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THE LOWER BOUND OF NUMBER 
OF SOLUTIONS FOR THE SECOND ORDER 
NONLINEAR BOUNDARY VALUE PROBLEM 

VIA THE ROOT FUNCTIONS METHOD 

P E T E R SOMORA 

(Communicated by Michal Feckan ) 

ABSTRACT. We consider a second order nonlinear differential equation with 
homogeneous Dirichlet boundary conditions. Using the root functions method we 
prove a relation between the number of zeros of some variational solutions and 
the number of solutions of our boundary value problem which follows into a lower 
bound of the number of its solutions. 
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0. Introduction 

The problem of multiplicity of the nth order boundary value problem (BVP) 
has been investigated in many papers. There are many ways to handle this 
problem. One of them is the well-known Shooting Method. In this paper we will 
try (at least partially) to solve a problem of a lower bound of the number of 
solutions of second order BVP. Papers using the Shooting Method to bound the 
number of solutions of BVP are usually based on the same principle, which we 
call the root functions method. Roughly speaking we will try to show that the 
number of zeros of some variational problem has a connection with the number 
of solutions of BVP and this connection is made by root functions. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34B15. 
K e y w o r d s : boundary value problem, shooting method, shooting function, root function, 
variational solution, variational index. 
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PETER SOMORA 

We will consider the following 2nd order BVP with Dirichlet boundary con
ditions 

x" = f(t,x,x'), (1 

z(0) = 0, X(TT) = 0 , (2 

where / : [0, T] x R2 -> R and T G (TT, OO] -1 

In the first paragraph we will set up the definition of a shooting function as 
a solution of some parameterized initial value problem (IVP). Then we define 
the root functions, which have been already mentioned in [DS]. We actualh 
generalize this notion of root functions for our BVP with minimal requirements 
on the function / . Further we show properties of a shooting function and root 
functions, which will be useful in the next paragraphs. 

In Paragraph 2 we will present a theorem, which under another assumptions 
on / gives a lower bound of the number of solutions. Then we prove a corollarv 
of this theorem, which refines the lower bound of the number of solutions under 
an additional assumption on / . To achieve our purpose we are using technique 
similar to [GS]. We also show a non-trivial example where we use this theorem 

In the conclusion we will emphasize the importance of root functions be
haviour analysis. A connection between the behaviour of -^ (for / = f(x) and 
the behaviour of root functions will be outlined. 

In this article we will use the following notations: 

|| • || norm in R2 ; 

Hxllj =- sup || (:r(/j), :r/(£)) ||, where x e C1 ([0,T]) (|| • \\r is norm in Cl ; 
te[o,T] 

(a,b)° = (a ,b ) \{0} . 

1. Definition of root functions 

For the definition of root function we will consider IVP (1) with the inifal 
conditions: 

x(0) - 0 , x'(0) = A, AG (AX ,A2), (3 

- o o ^ A1 < 0 < A2 ^ oo. 

We will suppose the following assumptions on / which will be called the 
standard assumptions: 

(HI) / is continuous on its domain and the function x(t) ~ 0 for t G [0, T] is 
the unique solution of the initial value problem (1) with the conditions: 
x(t) = 0, x'(t) = 0, for each te [0,T] (it implies that /(£,0,0) = 0 . 

xIf T = oo, then all intervals [ • , T] have to be replaced by [ • , oo). 
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(H2) 3AX G R - U { - O O } 3 A 2 G M + U {00} VA G (A1 SA2): 
IVP (1), (3) has the unique solution defined on [0,T]. 

DEFINITION 1.1. The initial value problem (1), (3) is called the shooting prob
lem (SP) associated with (1) (or SP (1), (3)) when it fulfils the following assump
tions: 

(a) for all A G (A1? A2) there exists the unique classical solution of [VP (1), 
(3) and it can be extended on the whole interval [0, T]; 

(b) IVP (1), (3) has the property of continuous dependence on parameter A 
it means: x GC([0,T] X ( A X , A 2 ) ) and x' GC([0,T] X (A1 ?A2)) . 

Next we will define shooting function as a solution of SP (1), (3) with pa
rameter A and show its properties under standard assumptions. 

DEFINITION 1.2. The shooting function of SP (1), (3) is a function S: [0, T] x 
(A1? A2) -» R such that: 

for each A G (A-_, A2) function S^(-) := £(•, A): [0,T] -» R is a solution 
of SP (1), (3) with parameter A = A — this function will be called the 
shot with slope X (S'^(0) = A). 

