Mathematica Slovaca

Vladimir D. Samodivkin
On restricted domination in graphs

Mathematica Slovaca, Vol. 57 (2007), No. 5, [401]--406
Persistent URL: http://dml.cz/dmlcz/136967

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON RESTRICTED DOMINATION IN GRAPHS

Vladimir Samodivkin
(Communicated by Martin Škoviera)

Abstract

The k-restricted domination number of a graph G is the minimum number d_{k} such that for any subset U of k vertices of G, there is a dominating set in G including U and having at most d_{k} vertices. Some new upper bounds in terms of order and degrees for this number are found.

> © 2007
> Mathematical Institute
> Slovak Academy of Sciences

1. Introduction

For a graph theory terminology not presented here, we follow Haynes, et al. [4]. All our graphs are finite and undirected with no loops or multiple edges. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. For any vertex v of G its open neighborhood $N(v, G)$ is $\{x \in V(G): v x \in E(G)\}$, its closed neighborhood $N[v, G]$ is $N(v, G) \cup\{v\}$, and its degree $\operatorname{deg}(v, G)$ is $|N(v, G)|$. The minimum and maximum degrees of vertices in $V(G)$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a set $S \subseteq V(G)$ its open neighborhood $N(S, G)$ is $\bigcup_{v \in S} N(v, G)$, its closed neighborhood $N[S, G]$ is $N(S, G) \cup S$, and its degree $\operatorname{deg}(S, G)$ is $|N(S, G) \backslash S|$. The k-set minimum degree of G is the greatest integer $\delta_{k}(G)$ such that $\delta_{k}(G) \leq \operatorname{deg}(X, G)$ for all subsets X of $V(G)$ of cardinality k. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. The complement of a graph G is denoted by \bar{G}. A vertex in a graph G is said to dominate every vertex adjacent to it. A set D of vertices in G is a dominating set if every vertex in $V(G) \backslash D$ is dominated by at least one vertex in D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. Any dominating set with $\gamma(G)$ vertices is called a γ-set. The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [4], [5].

[^0]In this paper we study restricted domination in graphs. The concept of 1 c stricted domination was introduced by S anchis [11]. We shall use the notation which was proposed by $\mathrm{Henning}[6]$. Let U be a subset of vertices of a grapl G. The restricted domination number $r(G, U, \gamma)$ of U is the minimum cardinality of a dominating set of G containing U. A smallest possible dominating set of G containing all the vertices in U is called a γ_{U}-set. The k-restricted domınation number of G is the smallest integer $r_{k}(G, \gamma)$ such that $r_{k}(G, U, \gamma) \leq r_{h}(G, \wedge$ for all subsets U of $V(G)$ of cardinality k. In the case $k=0$, the k-restricted domination number is the domination number. When $k 1$ the k-restricted domination number is called the domsaturation number of a graph and is denoted by ds (G). Several results connecting ds and other graph-theoretic parameters are obtained by Arumugam and Kala [1].

2. Bounds in terms of order and degrees

The problem of determining $\gamma(G)$ for an arbitrary graph is $N P$-complete (Garey, et al. [3]). Various authors have investigated bounds on the domination number of a graph in terms of order and degrees. The earliest such result is due to Ore [8]. McCuaig and Shepherd [7] investigated upper bounds on $\gamma(G)$ in the case $\delta(G) \geq 2$.
Theorem A. Let G be a graph.
(a) ([8]) If $\delta(G) \geq 1$, then $\gamma(G) \leq|V(G)| / 2$.
(b) ([7]) If G is a connected graph of order at least 8 and $\delta(G) \geq 2$ the $\gamma(G) \leq 2|V(G)| / 5$.

Similar results on the restricted domination number was established br Henning [6]:
Theorem B. ([6]) Let G be a connected graph and $1 \leq k \leq|V(G)|$.
(a) If $\delta(G) \geq 1$, then $2 r_{k}(G, \gamma)<|V(G)|+k$;
(b) If $\delta(G) \geq 2$, then $5 r_{h}(G, \gamma) \leq 2|V(G)|+3 k$.

