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(Communicated by Anatolij Dvurecenskij) 

A B S T R A C T . We consider a non-associative generalization of MV-algebras. The 
underlying posets of our non-associative MV-algebras are not lattices, bu t they 
are related to so-called A-lattices. 
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Mathematical Institute 

Slovak Academy of Sciences 

1. Non-associative MV-algebras 

As known, MV-algebras were introduced in the late-fifties by C . C . C h a n g 
as an algebraic semantics of the Lukasiewicz many-valued sentential logic (see [5], 
[6]). We recall the definition from [7] which is essentially due to P . M a n g a n i 
[12]; C h a n g ' s original definition in [5] was a bit more complicated: 

An MV-algebra is an algebra (̂ 4, 0 , -«, 0) of type (2,1,0) satisfying the follow
ing identities: 
(MV1) x 0 (y 0 z) = (x 0 y) 0 z, 

(MV2) x@y = y<Sx, 

(MV3) x 0 O = x, 

(MV4) -.-.a; = x, 

(MV5) x 0 -i0 = -«0 (the element --0 is denoted by 1), 

(MV6) -.(-.x ®y)@y = -«(-«2/ 0 x) 0 x. 
The prototypical example of an MV-algebra is the algebra r(G,u) = 

([0,u], 0,-",O), where (G, -F, —, 0, V, A) is an Abelian lattice-ordered group, 
0 < u G G and [0,u] = {x G G : 0 < x < u}, and the operations 0 and -> are 
defined via x 0 y := (x + y) A u and ^x := u — x, respectively. D . M u n d i c i 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 03G10, 06D35. 
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proved in [13] (see also [7]) that every MV-algebra A is i omorphic to (up to 
isomorphism) unique MV algebra r(G,u). 

Another well-known fact is that for any MV-algebra A, the relation < gi\en 
by 

x y • <=> -ix 0 1 / = 1 (1 

is a lattice order on A with x V y —1(—«x © t / ) © y and x A y — (->.£ V -iy . 
Obviously, if A r(G,u), then < is the restriction of the group order to the 
interval [0,tt]. 

In the recent years, non-commutative generalizations of MV-algebras weic 
considered by G . G e o r g e s c u and A . I o r g u l e s c u [9] a pseudo MV-a 
gebras and independetly by J . R a c h u n e k [14] as GMV-alg bras. Althou h 
the respective definitions are lightly different, the resultant non-commutati c 
MV-algebras" are equivalent; they are algebras with a binary operation 0 ai d 
two unary operations -i and ~ , which coincide whenever is commutati\e. 

We have to remark that the name GMV-algebra appears e.g. in 2], 8 
in a different sense. Here a GMV-algebra is a residuated lattice (in general 
non-commutative and unbounded) satisfying certain additional identities and 
bounded GMV-algebras coi respond to pseudo MV-algebra . 

In the paper we generalize MV-algebras omitting associativity of , but n 
such a way that the relation defined by (1) is still a partial order. Howe\er, 
without the identity (MV1) we would not be able to how that < is transi 
tive. Therefore we replace (MV1) by another two axioms which hold in * 11 
MV-algebras and which force ^ to be transitive. 

DEF IN ITION 1. An algebra (A, 0 , -i,0) of type (2,1,0) is called a non-associah 
MV-algebra or an NMV-alqebra for hort if it satisfie the identiti s 
(MV2) (MV6) and 

^x 0 (-n(-i(-n(^x 0 y) 0 y) 0 z) 0 z) 1, (WA 

- i x 0 (:r 0 7/) - 1. H 

If we put y — 0 m (H), we have -<x0x — 1, so < is reflexive. It follows easil 
from (MV6) that it is antisymmetric. Finally, if -<x 0 y = 1 and ~^y 0 z 1, 
then (WA) entails -ix 0 z — 1, thus < i also transitive. Altogether is a 
partial order as desired. In addition, using (MV6) and (WA) with z 0 it can 
be seen that -i(-ix 0 y) 0 y is a common upper bound of x, y, but in contrast to 
MV-algebras, it need not be their supremum. 

* * * 

As usual, given a partially ordered set (P, <) , we write L(x,y) \a P '• 
a < x and a < y} and U(x, y) — {a G P : a > x and a > y} for any x,y G P. If 
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U(x,y) 7-= 0 for all x,y G P, then (P, <) is called an upwards directed set, and 
(P, <) is called a directed set provided both L(x,y) and U(x,y) are non-empty. 