LEMMA 1.1. Let f fulfil standard assumptions. Then there exists a shooting 
function S of SP (1). (3) with the following properties: 

(i) SeC([0,T] x (A^Aa) ) , S' eC([0,T] x ( A U A 2 ) ) , where S'= § ; 
(ii) V A e ( A 1 , A 2 ) : 5 ( - , A ) G C 1 ( [ 0 , T ] ) ; 

(iii) V A e ( A 1 , A 2 ) ° : | | 5 ( - , A ) | | 1 > 0 . 

P r o o f . The existence of a function S follows from the assumptions (HI) 
and (H2), which imply (a), (b) of Definition 1.1, see [Ka, p. 59]. The property 
(i) holds, since it is the same as (b) of Definition 1.1. The property (ii) is also 
fulfilled since the function Sx(-) = S(-,\) (A £ (Aj,A2)) is a classical solution 
o f S P ( l ) , (3). 

Let the property (iii) do not hold, then there exists t G [0,T] and A G 
(Al5 A2)° such that HS^f)!^ = 0. From (HI) it follows that the only solution 
of (1), (3) with the property x(t) = 0, x'(i) = 0 is zero solution x(t) = 0 for 
t G [0,T]. This is a contradiction since S~x(t) is also a solution of (1), (3) and 
A ^ O . • 

Let (t1,X1) be the inner point of the set (0,T) x (A1, A2)° such that S(t1,X1) 
= 0. By Lemma 1.1 we have 5 , /( /

1,A1) ^ 0, then from the Implicit Function 
Theorem we get a continuous function tk: 06(X1) —>> Oe(t1) (where 05(XY) = 
(\ -S.X.+S) c (A 1 5A 2) 0 , Or(tx) = (tr -£,*-_ +e) C (0,T) and e,5 > 0) 
which fulfils: S(tk(X),X) = 0 for A G ^ ( A J . 
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The following definition of root functions is crucial in estimation of number 
of solutions. 

DEFINITION 1.3. Let (£, A) be an inner point of the set (0,T) x (\v A2 ° 
such that S(t, \) — 0, where S is the shooting function of SP (1), (3). 

The root function of SP (1). (3) is a continuous function tR: 0(\) -> (0.T , 
where 0(\) C (A1,A2) is a maximal open interval such that S(tR(\),\) — 0 
for A G 0(\). 

In the case that V(tR) C (0,A2) (resp. V(tR) C (A-_,0)) the root function 
tR will be called the right (resp. left) root function and denoted as tr (resp. tt). 

The root function tR(\) = 0 for A G (Al5 A2) will be called the trivial root 
function. 

THEOREM 1.1. Let function f fulfil standard assumptions, then every root 
function of SP (1). (3) has the following properties: 

(PI) Through every point (£, A) G (0,T) x (A l 5A2) there goes at most one 
root function (i.e., root functions cannot intersect among themselves). 

(P2) For every compact K C (A1,A2) there holds: 

35>0VtR^0V\eKnV(tR): tR(\)>5. 

(P3) Let tR^0 and Ax G dV(tR), then only one of the following possibility s 
can arise: 

(a) A ^ O ; 
(b) \x = A1 or Ax = A2 ; 

(c) A 1G(A 1 ,A 2 )° and \\m tR(\) = T. 
X—y X\ 

P r o o f . By Lemma 1.1 we have the shooting function S of SP (1), (3 
defined on [0, T] x (A1,A2) with properties (i) (iii) of Lemma 1.1 and we ha\e 
well-defined root functions (if there exists any). 

Property (PI) follows directly from the Implicit Function Theorem. 
(P2): Let the opposite hold, i.e., there exists a compact K C (0, A9) and a 

sequence of tn := trn(\n) such that lim tn = 0. Since Sx (tn) = 0 = Sx (0 , 

the Mean Value Theorem for every n gives in G (0,£n) such that Sx (in) = 0. 
It is easy to see that lim £ = 0. Since K is a compact, there must be a point 

n—>-oo 

of accumulation of An denoted as A. It is obvious that A G K C (0, A2) an 1 
from the property (i) of the shooting function S and previous statements we 
finally have: S~x(0) = 0 = S'~(0). It is a contradiction since S' = A > 0. (The 
statement for tl can be proved analogously.) 