In this paper we obtain upper bounds on the resticted domination number. which are analogous to the following bounds on the domination number due to Flach and Volkmann [2] and Payan [9]:
Theorem C. (Flach and Volkmann [2]) Let G be a graph, $\delta(G>1$. $A \subset V(G)$ and let the graph $G-N[A, G]$ have at least one isolated vertex. The $2 \gamma(G) \leq|V(G)|+|A|+(1 / \delta(G)-1) \operatorname{deg}(A, G)$.
Theorem D. (Payan [9]) Let G be a graph of order at least two. Ther $\gamma(G) \leq \delta(\bar{G})(\Delta(\bar{G})-1) /(|V(G)|-1)+2$.

ON RESTRICTED DOMINATION IN GRAPHS

We shall need the following lemma.
Lemma 2.1. Let G be a graph, $\delta(G) \geq 1, \emptyset \neq X \subseteq V_{0} \subseteq V(G)$ and $Z_{0} \neq \emptyset$ be the set of isolated vertices of $G-V_{0}$. Let $D \subseteq N\left(Z_{0}, G\right)$ be minimal with respect to the property $Z_{0} \subseteq N(D, G)$. Then:
(a) ([2]) $2|D| \leq\left|Z_{0}\right|+\left|N\left(Z_{0}, G\right)\right| / \delta(G)$;
(b) $2 r(G, X, \gamma) \leq 2 r\left(\left\langle V_{0}, G\right\rangle, X, \gamma\right)+2|D|+|V(G)|-\left|V_{0}\right|-\left|Z_{0}\right|$.

Proof.
(b) Let P be a γ_{X}-set of the graph $\left\langle V_{0}, G\right\rangle$ and Q be a γ-set of the graph $\left\langle V(G)-\left(V_{0} \cup Z_{0}\right), G\right\rangle$. Then the set $S=P \cup Q \cup D$ is a dominating set of G and $X \subset S$. Hence $r(G, X, \gamma) \leq|S| \leq|P|+|Q|+|D|$ and from Theorem A it follows $r(G, X, \gamma) \leq r\left(\left\langle V_{0}, G\right\rangle, X, \gamma\right)+\left(|V(G)|-\left|V_{0}\right|-\left|Z_{0}\right|\right) / 2+|D|$. Hence we have the result.

Theorem 2.2. Let G be a graph, $\delta(G) \geq 1, \emptyset \neq X \subseteq V(G)$ and Z_{0} be the set of isolated vertices of the graph $G-N[X, G]$.
(i) If $Z_{0}=\emptyset$ then $2 r(G, X, \gamma) \leq|V(G)|+|X|-\operatorname{deg}(X, G)$.
(ii) If $Z_{0} \neq \emptyset$ then $2 r(G, X, \gamma) \leq|V(G)|+|X|+\operatorname{deg}(X, G) / \delta(G)-\operatorname{deg}(X, G)$.

Proof. Let $V_{0}=N[X, G]$. Then $r\left(\left\langle V_{0}, G\right\rangle, X, \gamma\right)=|X|$ and $\left|V_{0}\right|=\operatorname{deg}(X, G)$ $+|X|$.
(i): If $V_{0}=V(G)$ then the result is obvious. Now, let $V_{0} \neq V(G)$ and let M be a γ-set of $G-V_{0}$. Then $X \cup M$ is a dominating set of G. Hence by Theorem A, $r(G, X, \gamma) \leq|X|+|M| \leq|X|+(|V(G)|-|X|-\operatorname{deg}(X, G)) / 2$ and the result follows.
(ii): Let $z \in Z_{0}$. Since $\operatorname{deg}(z, G-N[X, G])=0$ and $\delta(G) \geq 1$, we have $\emptyset \neq N(z, G) \subseteq N[X, G]$. Let $y \in N(z, G)$. If $y \in X$ then $z \in N[X, G]$ a contradiction. Hence $y \in N(X, G) \backslash X$. So, we proved that $N\left(Z_{0}, G\right) \subseteq$ $N(X, G) \backslash X$. From this and by Lemma 2.1 we have $2 r(G, X, \gamma) \leq 2|X|+$ $\left|Z_{0}\right|+\left|N\left(Z_{0}, G\right)\right| / \delta(G)+|V(G)|-|X|-\operatorname{deg}(X, G)-\left|Z_{0}\right| \leq|V(G)|+|X|+$ $\operatorname{deg}(X, G) / \delta(G)-\operatorname{deg}(X, G)$.