V . S n a s e l in his unpublished thesis [15] (see also [16]) introduced the con
cept of a X-lattice as a generalization of lattices: 

An algebra (L, U, n) of type (2, 2) is called a X-lattice if it satisfies the identities 

(LI) x n x = x, x U x = x, 

(L2) x n H = y n x, xUy = yUx, 

(L3) xn((xHy)nz) = (xny)Dz, xU ((x Uy) U z) = (xUy) U z, 

(L4) x n (x U y) = x, x U (x n y) = x. 

If we put x < H iff x n ?/ = x, or equivalently, x < y iS xUy = y, then (L, <) is 
a directed set and x n y G L(x, y) and x U y G U(x, H). 

We can analogously introduce A-semilattices (cf. [11]): An upper X-semilattice 
is an algebra (S, U) of type (2) satisfying the identities 

(51) x U x = x, 

(52) xUy = yUx, 

(53) xU((xUy)Uz) = (xU y) U z. 

If we define x<yiSxUy = y, then the relation < is a partial order on S such 
that x U y G U(x, y), so (S,<) is an upwards directed set. 

The notion of a lower X-semilattice can be defined dually, but we restrict 
ourselves to upper ones only, hence whenever we refer to a X-semilattice we 
mean an upper A-semilattice. 

We notice that our A-semilattices are equivalent to commutative directoids 
which were considered by J . J e z e k and R . Q u a c k e n b u s h [10]. 

THEOREM 2. Let (A, 0 , -., 0) be an NMV-algebra. Then upon defining xUy :— 
-'(-'X © y) © y and x n y := -i(-ix U ->?/). (A, U, n) is a bounded X-lattice with 0 
a£ the bottom and 1 a£ the top. 

P r o o f . Putting y = 0 in (H) we obtain - ix©x = 1, so x U x = ->(-ix©x) 0 x = 
-il 0 x — x. Clearly, x U y = HUxby (MV6). Further, by (WA) we have 
^x®((xUy)Uz) = 1 whence xU((xUy)U2:) = ^(^x®((xUy)Uz))®((xUy)Uz) = 
(xUy)U z. It is plain that x U 0 = x and x U 1 = 1 for every x G A. Thus (A, U) 
is a bounded A-semilattice. 

Further, observe that x 0 ^ ( x n H ) = x0(-ixU~ny) = x 0 ( ^ ( x 0 - i y ) ©->y) = 1 
when we put z = 0 in (WA), whence it follows xU(xny) = -<(->(xny)0x)0x = x. 
Using the definition of n and just proved properties of U it is straightforward to 
verity the remaining equations of (LI) (L4). • 
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2. A-semilattices with involutions 

7 

A X-semilattice with ^nvolutions is a A-semilattice (S, U) with the greatest 
element 1, where every interval [a, 1] C S (so-called section) has an involution 
fa with fa(l) — a. We write simply xa for fa(x). Clearly, a A-semilattice with 
involutions can be considered as a structure (S, U, ( a ) a e s , 1). 
A X-lattice with involutions is defined analogously as a system (L, U, H, (a)aeL-> 1 • 

Let (S) U, ( a) aGL, 1) be a A-semilattice with involutions. In order to overcome 
the difficulties concerning the number of partial unary operations a: [a, 1] —> 
[a, 1], we define a new total binary operation —> on S via 

x -> y := (x\Jy)y. (2 

LEMMA 3. A X-semilattice (S, U) with the top element 1 is a X-semilathce w^th 
involutions if and only if there exists a binary operation —> on S that has the 
following properties, for all x,y E S: 

(a) 1 —» x = ж, 

(b) i U = = (x-- у ) - -+y, 

(c) ((x - y)-+ у ) - у = x --*y-

/n ŕ/гѓs case. , xa -- x —•> a for x Є [a, Л aЄS. 

P r o o f . Let S be a A-semilattice with involutions and let —> be the operation 
given by (2). Then 1 -> x = (1 Ux)x = lx = x, (x -> y) -* y = ((xUy)yUy)y 

(x U y)yyt= x U y and ((x -> y) -> y) -> y = (x U y) -> y - ((x U y) U y)^ 
(x U y) y = x —> y. Obviously, x° = (xU a ) a = x —> a for every x E [a, 1]. 