(P3): Let \x G dV(tR) fulfil neither (a) nor (b). Hence \ i G (A1 ,A2)° . If 
lim tR(\) does not exists, then from the continuity of tR we get the discontini -

A—> X\ 
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ity of shooting function S in points (£, Ax) where t G ( lim tR(X), lim t f i(A)l 

which is a contradiction. Let lim tR(X) = t1 and tx < T. From (P2) we can 
A—^Ai 

see that tx > 0. Hence (t1,A1) is an inner point of (0,T) x (A l 5A2) . Using 
the Implicit Function Theorem we can extend the root function tR on a greater 
connected set, which is a contradiction with maximality of T>(tR) (see Defini
tion 1.3). Hence lim tR(X) = T and the theorem is proved. • 

A—>Xi 

Let function / of BVP (1), (2) fulfil the following assumption: 

(H3) 3K>0Vte [0,T] Vf G l 2 : \f(t,x)\ ^K\\x\\. 

Remark 1.1. Assumption (H3) together with assumption (HI) imply the ex
tensibility of every shot Sx (X G (AX,A2) ) on the whole interval [0,T]. 

LEMMA 1.2. Let standard assumptions and (H3) on the function f hold. Then 
the shooting function of SP (1), (3) fulfils: 

3M> 1 VAG(A1,A2)° : M A < M . 

P r o o f . Let us denote u(t, X) = S(t, X) and v(t, X) = S'(t, X) for t G [0, T] , 

A G (A1? A2) . It is easy to see that functions (u,v) fulfil the following system 

of differential equations on interval [0, T] for arbitrary A G (A1? A2) : 

'«'(*, A) \ / v(t,X) 
v'(t,X) \f(t,u(t,X),v(t,X)) 

, дu , дv 
u=Tťv=Ҡt 

and they also fulfil initial conditions: (u(0, X):v(0, A)) = (0, A). Integrating last 
equation and using standard norm in ]R2 we have: 

t 

\\U(t, A)|| ^ |A| + J\\F(T,U(T, A), V(T, A))|| dr , 

/here 

"«•*>=(ЗiiîD- ғ«--> -(/«,;.) 
Using assumption (H3) it gives: 

t 

\\U(t, A)|| ^ |A| + I y/\v(T,X)\2 + \f(T,u(T,X),v(T,X))\2 dr 

0 

t 

í\M+f^/\v(T,X)\2 + K*(\u(T,\)\2 + \v(T,\)\2)dT 
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t 

SIM + J yj(í + K*) (\U(T, A)|2 + \V(T, A)|2) dr 

o t 

^\\\ + ^/(\ + K->) j\\U(T,\)\\áT. 
0 

By the well-known Gronwall's Theorem we finally get: 

IN*'A>II ^ j ^ ^ 7 ^ ^ g ery«TT^) = : M j 

I'M 
which implies 

V Л Є ( Л 1 ; Л 2 ) ° : ^ й M . 

This concludes the proof of the lemma. • 

2. Lower bound of the number of solutions 

In this paragraph we will present additional conditions on function / in BVP 
(1), (2), which together with assumptions (H1)-(H3) give a lower bound of the 
number of its solutions. We will use the technique of variational solutions (see 
Definitions 2.1, 2.2 later). To put it simply, we will show connection between the 
number of zeros of variational solutions and the number of solutions of (1), (2). 

In this section we take Ax = — oo and A2 = oc. We will also suppose standard 
assumptions ((HI), (H2)) on / and in addition: 

(H4) There is g: [0,T] x R2 —> R continuous on its domain locally Lipschitz 
and positively homogeneous2 in x := (x,y) which fulfils the following 
property: 

lim ' ^ ~ 5 ^ = 0 uniformly in * G [0,T] . 
||2||->0 | |f | | L J 

DEFINITION 2.1 . A solution hr: [0,T] -> R (ht: [0,T] -> R) of variational 
problem: 

x" = g(t,x,x'), (4) 

x(0) = 0, a;,(0) = l , (5) 

(*(0) = 0, x ;(0) = - l ) , (5') 

where function g fulfils conditions of (H4), will be denoted as the right (left) 
0-variational solution of SP (1), (3). 

2Positive homogeneity of g means: VA > 0: g(t,\x) = Xg(t,x) for all (t,x) G [0,T] x R 2 . 
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Remark 2.1. If the function f(t,x) = f(t,x,y) has continuous partial deriva
tives by x and y in a neighborhood of point (£, 0,0) for all t G [0, T]., then we 
can use g(t, x, y]) = §£ (£, 0, 0)x + §£ (£, 0, 0)H. 

