra. 

P r o o f . Let (E, 0 ,1 , 0 ) be an effect algebra. To show that (GEA3) holds 
we apply (EA1) and (EA2) to obtain 0 = V. Hence, by (GEA2) we have that 

(0 0 a) 0 a1 = 0 0 (a 0 a1) = 0 0 1 = 1 . 

Applying (EA1) gives that 0 0 a = a. To show that (GEA4) holds, suppose that 
a(Bb = a(B c. By (EAl) there exists a d G E such that 

(a 0 b) 0 d = (a 0 c) 0 d = 1 . 

Applying (GEAl) and (GEA2) we obtain 

(a 0 d) 0 b = (a 0 d) 0 c = 1 . 

By (EAl) we have that b = c = (a 0 d)'. To show that (GEA5) holds, suppose 
that a 0 6 = 0. Then a _L b and a 0 b _L 1, so by (GEA2) we have that a l l . 
Applying (EA2) gives that a = 0. Hence, by (GEA3) we have that 6 = 0. That 
every orthoalgebra is a generalized orthoalgebra now follows. • 

For a generalized effect algebra E with a,&G £ , we define a < b if there 
exists a c G E such that a l e and a 0 c = b. This unique c is denoted by 
c = bQ a. 

LEMMA 2.2. ([3]) If E is a generalized effect algebra, then (E <) is a poset 
and 0 < a for every a G E. 

P r o o f . We have that a < a because a 0 O = a . I f a < b and b < a, then 
there exist c,deE such that a(B c = b and b 0 d = a. Hence, 

b0d©c=a0c=b=b0O. 

Applying (GEA4) we obtain d 0 c = 0, so by (GEA5), d = c = 0. Therefore, 
a = b. To prove transitivity, suppose that a < b and b < c. Then there exist 
d, e G E such that a 0 d = b and b 0 e = c. Hence, a 0 (d 0 e) = c, so that 
a < c. Since 0 0 a = a, we have that 0 < a for every a € E. • 

Let J5 be a generalized effect algebra and let a G E with a ^ 0. In the 
interval [0, a] = {b G E : b < a} define b (Ba c = b (B c whenever b _L c and 
b 0 c < a. We thus have that b _La c whenever b ± c and b (B c £ [0, a]. The 
next result shows that [0, a] has desirable properties. 

THEOREM 2.3. If E is a generalized effect algebra (orthoalgebra) and a G E 
with a ^ 0 . £ben {[0, a],0, a, 0 a } is an effect algebra (orthoalgebra). Moreover, 
the order on [0, a] is the restriction of the order on E to [0, a ] . 
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P r o o f . Of course, 0 a satisfies conditions (GEA1) and (GEA2). To demon
strate (EAl), suppose that b e [0, a] and define c = aGb. Then b _La c and 
6 ® a c = a. Moreover, c is unique by (GEA4). To demonstrate (EA2) sup
pose that b e [0, a] and b _l_a a. Then b ® a < a and b 0 a > a, so that 
b0a = a = O 0 a . Applying (GEA4) we conclude that b = 0. Now suppose that 
E is a generalized orthoalgebra and b J_a b. Then b _L b, which implies that 
b = 0. Hence, {[0, a], 0, a, 0 a } is an orthoalgebra. Finally, it is clear that b <ac 
in [0,a] implies that b < c in E. Conversely, if b, c G [0, a] and b < c in E, 
then b 0 d = c for some d G E. But d < b 0 d = c < a , s o that bQad = c. 
Therefore, b <ac. D 

It is well known that (F7, < , ' ) is a bounded involution poset for any effect 
algebra E. That is, for every a, b G E we have that 0 < a < 1, a" = a and 
a < b implies b' < a'. Also a < b' if and only if a J_ b. Moreover, if E is an 
orthoalgebra, then (E, < , ' ) is an orthocomplemented poset. That is, (-£/,</) is 
a bounded involution poset and a A a' = 0, a V a' = 1 for every a e E. Finally, 
if E is an orthoalgebra and a _L b implies that a 0 b = a V b, then E is an 
orthomodular poset. 

We call an effect algebra E a cr -effect algebra if for any nondecreasing se
quence ax < a2 < • • • in E the least upper bound V at exists in E. We define 
generalized cr-effect algebras, generalized cr-orthoalgebras and cr-orthoalgebras 
in similar ways. 