Conversely, if —> satisfies (a), (b) and (c), then we define fa(x) = xa := x —> a 
for x E [a, 1], a E S. By (b) and (c), (x —> a ) U a = ((x —> a) —> a) —> a = x —> a, 
i.e. a < x -^ a and x a E [a, 1]. Further, we have xaa (x —> a) —> a 
x U a = x, so / a is an involution on [a, 1], and l a = 1 —> a — a. Thus S 
is a A-semilattice with involutions. Moreover, due to (c) and (b) we obtain 
x -> y = ((x -> y) -> y) -^ y = (x U y) -> y = (x U y) y . D 

Consequently, A-(semi)lattices can be treated as algebras (/5, U, —>, 1) of type 
(2, 2, 0) or (L, U, H, ->, 1) of type (2, 2, 2, 0), respectively. 

Remark 4. Note that the partial order < can be retrieved via x < y iff x —-> y 
— 1, however, the operation —> does not determine U. To be more precise, if —> 
is a total binary operation satisfying all the equations in the language {—>, 1} 
which are derivable in A-semilattices with involutions, in particular, 1 —> x x 
and (x —> y) —> y = (y —> x) — > x, then (x —> y) —> y need not be equal to x U y. 
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d = a U b 

F I G U R E 1 

Example 5 . Let (S, U) be a A-semilattice as shown in Fig. 1. Let the involutions 
fa and fb in the non-trivial sections [a, 1] and [6,1], respectively, be defined 
as follows: fa(c) = c, fa(d) = d and fb(c) = d, fb(d) = c. The operation 
—> is then given by Table 1. However, the operation -w given by Table 2 also 
fulfils the equations 1 ^+ x = x and (x -^> y) -w y = (y ~^> x) — - x, but 
( a ^ 6 ) ^ 6 = c ^ d = a U 6 . Observe that ^> is obtained by (2) when a U b is 
defined as c. 

-> a 6 c d 1 
a 1 C 1 1 1 
6 d 1 1 1 1 
C c d 1 d 1 
d d c c 1 1 
1 a b c d 1 

TABLE 1 

- * - > a b c d 1 
a 1 d 1 1 1 
b C 1 1 1 1 
c c d 1 d 1 
d _d c c 1 1 
1 a b c d \ 

TABLE 2 

LEMMA 6. Le£ (S, U, —•, 1) 6e a X-semilattice with involutions. Then for all 
x,y e S, 

(i) x —> 1 = 1. x —>• x = 1. 

(ii) y<x^y. 
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P r o o f . 
(i) We have x - ^ l = ( x U l ) 1 = l 1 = 1 and x ^ x — (x U x)x — xx — 1. 
(ii) This is obvious since x —> y = (x U y)y > y. 

THEOREM 7. The variety of all X-lattices with involutions is regular and ant 
metical. 

P r o o f . Let "V be the variety of A-lattices with involutions. 

V is regular: Let 

£i(x, y, z) = ((x -> y) n (y -> x)) D z, 

t2(x, y, z) - ((x -> y) -> z) U ((y -> x) -> z) 

We show that t\(x, y,z) — t2(x, y,z) = z iff x = y. 
Obviously, £i(x,x,z) — z and t2(x,x,z) = z. Conversely, let ti(x,y,z) 

t2(x, y, z) = z. Then z < x —* y,y ^> x and z > (x —> y) —> z, (y —> x) —> z. But 
by Lemma 6(ii) we have (x —> U) —> z, (y —> x) —> z > z, so that (x —> y —> ~ 
z (y —> x) —> z, whence x — > y — (x —> y) U z = ((x -^ y) ^ z) -^ z — z —> 
z 1, so x < y. Similarly y < x, and hence x — y. 

V is arithmetical: Let 

ra(x, 2/, 2) = (((x -> y) -> 2) n ((2 -> 2/) -> x)) n (x U z). 