We recall that positive homogeneity and continuity of g from (H4) imply: 

3 A > 0 V £ E [ 0 , T ] V f G t 2 : \g(t, x)\ S A\\ x || . 

Let a solution /zr of problem (4), (5) be defined on [0,T-_) for Tx <T. Then for 
arbitrary t1,7^2 G (0, T-J we have: 

\K(h) -K(t2)\ = J\g(t,hr(t),h'r(t))\ at = AWh^it, -12\. 
t2 

Using the same technique as in Lemma 1.2 we get: 

3N>1: IKH.gN A Ih'M-KitJl^AN^-tJ. 
Hence there exists lim h'Jt) < oo and also lim hJi) < oo. This implies the 

t->Ti r t->Ti r 

extensibility of hr to point Tx. Since g is continuous and locally Lipschitz it can 
be extended on the whole interval [0, T] in a unique way. A similar conclusion 
holds for h{. Hence functions hr and hl (from Definition 2.1) are well-defined. 

LEMMA 2 .1 . Under (H3). (H4) and standard assumptions on the function f 
the shooting function S fulfils the following properties: 

(i) lim | | ^ - / d | = 0 ; 
V ' A-+0+ " lAl r | | l 

W A S_ l l f e - h 'H i = 0 -
P r o o f . We will prove only the case (i) where A > 0. The case (ii) can be 

proved analogously. 

Let us denote vx(t) = - ^ - - - hr(t) for t G [0,T] and A G (0,oo). We can 

see that the function vx(t) = -j^p- — hr(t) fulfils the following equation for all 

A G (0,oo) and t G [0,T]: 

f(t,Sҳ,S'x) -g(t,K,tír). 
|A| 

Due to property (iii) of the shooting function S we can rewrite the previous 
equation in a form: 

yll 9(t,Sx,S'x) \\Sx\\,f(t,Sx,S'x)-g(t,Sx,S'x) 
X~ |A| Sit,hr,hr)+ | A | ^ . 

Using positive homogeneity of function g we have: 

v'l = g(t,vx,v'x) + Hx(t), (6) 
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where 

£(*> ^ A ' O = ff(*> *>A + ^r > ^ + / lr) ~ fl(^ ftr> K) 
and 

- m _ II^AIII f(t,Sx,S'x)-g(t,Sx,Sx) 

It is easy to see that function vx fulfils the following initial properties for A > 0: 

W\ 
One can see that (by (H4)) function g is continuous on [0,T] x 1R2 and locally 
Lipschitz in 2nd and 3rd variable. Hence vx = 0 is the unique solution of 
IVP (6), (7) with perturbation Hx(t) = 0. If we show that lim \Hx(t)\ = 0 

uniformly in t G [0,T], then by [BL, p. 119, Lemma 2.6.4] we get: 

lim HfJL = 0. 
A->O+ " A M 1 

By Lemma 1.2 we have such M G (l,oo) that ^ ^ = M for all A G (0, oo) 

and from property (i) of the shooting function we also know that: 

lim ||S\ |L = 0, 
A->O+M A M 1 

which together with a limit property of function g (in (H4)) finally gives: 

lim |H x ( t ) \= 0 uniformly in t G [0,T]. 

Hence Lemma 2.1 is proved. 

Let the function / fulfil the following assumption: 

(H5) There is G: [0,T] x 1R2 -+ R continuous on [0,T] x 1R2 locally Lip
schitz and positively homogeneous in x := (x,y) G M2 which fulfils the 
following property: 

\ f ( t J ) - G ( t , x ) \ r i . . 
lim ——-, = 0 uniformly in t G 0, T . 

||f|Koo | | f || 

DEFINITION 2.2. A solution zr: [0,T] -> R (zt: [0,T] -> R) of the problem: 

z" = G(t, z,z'), (8 

z(0) = 0, z'(0) = l , (9 

(z(0) = 0, z'(0) = -l), (9' 

where the function G fulfils conditions of (H5), will be denoted as the right (left 
30 -variational solution of SP (1), (3). 
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Remark 2.2. Let us suppose / = f(t,x) and let there exist numbers 

/oo>/-oo e R such that: 

lim ^ - l = f and lim ^ - - = f uniformly in t G [0, T]. 
x^oo X z->--oo X 

Then we can take G(x) := / o c ^ + — f-^x- which fulfils (H5).3 

Positive homogeneity and continuity of G from (H5) implies: 

3B>0 W e [ 0 , T ] V f G t 2 : \G(t,x)\ = B\\ x \\ 

which together with locally Lipschitz condition of G gives the extensibility of 
the solution of IVP (8), (9) and (8), (9') on the whole interval [0, T] in a unique 
way (see Remark 2.1). Hence functions zr and zx are well-defined. 