Although there are many examples of effect algebras and orthoalgebras, we 
shall only consider a few of them here. Any Boolean algebra is an orthoalgebra 
where a_l_b if a A b = 0 and in this case a 0 b = a V b . If X is a nonempty 
set, the collection of fuzzy subsets [0, l]x of X forms an effect algebra where 
f±g if f + g<l and in this case / 0 g = f + g. For a complex hilbert space 
H we define the set of quantum effects £(H) on H as the set of bounded linear 
operators on H satisfying 0 < A < I where < is the usual order of self-adjoint 
operators. For A,Be £(H), define A.LB if A + B<I and in this case 
A 0 B = A + B. Then (E(H), 0,7, 0 ) becomes a cr-effect algebra. The set of 
orthogonal projections V(H) C £(H) corresponds to the set of quantum events 
and forms a a -orthoalgebra. 

An example of a generalized effect algebra that is not an effect algebra is the 
set of nonnegative real numbers M+ = [0, oo). In this case, we define a Lb for 
all a,!)GlR+ and a 0 b = a + b. Similar examples are given by the set of all 
nonnegative functions on a nonempty set and the set of all positive operators 
S(H)+ on a complex Hilbert space. Examples of generalized orthoalgebras that 
are not orthoalgebras will be given in the next two sections. 

A generalized effect algebra E is lattice ordered if E is a lattice relative to 
its usual order; that is, the greatest lower bound a A b and least upper bound 
a V b exist for all a, b G E. We say that E is near-lattice ordered if a A b and 
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a V b exist whenever there is a c E £ with a, b < c. Our previous examples 
except £(H) and S(H)+ are lattice ordered while £(H) and S(H)+ are not 
even near-lattice ordered. A lattice ordered orthoalgebra in which a®b = a\/ b 
is called an orthomodular lattice. An important example of an orthomodular 
lattice is V(H). 

An element a of an effect algebra E is sharp if a A a' = 0. It is easy to show 
that E is an orthoalgebra if and only if every a G E is sharp. In [ 0 , 1 ] C R the 
only sharp elements are 0 and 1 and in [0, l)x an element is sharp if and only 
if it is a characteristic function and hence a subset of X. The sharp elements of 
£(H) are precisely the projections V(H). An element a of a generalized effect 
algebra E is principal if b, c < a with b J_ c imply that b 0 c < a. In the 
examples R+ , S(H)+ the only principal element is 0. If E is an effect algebra, 
then every principal element is sharp, but the converse does not hold ([3]). 

3. The commutative case 

This section considers the case of classical commuting observables. These are 
represented by random variables on a probability space (fl,A,fi). As usual, we 
think of A as the set of events for some statistical experiment. For A,B G A 
we write A±B if AnB = ® and define the orthosum A 0 B = AU B 
whenever A _L B. Then (^4,0 ,0 ,0) is a a-orthoalgebra in which A' = Ac. In 
fact, (A, 0, -1, 0 ) is a Boolean <r-algebra, which is a much stronger statement. 

We identify an event A £ A with its characteristic function XA • Notice that 
A _L B if and only if XAXB

 = 0- We- can think of characteristic functions as yes-
no or 1—0 measurements for our statistical system. That is, given an outcome 
CJ G -1, XA(U) g i y e s the- values 1 or 0 depending on whether cO G A or not. 
One of the main reasons that the orthosum is important is that fi(A 0 B) = 
fji(A) -F fJ>(B). In fact, considering [0,1] C 1 to be an effect algebra we have 
that fi(A 0 B) = //(A) 0 /i(-B) and /i(-l) = 1, so /i becomes an effect algebra 
morphism. Note that the orthoalgebra order < on (A, 0, fi, 0 ) coincides with 
the usual order < . That is XA — XB ^ an<^ o n ' y --* XAO^) -̂  XBO^) f° r e v e r y 

We would now like to extend the orthosum to general measurements that can 
have more than two values so as to obtain a mathematical structure for the set 
of all measurements associated with A. These measurements are represented by 
the set M(A) of random variables on (ft, A,fi). A natural extension is obtained 
by defining / _L g if fg = 0 for / , g £ M(A). Denning the support of / by 

S U pp( / ) = {u £ ft : f(u) 7- 0} and the nullity of / by null(/) = f~\0) 
we have that / ± g if and only if supp(g) C nul l ( / ) . Equivalently, / _L g 
if and only if supp(/) -L supp(g). If / -L g, we define / 0 g = / + g.Itis 
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straightforward to check that (M(A),0, ©) is a generalized orthoalgebra. Let 
< be the orthoalgebra order on M(A); that is, / < g if there is an h G M(A) 
such that / _L h and f ®h = g.It follows from Lemma 2.2 that (M(A), <) is 
a poset and 0 < f for every / G M(A). 