We prove that ra(x, y, y) — ra(r, y, x) = 771(2/, 2/S ^) — x-
Wehavera(x ,y ,y) - (((x—> y ) - > y ) n ( ( y - > y ) - + x ) ) n ( x y) ((xUy x 

n (x U 2/) = x, ra(x,2/,x) = (((x —> 2/) —> x) H ((x —> y) —> x)) n (x U x) 
((x —> 2/) —• -c) H x — x since (x —> y) —> x > x by Lemma 6, and ra(y, y. x 
(((y ^y)^x)n ((x -> y) -> y)) n (y U x) (x n (x U y)) n (y x) = x. D 

There is a one-to one correspondence between NMV-algebras and bound d 
A-(semi)lattices with involutions that satisfy a simple additional identity: 

THEOREM 8. 

(i) Let (A, 0,-i,O) be an NMV-algebra. Define x U y := —•(—<x 0 y) y and 
x —> y : ix 0 y. Then (j)(A) = (A, U,—>,0,#1) is a bounded X-semilatt e 
with involutions that satisfies the identity 

x -> (y -> 0) = y -> (x -> 0). (WE) 

(ii) Fe6 (AS, U, —>,0, 1) be a bounded X-semilattice with involutions satisfying 
(WE). If we define x 0 y := (x —-> 0) —•> y and ->x : x —> 0, lben 
i)(S) = ( 5 , 0 , ^ , 0 ) is an NMV-algebra. 

(iii) FOr any NMV-algebra A and any bounded X-semilattice with involutions S 
satisfying (WE), ^((/)(A)) - A and </>(y(S)) ~ S. 
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P r o o f . 

(i) We already know from Theorem 2 that (A, U) is a bounded A-sernilattice. 
We show that the conditions (a), (b) and (c) of Lemma 3 are satisfied. It is 
obvious that 1—>x = - i l 0 x = x and x U y = -i(-ix 0 y) 0 y = (x —> y) —* y. 
Now, due to the axiom (H), we have y<y(B^x = -^x(&y whence 

((x -> y) -> y) -> y = -i(--(-ix @y)@y)®y = (-«x ®y)Uy = ^x®y = x^y 

verifying (c). So by Lemma 3, (f)(A) = (A, U, —>, 0,1) is a bounded A-semilattice 
with involutions. Finally, <p(A) fulfils (WE) since 

x "-> (2/ ~* 0) = -»x 0 (-«2/ 0 0) = ->x 0 -iy = —.y 0 -ix 

= -12/ 0 (-ix 0 0) = 2/ -> (x -> 0). 

(ii) Let (S, U, —>, 0,1) be a bounded A-semilattice with involutions that satis
fies (WE). It is worth noticing that -ix 0 y = ((x —> 0) -> 0) -> y = (x U 0) -> 2/ 
= x -> 2/. 
(MV2): x 0 2/ = (x -+ 0) -> 2/ = (x -> 0) -> ((y -> 0) -* 0) = (y -> 0) -> 

((x -> 0) -> 0) = (y -> 0) -> x = 2/ 0 x by (WE). 

(MV3): x 0 0 = (x -> 0) -> 0 = x. 

(MV4): — x = (x -> 0) -> 0 = x. 

(MV5): x 0 1 = (x -> 0) -> 1 = 1. 

(MV6): -i(-«x ®y)®y = (x^y)^>y = xUy = (y-^x)->x = 
-" ( - •yex) 0 x . 

(WA): ^x 0 (-'(-'(-•(-'X ®y)®y)®z)®z) = 
x -> ((((x -> 2/) - • 2/) - • 2) -> 2) = a - • ((x U y) U z) = 1 
since x < (xUy)U z by (S3). 

(H): -ix 0 (x 0 2/) = x -> ((x —> 0) —> y) = 1 since x < (y —> 0) —> x = 
(x —> 0) —> 2/ by Lemma 6 (ii). 

(hi) Let (A, e,-«,0) be an NMV-algebra. Define 0(A) = (A,U,->,0,1) and 
ip(<j>(A)) = (A, ©',-•', 0). We have x©'21 = (x -> 0) -> y = -«(-ix©0)©2/ = x®y 
and -.'x - x ^ O = n x 0 O = -«x. Thus ip(</)(A)) = A. 