LEMMA 2.2. Under (H3), (H5) and standard assumptions on the function f 
the shooting function S fulfils the following properties: 

(1) A^HW-^II^O; 

P r o o f . The proof is the same as that of Lemma 2.1, but instead of (H4) 
we use (H5) and instead of the fact that lim \\SX\\1 = 0 we use: 

l im II^AIII = o o , 
|A|—>oo 

which follows from [BL, p. 118, Lemma 2.6.3] or [Kr, p. 179, Lemma 15.1]. • 

Further we define variational indices for estimation of number of solutions 
for BVP (1), (2). 

DEFINITION 2.3. Let hr (ht) be the right (left) O-variational solution of SP 
(1), (3). The index i° (tf) of problem (1), (2), (3) will denote the number of 
zeros of hr (ht) in interval (0, n). 

Let zr (zt) be the right (left) oo-variational solution of SP (1), (3). The 
index i™ (if°) of problem (1), (2), (3) will denote the number of zeros of zr 

(zt) in interval (0,7r). 
Next we define additional adjusting indices of problem (1), (2), (3): 

5o = ( 1, iíht(ir) 

' 10, iffc.0) )ф0, r [0, Іïhr(тг)ŕ0, 
if/iř(V) = 0, A x 0 _ / 1 ' i f ^ P W = 0, 

' " 1 o, 
, r - > 

J' ' " i f s j M T - O , " " r 1 0 , iizr(7r)ŽO. 

3Where x+ := max{x,0} and x~ 

and ö°r- \o, 
and ő™---í1, 

l o , 
max{—x, 0}. 

J O o = / l , * * , ( * ) = 0, _ л X 0 O _ / L Іfzr(n)=0, 

' \o, 
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Finally the left variational index I{ and the right variational index Ir of problem 
(1), (2), (3) are defined as follows: 

,•0 _ ;oc 
l i l i 

Li 

0, 

8f° 
Sf, ifi ;

c 

ifif 

if г? > ;ľ° 

> г i ' 

ч •> 

and I 

i°-i?° 

lr 

o, 
V> 

ifг° > i x 

if i: 
> ." 

N o t e . On an example we will try to explain the meaning of variational indices 
and its connection to root functions. Let the right 0-variational solution hr ha\e 
I ' G N zeros in (0, TT) and let hr(n) / 0. Further let the right oc-\ariational 
solution zr have k — 1 zeros in (0, TT) and let zr(ir) / 0. Then we have define 1 
(see Lemma 2.1) k right root functions {tr}^ smaller than TT near A = 0. If one 
of them passes through line t = TT in point X1 > 0, then we have Sx (tr(X1)) 0 
wrhich means that shot Sx is a non-trivial solution of BVP (1), (2). Let all 

these right root functions stay below the line t 
Lemma 2.2 there should exist: 

7r. Then by Theorem 1.1 an 1 

lim Ç(A) = T n є [ 0 , т r ] 
Л—»oo 

n = l, i " 

where {Tn}f and T0 = 0 are indeed zeros of zr in [0,7r] (T0 is a limit of 
the trivial root function). Since zr has only single zeros in [0,7r] wre know that 
all {Tn}^ are different from each other and greater than T0 — 0 which is in 
contradiction writh our assumption on number of zeros of zr. Hence there is (at 
least) one right root function (the greatest from tr) which must pass through 
line t = 7T. Therefore BVP (1), (2) has at least Ir = k-(k-l)-0 = 1 non-trivial 
solutions with xf(0) > 0. 

In the case zr(rr) = 0 there need not be any solution, because there coull 
be a root function denoted as ir which fulfil: lim ir(X) = TT and ir(X) < TT for 

A^oo 

A G (0, oo). Hence we may say that there are at least Ir = k — (k — 1) — 1 — 0 
non-trivial solutions. 

In the case when zr(n) ^ 0 and hr(n) = 0, we do not know whether theie 
are k right root functions below TT in the close right neighbourhood of A = 0 or 
there are fc-f-1 of them. Indeed, there could be L which fulfil: lim i(X) = TT an 1 

ir(X) > TT for A E (0,oo). Hence this zero of hr need not gi\e a next solution 
and we may just say that there is at least Ir = k — (k — 1) — 0 = 1 solution. 