THEOREM 3 .1 . The following statements are equivalent: 

(i) fig. 
(ii) f(uj) = g(uj) for every UJ G supp ( / ) . 

(iii) f = gx3uMf)' 

(iv) / g = / 2 . 
(v) / _ 1 ( A ) C g_1(A) /or every A G /3(M) wz*A 0 £ A wftere ~(K) is tte 

a-algebra of B or el subsets of R. 

P r o o f . To show that (i) implies (ii), suppose that (i) holds. Then there 
exists an h G M(A) such that fh = 0 and / + h = g. If UJ G supp( / ) , then 
/I(CJ) = 0, so that f(uj) = g(uj). It is clear that (ii), (iii) and (iv) are equivalent. 
We now show that (ii) and (v) are equivalent. Suppose that (ii) holds and that 
A G B(R) with 0 £ A . If UJ G / - 1 ( A ) > then f(uj) G A and f(uj) / 0. Hence, 
UJ G supp(/) so that f(uj) = g(uj). Therefore, g(uj) G A, so that UJ G g'_1(A). It 
follows that / _ 1 ( - - ) _~ g-1(A)- Conversely, suppose that / - 1 ( - - ) <~ g"^^) f o r 

every A G ~(R) with 0 ^ A. If u G supp( / ) , then f(uj) ^ 0. Hence, 

Mcr^/Mjc,-1^)), 
so that O(a;) = / (a ; ) . Finally, to show that (iv) implies (i), suppose that fg = f2 

and let h = g- f. Then fh = fg- f2 = 0, so that / _L h and / 0 h = g. U 

It follows from Theorem 3.1 that / < g if and only if / is a truncation 
of g. Another interpretation is that / < g if and only if the event / _ 1 ( A ) is 
contained in the event # - 1 ( A ) for every A G B(R) with 0 ^ A . Since this 
amounts to certain propositions implying other propositions, we can think of < 
as a logical order. Notice that / < g is not related to the usual order / < g in 
general. However, if g > 0, then f < g implies that / < g. It also follows from 
Theorem 3.1 that every / G M(A) is principal. Indeed, if g, h < f with g _L /i, 
then 

(g + h)f = gf + hf = g + h, 

so that g 0 /i < f. 

T H E O R E M 3.2. I/ f1 < f2 < • • • . then f = \J /• e:ns£<> m >l(^-l) and f = 
lim/^ pointwise. 

P r o o f . Since fx < f2 < • • • , we have that supp(/x) C supp(/2) C • • • . Now 
| Jsupp( / . ) = A G A. Define / G M(A) as follows. If UJ G A, then CJ G supp( / n ) 
for some n and define f(uj) = fn(uj), and if UJ £ A, define /(u;) = 0 . The 
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function / is well-defined because if u G supp( / m ) , then either fm ^ fn or 

fn -< fm- In either CaSe' / n M = / B M - F ° P eVe^ ^ G fi' lf " ^ ̂ ' then 

/.(a;) = / (CJ) = 0 for every i. If u G -4, then there exists an n such that 
/ n M = / n + i M = • • • = / M - Hence, l im/ . = / pointwise. Clearly, f^f for 
every i. Suppose that g G M(A) and f{<g for every i. If u G 4 = supp( / ) , 
then f(uo) = ^(cO), so that / •< g. Therefore, / = V / r D 

COROLLARY 3.3. (./Vf (*4), 0, ®) is a generalized a-orthoalgebra and 

(M(A),^) is a a-poset. 

The equation fi(A ® 29) = /i(^4) ® /i(-3) can be rewritten as 

I*((XA ® X B ) _ 1 (1)) = / - ( ^ ( l ) ) ® / - ( X B ^ I ) ) • 

We can also write this as 

v((xA®XBr1(^))=f*(XA1(A))®n(xB1(A)) 
for every A G B(W) with 0 if. A. It will follow from the next result that we can 
extend this last equation to arbitrary random variables. 