Corollary 2.3. Let G be a graph, $\delta(G) \geq 1$ and $1 \leq k \leq|V(G)|$. Then $2 r_{k}(G, \gamma) \leq|V(G)|+k+\delta_{k}(G)(1 / \delta(G)-1)$.

Remark. Note that if $\delta(G) \geq 2$ and $|V(G)|<k+5 \delta_{k}(G)-5 \delta_{k}(G) / \delta(G)$, then the upper bound stated in Corollary 2.3 supersedes Henning's bound (see Theorem B (b)). In particular, for the Petersen graph $P_{5,2}$ which clearly has $r_{2}\left(P_{5,2}\right)=4$ and $\delta_{2}\left(P_{5,2}\right)=4$, from Corollary 2.3 it follows that $r_{2}\left(P_{5,2}\right) \leq 4$ whercas from Theorem $\mathrm{B}(\mathrm{b})-r_{2}\left(P_{5,2}\right) \leq 5$. So, the bound stated in Corollary 2.3 is attainable.

Sampathkumar and Neeralagi [10] (see also [5, Chap. 10, pp. 291] defined a vertex x of a graph G to be γ-totally free if x belongs to no γ-set If x is a γ-totally free vertex of a graph G and X is a γ-set of G, then clearly $x \notin X$ and $X \cup\{x\}$ is $\gamma_{\{x\}}(G)$-set of G. Hence if x is a γ-totally free vertex of a graph G, then $1+\gamma(G)=r(G,\{x\}, \gamma)=r_{1}(G, \gamma)=\mathrm{ds}(G)$. Now from Theorem 2.2 we have:

Corollary 2.4. Let G be a graph, $\delta(G) \geq 1$ and let x be a γ-totally free vertex. Then $\gamma(G)+1=\mathrm{ds}(G)=r_{1}(G, \gamma)=r(G,\{x\}, \gamma) \leq(|V(G)|+1+$ $\operatorname{deg}(x, G)(1 / \delta(G)-1)) / 2$.

Corollary 2.5. Let G be a graph, $\delta(G) \geq 1$ and $\tau=(|V(G)|+1+\Delta(G)$. - $(1 / \delta(G)-1)) / 2$.
(i) If G has a γ-totally free vertex of degree $\Delta(G)$ then $\gamma(G)+1=\mathrm{ds}(G)$ $r_{1}(G, \gamma) \leq \tau$.
(ii) If G has no γ-totally free vertex of degree $\Delta(G)$ then $\gamma(G) \leq \tau$ and $\mathrm{ds}(G)$ $r_{1}(G, \gamma) \leq \tau+1$.
(iii) $([2]) \gamma(G) \leq \tau$.

We require one observation for the proof of the next theorem.
Observation 2.6. Let G be a graph.
(i) If $\emptyset \neq X \subseteq V(G)$ then $X \cup \bigcap_{u \in X} N(u, \bar{G})$ is a dominating set of G ar d

$$
\left|\bigcap_{u \in X} N(u, \bar{G})\right| \geq r(G, X, \gamma)-|X| .
$$

(ii) If $X \subseteq Y \subseteq V(G)$ then $r(G, X, \gamma) \leq r(G, Y, \gamma)$.