In other words, zero of variational solution in a right boundary TT can steal 
one solution but need not give another one. Therefore the right (left) variational 
index, which estimates a lower bound of the number of solutions of BVP (1), (2 
with x'(0) > 0 (x'(0) < 0), must be defined in such a way. 
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Remark 2.3. If we can choose G as in Remark 2.2, then indices i£°, if^ of 
problem (1), (2), (3) can be computed via the position of (Z^, f_OQ) with respect 
to the F u c i ' k spectrum of equation: 

*" = /co* + - f- x(0) = 0. 

Hence if / 0 0 , / _ 0 0 = ~~1> w e c a n e x P r e s s adjusted right and left oo-variational 
indices in the following form: 

І~ + c = m a x 

ІГ + *, 

If/ooJ 

0 0 =r 
l max 

( v T O - i ) ^ 

> 

.vTU + 
-1 we have indices: 

+ Ő™=0; 

+ í.00 = 0 . 

Here [•] means the integer part of a number. (For more details see the proof of 
[FK, p. 278, Lemma 35.4].) 

LEMMA 2.3. Indices Ir and It are finite for every function g (resp. G) sat
isfying conditions of (H4) (resp. (H5)). 

P r o o f . Let there exist tx G (0, T] a point of accumulation of zeros of 
function hr. It is easy to see that tx is also a point of accumulation of zeros 
of function h'r. Then by Remark 2.1 this solution of (4), (5) can be smoothly 
extended through tx up to T. It means: 

lim hr(ť) = 0 and 
t^t 

lim h'r(t) = 0, 
t—>ti 

further from positive homogeneity and continuity of g it follows that lim h'r(t) 
t—tti 

— 0. Hence by uniqueness of the solution of (4), (5) we know that function 
hr(t) = 0 for t G [t1,T] and hr is different from the solution x(t) ~ 0 of (4) 
with the same initial conditions x(tx) = 0, x'(tx) = 0. This is a contradiction, 
since (H4) (continuity and the locally Lipschitz condition of g) implies the global 
uniqueness of such IVP on [0, T]. Since t — 0 is an isolated zero of hr, there 
can be only finite number of zeros of hr on compact [0, T] . • 

Now we are able to present and prove the main theorem of this paragraph. 
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THEOREM 2.1. Let assumptions (HI) (H5) on the function f hold. Then BVP 
(1), (2) has at least Ir non-trivial solutions with x'(0) > 0 and at least I{ non-
trivial solutions with x'(0) < 0. 

P r o o f . We prove only the first part of this statement. The econd part can 
be proved analogously. 

By Lemma 2.1 there exists such e > 0 that shot S£ has at most ^0
r + 5° and 

at least ir zeros in (0, n]. It means there are exactly i0 G {i^, t^ + o^} non-tmial 
right root functions defined in the right neighbourhood of A t and not gieate * 
than t = 7r. By Lemma 2.2 there exists such A >> 1 (A < oo) that shot S \ • 
has at most ẑ ° + 8™ and at least i^ zeros in (0,7r] and there are exactly i^ G 
{i^°, i^° + 8™} non-trivial right loot functions defined in the left neighbourhood 
of A = A and not greater than t = n. Property (P3) (see Theorem 1.1) implies 
that every right root function tr , taken in rectangle [e, A] x [0, n], is either defined 
on the whole interval [e, A] or there exists X{ G (e, A) such that lim tt(X — T . 

A—y X\ 

[t means that shot Sx is a solution of BVP (1), (2). 
Root functions cannot intersect among themselves (see (PI)) and they are 

greater than tR ~ 0 on compact [e,A] (see (P2)). Hence there are at most 
min{i0 ,i } non-trivial right root functions smaller than n on interval [^ A] 
Anyway, there are at least Ir ( ^ \iQ — i^l) non-trivial right root functions 
mteisecting the line t = ir (each one foi different A > 0) and giving new non-
trivial solutions of BVP (1), (2) with x'(0) > 0. It concludes the first part o 
the proof of the theorem. 

Note. We do not know if there is a shot S£ (e G (0,1)) with the same num
ber of zeros as hr in the interval (0,TT] unless the strict equal monotonicity of 
right root functions is fulfilled on the interval (0,1) (similarly in case with S \ . 
A >> 1). Therefore generally we can say there are only at least Ir solutions (w ith 
.r/(0) > 0) and not \i0 — i^l, which can be greater by 1 than Ii . 