LEMMA 3.4. If A G B(R) with 0 if A and f,g£ M(A) with f ±g, then 

(f®g)-\A) = rl(A)®g-\A). 

P r o o f . If w e f-1(A)f)g-1(A), then f(u) G A and g(u>) G A . Since 
0 if A, f(u>),g(w) ^ 0. Hence, u> G supp(/) nsupp(g) , which contradicts the 
fact that f ± g. Therefore, / _ 1 ( A ) _L g'x(A) and we have that 

r1(A)©5-1(A) = r 1 (A)ur 1 (A) . 

If ( / + g)(u>) G A, then f(u>) G A or g(u) G A. Hence, ( / © <7)_1(A) C 
f~1(A)Ug~1(A). Conversely, if f(u) € A or g(u>) G A, then (f ® g)(u) G A, 
so that / - 1 (A) U g~l(A) C(f®g)-1(A). D 

We conclude from Lemma 3.4 that if / ± g, then 

M [ ( / e y ) - 1 ( A ) ] = / i [ r 1 ( A ) ] © / i [ f f - 1 ( A ) ] 

for every A G B(R) with 0 ^ A. We interpret / / [ / _ 1 ( A ) ] = / / ( / G A) as 
the probability that the measurement / has a value in A. We can restrict our 
attention to A C 1 \ {0} because if we know / / ( / G {0}') = / / ( / ^ 0), then 
f_i(f = 0) = 1 — / / ( / 7̂  0) is determined. Another way of viewing this is that 
0 G R has a special significance in the sense that /j,(A) = / / (x^ 1 7̂  0) is the 
probability that A occurs. We can interpret /x(/ ^ 0) as the probability that 
measurement / occurs, so we disregard A G A that are not a subset of supp( / ) . 

580 



AN ORDER FOR QUANTUM OBSERVABLES 

It follows from Theorem 3.2 and Lemma 3.4 that if fi _L / . for i ^ j , then 
fx 0 f2 0 • • • exists and / / ( © f{ G A) = 0 / /( /• G A) for every A G B(R) with 
0 ^ A where 0 /• = V ^ and ^ = / x © . . • © f.. Moreover, since 

n ^ ( / i + - + /») = ©/* 
and 

l/l + --- + /«l = l/ll + --- + l /n l< l©/ i | . 
it follows from the dominated convergence theorem that if 0 fi is integrable, 
then 

/©/,<-,- = £//.<-*-• 
We interpret / / d/i = E^(f) as the expectation or average value of the mea

surement / . Hence, if ^ ( 0 / J exists, then ^ ( 0 / J = E ^ ( / i ) -

THEOREM 3.5. Let f,g G M(A) with the partial order •< on M(A). 
(i) / A g exists. 

(ii) / V g exists if and only if there is an h G M(A) such that f,g^h. 

P r o o f . 
(i) Let A = {u : f(u) = g(u)} and let /i = fxA. Then /i ^ f,g. Now 

suppose that w G .M(.A) with w< f.g.li u(u) ^ 0, then 'U(CJ) = f(u) = g(u;), 
so CJ G .4. Hence, if u(u) ^ 0, then u(u) = /i(o;). Therefore, u -< h,so h = f/\g. 

(ii) If / Vg exists, then / , g ^ / Vg G «M(»4). Conversely, suppose there exists 
an /i G A4(*4) with f,g ^ h. By Theorem 3.1, / = hxA and g = hxB for some 
-4,1? G .4. Let u = hxAuB- Then f,g<u.lif,g-< v, then hxA,hxB ~< v. It 
follows that u = /iX^u^ ^ v. Therefore, u = / V g. • 

THEOREM 3.6. / / / G Al( .4) ; £/ien [0,/] zs a Boolean a-algebra isomorphic 
to supp(/) nA. 

P r o o f . Every element of [0, / ] has the form g = fxA where A = supp(g) C 
S ^PP( / ) . For g G [0,/] define g' = / - g. Then g' = fxA> where A' = 
s l1PP(/) \ suPP(g)- Define 4>(fxA) = A where A G supp(/)n*4. Then </>: [0,/] -•» 
supp(/) n A is clearly bijective. If g,h G [0,/] with g •< h, then supp(g) C 
supp(/i), so that 0(O) C <j)(h). Conversely, if </>(g) C <j>(h), then supp(g) C 
supp(ft), so that # •< h. If /-_ ^ / 2 ^ • • • , then as in the proof of Theorem 3.2 
we have that (f>(M f%) = U </>(/;)• Finally, 0(0) = 0 and for g G [0,/] we have 
that 

cj)(g') = supp(/) \ supp(#) = (j)(g)'. 