Conversely, let (5, U, —>, 0,1) be a bounded A-semilattice with involutions that 
fulfils (WE). Define I/J(S) = (5 ,0,-1,0) and <f>(i/>(S)) = (5, U', ->', 0, V). We 
have x U' 2/ = ^ ( ^ x ®y)®y = (x^>y)^>y = xUy,x^'y = -ix®y = x-*y 
and 1' = -.0 = 0 -> 0 = 1, so that 0(^(5) ) = S. D 

COROLLARY 9. Let (5,U,—>,0,1) be a bounded X-semilattice with involutions 
satisfying (WE). Then (5, U, n, —>, 0,1), where xDy = ((x —> 2/) -* (x -^ 0))—> 0. 
25 a bounded X-lattice with involutions. 
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P r o o f . By Theorem 8(ii), (5 ,0,-1,0) is an NMV-algebra and by Theorem 2 
we know that (S, U, n) is a bounded A-lattice in which 

x n y = ->(- ix U ->H) 

= (((H -> 0) - (x -> 0)) -> (x -> 0)) - 0 

= ((x-,((y^0)^0))-+(x-^0))^0 

= ( (* -> H) - (* - 0)) - 0. 

• 
Remark 10. Though every NMV-algebra, as well as every bounded A-semi-
lattice with involutions satisfying (WE), is a A-lattice, Theorem 8 does not hold 
for X-lattices. The reason is that xDy need not be the greatest lower bound of 
{x,y}, and consequently, the operation n defined in Corollary 9 is not the only 
possible one which makes (S, U, —», 0,1) into a A-lattice: 

Example 11. Consider the A-lattice (5, U, Hi) from Figure 2. Let the involutions 
/o, fa and fh in the non-trivial sections be given as follows: 

fo(a) = d, /0(b) = c, /o(c) - b and f0(d) = a, 

/ a(c) = c and fa(d) = d, 

/^(c) = d and /6(d) - c. 

The operation —> is given by Table 3, so that (5, U, n i , —>,0,1) is a bounded 
A-lattice with involutions. A straightforward verification yields that —> obe}S 
(WE), and hence (5, ©,->,0) is an NMV-algebra, where the operations 0 and 
-i are given by Table 4. Now, upon setting x C\ y := ->(-ix U ->?/), (5, U,n) is 
a A-lattice, but n does not agree with the initial n i . Indeed, we have e n d 
-i(->c U ->d) = -ic = b 7̂  a = c f)i d. Therefore, the part (hi) of Theorem 8 does 
not work in the case of A-lattices with involutions. 

c = a U b 

a — c(li d 

0 

FIGURE 2 

By Theorem 7 and Theorem 8 (i) we get 

b - e n d 
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-> 0 a b c d 1 
0 1 1 1 1 1 1 
a d 1 d 1 1 1 
b c c 1 1 1 1 
c b c d 1 d 1 
d a d c c 1 1 
1 0 a b c d 1 

TABLE 3 

0 a b c d 1 - 1 

0 0 a b c d 1 1 
a a d c c 1 1 d 
b b c d 1 d 1 c 
c c c 1 1 1 1 b 
d d 1 d 1 1 1 a 
1 1 1 1 1 1 1 0 

TABLE 4 

COROLLARY 12. T/ie variety of all NMV-algebras is regular and arithmetical. 

3. Implication reducts 

There exist several equivalent counterparts of MV-algebras; for instance, 
MV-algebras are term equivalent to bounded weak implication algebras which 
were introduced in [4] as a generalization of J. C. Abbott 's implication algebras 
(see [1]). We recall that an implication algebra is an algebra (A, —>) satisfying 
the equations 

(11) (x -> y) -» x = x, 

(12) (x -> y) -> y = (y -> x) -> x, 

(13) x -> (y -> z) = y -> (x -> *). 

These axioms capture the basic properties of the implication in the classical 
propositional calculus. Starting from the implication in the Lukasiewicz logic, we 
obtain weak implication algebras: An algebra (.A, —->, 1) with a binary operation 
—> and a constant 1 is called a weak implication algebra if it fulfils (12), (13) and 

(10) x -> 1 = 1, 1 X = X. 
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It is not hard to show that if (A, 0 , -<, 0) is an MV-algebra then (A, —>, 1) is a 
weak implication algebra, where x —> y is defined as -nx 0 y. 

Every weak implication algebra is a join-semilattice with 1 at the top with 
respect to the partial order given by x < y iff x —>y = l ; x V y = (x —* y) —> y 
is the supremum of any pair x, y. 