Actually in the case f(t,x,x') = — x we have one tr = n on M+ and tlu 
claim of Theorem 2.1 gives nothing, even though there are infinitely mam so 
lutions of BVP (1), (2) in the form: x(t) = Asint for A G R. But when, e.,,.. 
f(t, x, x') = — | x , the claim of Theorem 2.1 gives the uexistence,, of 0 non-trivial 
solutions, which is true because there is no non-trivial solution of such BVP. 

Remark 2.4. One can verify that continuity of / and assumptions (114), (H5 
imply assumption (H3). 

COROLLARY 2 .1 . Let assumptions of Theorem 2.1 hold and let there be 
A0 > 0 such that shot SXQ of SP (1), (3) fulfils: 

V £ G ( 0 , T T ] : S A O ( * ) > 0 . 

Then BVP (1), (2) has at least ir + i™ non-trivial solutiojis with x'(0) > 0. 
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P r o o f . From Lemma 2.1 and Lemma 2.2 we have at least i® (i™) non-
trivial right root functions smaller than IT sufficiently close to point A = 0 
(A = oo). Due to the existence of solution (1), (3) — SXQ , which has no zero in 
(0,7r], we can see that there is no non-trivial right root function defined on the 
whole interval (0, oo) and smaller than TT. Hence all z° (i£°) non-trivial right 
root functions, which start (end) below line t = 7r, intersect it (each one for 
different A > 0) and give at least i® + i™ non-trivial solutions of BVP (1), (2) 
with x'(0) > 0 (see proof of Theorem 1.1). So this corollary is proved. • 

R e m a r k 2.5. A similar corollary can be formulated for A0 < 0. 

COROLLARY 2.2. Let assumptions of Theorem 2.1 hold and function f in 
BVP (1). (2) fulfil the following assumption: 

3x0 >0 Vt G [0,TT] : / ( t , x 0 , 0 ) = 0 . 

Then BVP (1). (2) has at least i® + ẑ ° non-trivial solutions with x'(0) > 0. 

P r o o f . It is obvious that we use Corollary 2.1 to prove this one. Hence we 
have to show the existence of A0 > 0 which allows us to use it. 

Let the opposite hold. It means: 

V A > 0 3tAG(0,7r] V 1 G ( 0 , t A ) : Sx(t) > 0 A Sx(tx) = 0. (10) 

Then for all A > 0 there is ix G (0,£A) — maximum of Sx on the interval 
(0,£A) where S'x(ix) = 0. From property (i) in Lemma 1.1 and the fact that 
S0(t) = S(t, 0) = 0 we know: 

lim \SX(L)\ = 0 . 

By [BL, p. 118, Lemma 2.6.3] we have: 

lim y/stfx)* + ^( t A ) - = oo. 
A—>-00 v 

Hence by property (i) in Lemma 1.1 of shooting function S the mapping 
M(A) := Sx(tx) is a continuous surjection from (0, oo) to (0, oo) and therefore 
we have A0 > 0 which fulfils: 

SXo(ho) = *0 a n d 5 l o ( f A 0 ) = ° -
It implies / (T5A , Sx (ix ),S'X (ix )) = 0. One can see that function x(t) = x0 

for t G (tAo, 7r] is a solution of (1). If we also define x = Sx on interval [0, tx ] 
we have a solution of (1), (3) on the interval [0,7r]. From (H2) (uniqueness of 
solutions of SP (1), (3)) it follows that SXo(t) = x(t) for t G [0,TT] and so SXQ 

fulfils: 
V £ G ( 0 , T T ] : .SAo(*)>0, 

which is a contradiction with (10). Hence by Corollary 2.1, this one is also proved. 

• 
Now we present a simple example of nonlinear BVP which fulfils assumptions 

of Theorem 2.L 
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Example 2.L Let us have the following BVP: 

x" = — m2 smx — n2— Ixlarctanx, m.n G N, 

a;(0) = 0, X(TT) = 0. 

Before we use Theorem 2.1, we have to verify assumptions (HI) (H5) for A G R 
and T > ~. 