Hence, 0 is a a-isomorphism from [0, / ] to the Boolean a-algebra supp(/) C\A. 
D 

The next section shows that many of the results of this section carry over to 
the noncommutative case of quantum observables. 
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4. Quantum observables 

As in Section 1 we denote the set of bounded self-adjoint operators on a 
complex Hilbert space ff by S(H) and the set of orthogonal projections on 
ff by V(H). We interpret V(H) as the set of events and <S(ff) as the set 
of bounded observables for some quantum system. If A G S(H) and PA(A), 
A G B(R), is the spectral measure for A, then PA(A) is interpreted as the event 
that A has a value in A . If p is a density operator on ff, then p corresponds to 
a state of the system and tr(pPA(A)) gives the probability that A has a value 
in A and tr(pA) is the expectation of A in the state p. 

For P,Q G V(H) it is easy to show that P _L Q (that is, P + Q < I) if and 
only if PQ = 0. We extend this definition to A, B G S(H) by denning A _L B if 
AB = 0 in which case A © B = A + B. This definition is also motivated by the 
work in Section 3. We denote the closure of the range of A by ran(A) and the 
projection onto ran(A) by PA. The proof of the next result is straightforward. 

LEMMA 4.1. For A,Be S(H) the following statements are equivalent. 

(i) ALB. 
(ii) fan(_4) C null(I5). 

(iii) fan(_3) C null(A). 
(iv) PAPB=0. 
(v) raE(A) _L ran(I3). 

THEOREM 4.2. (<S(ff),0,©) is a generalized orthoalgebra. 

P r o o f . The conditions (GEA1), (GEA3) and (GEA4) clearly hold. To 
demonstrate (GEA2) we first show that AB2 = 0 implies that AB = 0 for 
all A, B G S(H). If AB2 = 0, then AB2A = 0 so that 

0 = (AB2Ax,x) = (BAx,BAx) = \\BAx\\2 . 

Hence, BAx = 0 for every x G ff, so AB = BA = 0. If B _L C and 
A J. (B 0 C) , then BC = 0 and A(B + C) = 0. Hence, AB + AC = 0, 
which implies that AB2 + ACB = 0, so that Aff2 = 0. By our previous work 
AB = 0, so that A ± B. Moreover, since AC = 0, we have that C _L (A © B). 
Finally, 

( A © I 3 ) © C = A + 5 + C = A © ( £ e C ) . 

To demonstrate (GEA5), suppose that A © £ = 0 . Then AB = 0 and A+B = 0. 
Multiplying this last equation by A we conclude that A2 = 0, so by our previous 
work A = 0 and then B = 0. To demonstrate condition (OA), if A _L A, then 
A2 = 0, so again, A = 0. • 

We denote the orthoalgebra order on S(H) by _<, that is, for A,Be S(H) we 
have that A _< I9 if there exists a C G S(H) such that A _L C and A © C = B. 
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It follows from Lemma 2.2 that (S(H),^) is a poset and 0 ^ A for every 
A G S(H). We now give various characterizations of this order. 

LEMMA 4.3 . For A,B G S(H) the following statements are equivalent. 

(i) A^B. 
(ii) Ax = Bx for all x G ran(yl). 

(iii) A = BPA. 
(iv) AB = A2. 

P r o o f . 
(i) =)> (ii): If (i) holds, there exists a C G S(H) such that AC = 0 and 

A + C = B. Since fan(A) C null(C), if x G fan(yl), then Cx = 0. Hence, 

Ax = (A + C)x = Bx. 

(ii) => (iii): If (ii) holds, then for every y G II we have that APAy = 
BPAy. Hence, A = APA = BPA. 

(iii) ==> (iv): If (iii) holds, then 

PAB = (BPAy = A = BPA. 

Hence, 
A2 = ABPA = APAB = AB. 

(iv) => (i): If A2 = AB, then A(B - A) = 0 and A + (B - A) = B. 
Hence, A<B. U 

COROLLARY 4.4. In S(H), [0,1] = V(H) with their usual order. 