A bounded weak implication algebra is a structure (A, —>,0,1) such that 
(A, —>, 1) is a weak implication algebra with the least element 0. Clearly, this 
is equivalent to the identity 0 —> x = 1. Bounded weak implication algebras 
are known in the literature under the name bounded commutative BCK-algebras 
(see e.g. [7]). 

This motivates us to describe the generalization of weak implication algebras 
which corresponds to our NMV-algebras. 

DEF IN ITION 13. An NMV-implication algebra is an algebra (A, —>, 0,1) of type 
(2, 0,0) that satisfies the following identities: 

(Nil) x -> 1 = 1, 1 -> X = x and 0 -> x = 1, 

(NI2) (x -> y ) -> y = (y-> x ) - > x, 

(NI3) x -> (y -> 0) = y -> (x -> 0), 

(NI4) x - ((((x - y) -+ y) -> z) -> z) = 1, 

(NI5) ((x -> y) -> y) -> y = x -> y. 

Comparing the above axioms with those of (weak) implication algebras, (Nil) 
includes (10), (NI2) is precisely (12) and (NI3) is another name for (WE) and 
rises as a weakening of (13) by replacing z by 0. Furthermore, (NI4) captures 
(WA) and (NI5) is just (c) of Lemma 3. 

Weak implication algebras are a particular case of NMV-implication ones. 
Indeed, any weak implication algebra fulfils (NI4) and (NI5) since in weak im
plication algebras we have x —> ((((x —> y) —> y) —> z) —> z) = x —> (xWyWz) = 1 
and ((x -> y) -> y) -> y = (x -> y) V y = x -> y. 

Let us note that from (Nil) we can easily infer x —> x = 1. 

THEOREM 14. Let (A, 0 , -i, 0) &e an NMV-algebra. If we define x —> y := -nx0y. 
£/ien (A, —>,0,1) is an NMV-implication algebra. 

Conversely, if (A, —>, 0,1) is an NMV-implication algebra and if we put x 0 y 
:= (x —-> 0) —> y ana7 -ix := x —> 0. £/ien (A, 0 , -«, 0) is an NMV-algebra. 

P r o o f . It is obvious at once that for each NMV-algebra (A, 0 , ->, 0), the opera
tion -> satisfies all the identities (NI1)-(NI5), so (A, ->, 0,1) is an NMV-implica
tion algebra. 

Conversely, assume that (A,->,0,1) is an NMV-implication algebra. First, 
we note that for any x e A we have (x—>0)—>0 = ( 0 - > x ) - ^ x = l ^ x = x 
by (NI2) and (Nil) , and hence ->x 0 y = ((x -> 0) -> 0) -> y = x -> y. 

310 



A NON-ASSOCIATIVE GENERALIZATION OF MV-ALGEBRAS 

(MV2): x 0 y = (x -> 0) -> y = (x -> 0) -> ((y -> 0) -> 0) = (y -> 0) -> 
((x -> 0) -> 0) = (y -> 0) -+ x = y 0 x. 

(MV3): x © 0 = (x -> 0) -> 0 = x. 

(MV4): — x = (x -> 0) -> 0 = x. 

(MV5): x 0 1 = (x -> 0) -> 1 = 1. 

(MV6): Using ->x 0 y = x —> y we obtain ->(-ix 0 y) 0 y = (x —> y) —> y = 
(y —> x) —> x = -.(-.y 0 x) 0 x by (NI2). rj 

(WA): -ix 0 (-.(-.(-i(-.x 0 y) 0 y) 0 z) 0 z) = x -> ((((x -> y) -> y) 
^ z ) - + z ) = l b y (NI4). 

(H): W e h a v e - n x 0 ( x 0 y ) = x -> ((x -» 0) -> y) = x -> ((y -> 0) — x), 
hence it is enough to show that x —> (y —> x) — 1 for all x, y E -4. 
This follows from (NI5), (NI2) and (Nil) : x -> (y -> x) = ((x -> 
(y -> x)) -> (y -> x)) -> (y -> x) = (((y -> x) -> x) -> x) -> (y -> 
x) = (y -> x) -> (y -> x) = 1. 

[1 
[2: 

[з: 

[4; 

[5: 

[e: 

[7 

[«: 

[9 

[10: 

[11 
[12; 

[iз: 

[14 

[15: 
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