It is easy to see that function f(x) = —m2smx — n22 |x |a rc tanx is con
tinuous and locally Lipschitz on K, fulfils assumption / (0) = 0 and (H3) (for 
K = m2 + n2), which imply (HI) and (H2) for A G R an T = oo. Because 
/ G C^K), we can take g(x) := f'(0)x = -m2x in (H4) (see Remark 2.1). If we 
denote G(x) := — n2x+ — (—n2)x~ = —n2x (see Remark 2.2), we have: 

\n2x — m2 s'mx — n2- \x\ arctanxl 
lim - ~ ' ' - = 0, 

v^T^^oc y/x2 + H2 

hence assumption (H5) holds, too. 
Solving left and right (linear) variational problems from Definitions 2.1 

and 2.2 (for our functions g, G) we get the following solutions: 

(i) hr(t) = ^smmt — solution of (4), (5), 

(ii) zr(t) = ^ smnt — solution of (8), (9), 

(iii) ht(t) = —^sinmt — solution of (4), (5'), 

(iv) zt(t) = -^srnnt — solution of (8), (9'). 

Hence indices of our problem are: ir = m — 1, ẑ 0 = m — 1, i£° = n — 1, if° = n — 1 
and Sf = 1, 5°r = 1, Sf° = 1 J ~ = 1 (see Definition 2.3). Using Theorem 2.1 we 
can say that our BVP has at least Ir = max{|m — n\ — 1, 0} non-trivial solutions 
with x'(0) > 0 and at least I{ = max{|ra — n\ — 1, 0} non-trivial solutions with 
x'(0) <0. 

It is easy to verify that f(n) < 0 and /(4.5) > 0 when m = 2n. It implies 
that there exists such x0 G (7r,4.5) that f(x0) = 0. Hence by Corollary 2.2 there 
exist at least 3n — 2 non-trivial solutions of our BVP with x'(0) > 0 in case 
m = 2n. Function / is odd so that f(—x0) = —f(x0) = 0 and there exist also 
at least 3n — 2 non-trivial solutions of our BVP with x'(0) < 0 in case m = 2n. 

3. Conclusion 

We showed a connection between the number of zeros of variational problems 
and the number of solutions (Theorem 2.1) (i.e., the lower bound of the number 
of solutions of BVP (1), (2) depends on the number of root functions taking 
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values under right boundary TT near points A G {—oc, 0, 00}). To get an upper 
bound of number of solutions we have to put another assumptions on the func
tion / . Actually for arbitrary finite k > 0 we are able to construct a function 
f{x): R -> R fulfilling assumptions of Theorem 2.1 such that BVP (1), (2) has 
k non-trivial solutions and its variational indices are Ir = 0 = II. We outline a 
procedure of such construction, because it shows us how the behaviour of root 
functions depends on the derivative of function / . 

It is easy to see that for f{x) := f0{x) = —\x there is no root function of 
SP (1), (3) which takes some values under TT . Now we break / 0 in x = 1 such 
a way that: 

/ l (* ) : ={_3 , 
and indices of problem (1), (2), (3) with f = fx are: 

if = i~ = l ; i« = iO = 0; 6?= 6f° = 6°r= 6* = 0. 

One can see (Lemma 2.1 and 2.2) that there is one root function which takes 
values under 7r, close to A G {-co, 00} for SP (1), (3) with f = fx and there is 
not a root function with such property near A = 0. Hence by Theorem 2.1 there 
exists shot Sx (A : > 0) which is a non-trivial solution of BVP (1), (2) where 
/ = f1. (Note: S_x = — Sx is also a solution.) 

Let us denote M := max] sup Sx (£), 1 >. Now we break fx and get: 
L te [o,7r ] * J 

/ - » , f o r | x | < ; M , 

-\x - s g n ( x ) ( M - 1), for |a;| > M . 

It is obvious that shots Sx and S_x stay solutions of BVP (1), (2) where 
f = f2^ which variational indices are Ir = 0 = It. Using this procedure arbitrary 
many times we can construct the function / with required number of solutions 
but with indexes Ir = 0 = I{. 

From this procedure of construction of appropriate / we see that the be
haviour of root functions depends on the behaviour of / ' = -^. Simply said if 
f'{x) < —n2, n G N, for |x| G I C (0, 00) where i" is a sufficiently large inter
val, then there exists shot Sx with n zeros in (0, n) (i.e., there are at least n 
root functions smaller than TT in A = A0). This consideration implies a question 
about the number of solutions when lim f'{x) = — 00, which is answered by 

;r|—>-oo 

[FK, p. 293, Theorem 37.2] giving infinitely many solutions of such BVP (1), (2). 
At the end we would like to remind the possibility to formulate theorems 

similar to Theorem 2.1 for Neumann's condition. Another interesting problem 
is a generalization of the root functions method for n t h order BVP. Unfortu
nately, there is one big barrier we have to deal with multiple zeros of shooting 
function. 
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