P r o o f . We have that P G F>(II) if and only if P G S(H) and PI = P2. 
By Lemma 4.3, PI = P2 if and only if P G [0,I]. Hence, [0,1] = V(H). Also, 
for P,Q G F>(II) we have that P < Q if and only if P Q = P 2 = P . But 
P<2 = P if and only if P < Q. • 

COROLLARY 4.5 . I^en/ A G <S(II) is principal. 

P r o o f . Suppose that B,C < A and B ± C. Then by Lemma 4.3 we have 
that 

(B + C)A = BA + CA = B2 + C2 = (B + C)2 . 

Again, by Lemma 4.3 we conclude that B ® C ^ A. • 

THEOREM 4.6. For A,B G <S(II), A < B if and only if PA(A) < PB(A) for 
every A G B(R) with 0 ^ A . 

P r o o f . Suppose that PA(A) < PB(A) for every A G B(K) with 0 g A. 
By the spectral theorem we have that 

4 = íxPA(dX), B= íxPB(dX). 
{0}' {0}' 
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By definition of the integrals there exist operators A^B{ G S(H) given by 

j j 

where 0 g A j ?-, A .̂  fl A M = 0 for j 7- k and limA. = A, limI3- = B in the 
strong operator topology. Then 

^Bi = Y,xlipA^.i) = A2i-
j 

Letting i —> 00 gives that AB = A2, so by Lemma 4.3, A __ I3. Conversely, 
suppose that A __ I3, so that AB = A 2 . We first prove that if C,D G S(H) 
satisfy CD = 0, then for every bounded Borel function / with / (0) = 0 we 
have that f(C + D) = f(C) + f(D). We can approximate / pointwise by a 

n 
polynomial ___; e^Az. We then have that 

2 = 1 

nc + _>)«__; Ci(O + 2>v = __; Cl& + __; c^ « / ( o + f(D) 
where the approximations are in the strong operator topology. Taking limits, 
since the polynomials converge to / we obtain f(C + D) = f(C) + f(D). Now 

X A ( 0 ) = 0 for every A G B(R) with 0 £ A . Since A(B - A) = 0, we have by 
our previous work that for A G B(R) with 0 ^ A 

PB(A)=XA(B)=XA[A + (B-A)]=XA(A) + XA(B-A)>XA(A) = PA(A). 

• 
We can interpret Theorem 4.6 as saying that A _< B if and only if the event 

that A has a value in A implies the event that B has a value in A for every 
A G B(R) with 0 £ A . 

COROLLARY 4.7. If A < B and f is a Borel function satisfying / (0) = 0. 
then f(A) __ f(B). 

P r o o f . Since A __ I3, there exists a C G <S(H) such that A _L C and 
.4 0 C = I3. As in the proof of Theorem 4.6, we have that f(A) _I_ / ( C ) and 

f(A)®f(C) = f(A®C) = f(B). 

Hence, / (A) _ _ / ( £ ) . • 

For example, it follows from Corollary 4.7 that if A _< I3, then A2 __ I32. 
This property does not hold for the usual order < even when A > 0, B > 0. 
For instance, letting 

A = # = 

we have that A > 0, I9 > 0, A < H, but A2 £ B2. 
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THEOREM 4.8. If A1 < A2 < • • • < B, then A = \J Ai exists in S(H) and 
A = lim A{ in the strong operator topology. 

P r o o f . Applying Theorem 4.6 we have that 

p = pAi({0}') < pAi + 1({0}') = p 
Ai — Ai+i 

Hence, PAi < PM < • • • . It follows that P = \J PAi exists in V(H) and 
P = limPA. in the strong operator topology. Applying Lemma 4.3 we have that 
An = BPA[ and it follows that BP = PB. Define the operator A e S(H) by 
,4 = P P . Since 

K = BPAn=BPPAn=APn, 

we conclude from Lemma 4.3 that An < A. Suppose that An < C for all n 
where C eS(H). Then CPAn = An = BPAn , so that CP = BP = A. Since 

C2P = C2P2 = (CP)2 , 

we conclude by Lemma 4.3 that A = CP -< C. Hence, A = VA-. Since 
An = APn1 we conclude that lim.An = A in the strong operator topology. 

• 
COROLLARY 4.9. For A e S(H), [0, A] is a a -orthomodular poset. 

P r o o f . By Theorems 2.3 and 4.8, [0, A] is a a-orthoalgebra. If P , C < A 
with B 1 A C , then P, C < B 0 A C. Now suppose that D <A and B,C <D. 
Then by Lemma 4.3, BD = B2, CD = C2. Hence, 

(B + C)D = BD + CD = B2 + C2 = (B + C)2 . 

Again, by Lemma 4.3 we have that B 0 ^ C -<D. We conclude that B ©^ C = 
By C in [0, A] and the result follows. • 

Corollary 4.9 could also be proved using Corollary 4.5. The next lemma gen
eralizes Corollary 4.4. 

LEMMA 4.10. If P e V(H), then [0,P] = {P1 e V(H) : P1 < P} . 

P r o o f . If P1 e V(H) and Px < P , then PXP = P1 = P 2 , so P1 < P 
and P1 e [0,P]. Suppose that A e S(H) and A e [0,P]. Then A < P , so that 
A = PPA. It follows that A = A2. We conclude that AeV(H). • 

We now show that we need the condition A{ •< B in Theorem 4.8. For 
example, let H = L2(R, ji) where JJL is Lebesgue measure on (E, B(R)) . Let 
P. = [-i,i], i - 1,2,... , and let AJ(X) = A X B . ( A ) / ( A ) for every / e H. 
Then Ai e S(H) and A- < Ai+l because A{Ai+1 = A?, i = 1. 2 , . . . . How
ever, V Ai does not exist in S(H). Indeed, if A = \/Ai exists in S(H), then 
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clearly | |AJ| < ||A|| for every i = 1,2, . . . . However, it is easy to show that 
\\At\\ = i, which is a contradiction. This shows that (<S(H),0, ffi) is not a gen
eralized cr-orthoalgebra. 

It is easy to show that the order < is not related to the order < on S(H). 
For example, we can have A < B, but AB ^ BA, so that A ^ B. Conversely, 
letting A = diag(l,0) and B = diag(l, - 1 ) we have that A < H, but A ^ B. 
In fact, in this case B < A. Nevertheless, the next result shows that A < B 
implies that A < B for the case of positive operators. 

THEOREM 4 .11 . If A<B and B > 0. then A<B. 

P r o o f . Suppose that A < B and B > 0. Applying Lemma 4.3 we have 
that Ax = Bx for all x G ran(A). Now for every z G H we have that z = x + y 
for x G fan(A), y G null(A). Hence, 

((B - A)z, z) = ((B - A)(x + y), x + y) = ((B - A)y, x + y) 

= (y, (B - A)(x + y)) = (y, (B - A)y) = (y, By) > 0 . 

Therefore, A < B. D 

We say that a partial order < on a set J? is algebraic if F? can be organized 
into a generalized effect algebra (E, 0, 0 ) that generates <; that is, a < b if and 
only if there exists a c G i? such that c _L a and a 0 c = b. Of course, the order 
< on «S(if) is algebraic. We now show that the usual order < on S(H) is not 
algebraic. Suppose < is generated by a generalized effect algebra (<S(ii),0, EB); 
that is, A < B if and only if there exists a C G S(H) such that A EB C = B. 
Let A G <S(.ff) satisfy A < 0 and A / 0 (for example, _4 == - J ) . Then there 
exists a B G 5(H) such that A EB H = 0. By (GEA5) we have that A = B = 0, 
which is a contradiction. 

Notice that if A G S(H) is invertible, then yl is a maximal element of 
(S(H),<). Indeed, if A invertible, then PA = I and if A < B, then A = 
BPA = B. This shows that if A,B G <5(H) are invertible and A / H, then 
A V B does not exist in (S(H): <). We conclude that (S(H), <) is not a lattice. 
We do not know whether A A B always exists in (<S(H), <). The next result 
shows that (<S(H), <) is a near-lattice. 

THEOREM 4 .12. If A e S(H), then [0, A] is a-isomorphic to the a-ortho-
modular lattice LA = {P G V(H) : P <PA, PA = AP) . 

P r o o f . By Lemma 4.3, B G [0, A] if and only if B = APB where PB G LA. 
Define 0: [0, A] -> LA by 0(H) = P B . If 0(H) = 0(C) , then P B = Pc and 
H = A P 5 = APC = C, so (ft is injective. If H = AH for H G LA, then 

^ - -PB({0}7) = ^ ( { 0 } ; ) - P = PAP = P-
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Hence, if P G LA) letting B = AP we have that P = PB and (f)(B) = P. 
Thus, <j> is surjective. If B,C G [0,4] with B _\ C, then P B < P c , so that 
cf)(B) < cf)(C). Conversely, if <j)(B) < </>(C), then PB < Pc so that 

B = APB _\ APC = C. 

Clearly, (f)(0) = 0 and for B G [0, A\ we have that 

A-B = A-APB = A(PA-PB) 

where PA — PB G LA. Hence, PA_B = PA — PB and we conclude that 

<f>(B') = <f>(A -B) = PA-PB = ^(B)1. 

It follows that <fi is an isomorphism. If A1 _\ A2 < • • • -< A, then as in the proof 
of Theorem 4.8, 

(f>(\JAi)=\/PAi=\/4>(Ai). 

Hence, 0 is a cr-isomorphism. • 

Of course, it follows from Theorem 4.12 that [0,A] is a a-orthomodular 
lattice. 

COROLLARY 4.13. For A,B eS(H), AAB and A V B exist in {S(H), ^ } if 
there exists a C G S(H) such that A,B _\C. Hence, {S(H), _\} is near-lattice 
ordered. 

We now consider some finite-dimensional examples. In the sequel let dim if 
= n < oo. If A,B G S(H) and B _\ A, then it follows from Theorem 4.6 that 
A and B are simultaneously diagonalizable and can be represented by matrices 
A = d iag(A l 5 . . . , Xn), B = d i a g ( a l 5 . . . , an) where a{ = A- whenever a- ^ 0. 
Denoting the spectrum of A by a(A), it follows that a(B) C a(A) U {0}. We 
say that A G <S(iJ) is nondegenerate if its nonzero eigenvalues are distinct. 

THEOREM 4.14. If dim FT = n < oo and A G <S(iJ) is invertible and nonde
generate, then [0, ̂ 4] is a Boolean algebra isomorphic to the Boolean algebra 2n . 

P r o o f . We can diagonalize A so that A has the representation A = 
diag(A1 , . . . ,An) where \ G l R \ {0} and A- ^ Aj5 i / j . Let V(A) be the 
power set of { A 1 , . . . , A n } , so that V(A) = 2n. If B G [0 ,4] , then P has the 
representation B = d i a g ( a 1 , . . . , an) where a{ = \{ whenever ai / 0. Define 
<\>\ [0,A] -> 2n by 4>(B) = {a[,... ,cY^} where «'-_,... , a'm are the nonzero 
eigenvalues of B. Then 0(J3) G V(A) and it is easy to check that 0 is an 
isomorphism. • 

The next result shows that we can get the isomorphism [0, A] « 2 m for every 
m < n. 

587 



STAN GUDDER 

COROLLARY 4.15. If d imH = n < oo and A is nondegenerate with 
\a(A) \ {0} | = m < n, then [0, A] « 2r> •ym 

In the general case we have the following result. 

THEOREM 4.16. If d imH = n < oo and A G S(H) has the spectral repre-
3 

sentation A = Yl ^i^i where X{ are nonzero and distinct with d im(PJ = ni, 
z=i 

then 
[0, A] « V^1) x V(Cn2) x . . . x V(Cn>) . 

P r o o f . If B -< A, then B = V A , Q. where Q, < P. . Let Q, = 0 if 
i ^ 4 for some fc and define </>: [0, A] -> P ( C n i ) x • • • x V(Cni) by <j>(B) = 
Qx x Q2 x • • • x Q.. It is straightforward to show that </> is an isomorphism. D 

Although we do not know whether A A B exists in general, we do have an 
affirmative answer when dim H < oo. 

THEOREM 4.17. If d imH < oo, then AAB exists for every A, B G S(H). 

r 

P r o o f . Let A and B have spectral representation A = ^ A -P-, B = 
-A *=i 
2J l^Q; where the Â  are distinct, the jii are distinct and Xi,fii ^ 0. If there 
i=l 

exists no C G S(H) with C ^ 0 and C < A , P , then A A P = 0. Otherwise, 
suppose we have a C G 5(H) with C ^ 0 and C ^ A, B. Then at least 
one Â  and \x. coincide and P{ /\Q- ^ 0. We can then rearrange the spectral 
representation of B to have the form 

* = !>.<?.+ i>A> 
z=l i = t + l 

where / i . are distinct from any A .̂ Let D G S(H) have the spectral represen
tation 

i=l 

It is clear that D •< A,B and it is straightforward to show that if E G S(H) 
with E ^ A , P , then E <D. Hence, P = A A P . • 
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