Theorem 2.7. Let G be a graph, $X \subseteq V(G), A=V(G)-N[X, G]$ and B $\bigcap_{u \in X} N(u, G) \neq \emptyset$. Then

$$
r(G, X, \gamma) \leq\left(|A|(|V(G)|-1)-\sum_{t \in A} \operatorname{deg}(t, G)+|B||X|\right) /(|A|+|B|)+1 .
$$

Proof. If $A=\emptyset$, then we have to prove that $r(G, X, \gamma) \leq|X|+1$. whicl is trivially true. So, we may assume $A \neq \emptyset$. Let $A_{1} \quad N[X, G]-\left(\begin{array}{ll}X & B\end{array}\right.$ and let $M \subseteq E(\bar{G})$ be the set of all edges between A and B in \bar{G}. Note that $A=\bigcap_{q \in X} N(q, \bar{G})$. Counting the number of edges from B to A in G, using Observation 2.6, we see that $|M|=\sum_{t \in B}|A \cap N(t, \bar{G})|=\sum_{t \in \mathcal{B}} \mid \bigcap_{s \in X \cup\{t\}} N(s, \bar{G})>$ $\sum_{t \in B}(r(G, X \cup\{t\}, \gamma)-|X|-1) \geq|B|(r(G, X, \gamma)-|X|-1)$.

On the other hand, counting the number of edges from A to B in \bar{G}, we see that $|M|=\sum_{t \in A}|B \cap N(t, \bar{G})|=\sum_{t \in A}\left|\left(V(G)-\left(X \cup A \cup A_{1}\right)\right) \cap N(t, \bar{G})\right| \leq$ $\sum_{t \in A}|N(t, \bar{G})|-\sum_{t \in A}|X \cap N(t, \bar{G})|-\sum_{t \in A}|A \cap N(t, \bar{G})| \leq \sum_{t \in A} \mid N(t, \bar{G}|-|X|| A \mid-$ $\sum_{t \in A}(r(G, X \cup\{t\}, \gamma)-|X|-1) \leq \sum_{t \in A}|N(t, \bar{G})|-|X||A|-|A|(r(G, X, \gamma)-|X|-1)$. Since $|N(t, \bar{G})|=|V(G)|-1-\operatorname{deg}(t, G)$, we have $|M| \leq|A||V(G)|-\sum_{t \in A} \operatorname{deg}(t, G)$
$-|A| r(G, X, \gamma)$.

Combining this we have $|B|(r(G, X, \gamma)-|X|-1) \leq|M| \leq|A||V(G)|-$ $\sum_{t \in A} \operatorname{deg}(t, G)-|A| r(G, X, \gamma)$. Hence we have the result.
Corollary 2.8. Let G be a graph of order $n \geq 2$ and let $\sigma=(n-\Delta(G)-1)$. $\cdot(n-\delta(G)-2) /(n-1)+2$.
(i) If G has a γ-totally free vertex of degree $\Delta(G)$ then $\gamma(G)+1=r_{1}(G, \gamma)=$ $\mathrm{ds}(G) \leq \sigma$;
(ii) If G has no γ-totally free vertex of degree $\Delta(G)$ then $\gamma(G) \leq \sigma$ and $r_{1}(G, \gamma)=\mathrm{ds}(G) \leq \sigma+1$.

Proof. If $\Delta(G)=0$ then the result is obvious. So, we may assume $\Delta(G) \geq 1$. Let $x \in V(G)$ and $\operatorname{deg}(x, G)=\Delta(G)$. Let $X=\{x\}, A=V(G)-N[x, G]$ and $B=N(x, G)$. Clearly $|B|=\Delta(G)$ and $|A|=n-1-\Delta(G)$. Hence $\sum_{t \in A} \operatorname{deg}(t, G) \geq$ $\delta(G)(n-1-\Delta(G))$. Now, from Theorem 2.7 we have: $r(G,\{x\}, \gamma) \leq((n-1-$ $\Delta(G))(n-1)-\delta(G)(n-1-\Delta(G))+\Delta(G)) /(n-1)+1=\sigma$. If x is γ-totally free then $\gamma(G)+1=\operatorname{ds}(G)=r_{1}(G, \gamma)=r(G,\{x\}, \gamma)$, so we have (i). If x is not γ-totally free then $r(G,\{x\}, \gamma)=\gamma(G) \leq r_{1}(G, \gamma)=\operatorname{ds}(G) \leq \gamma(G)+1=$ $r(G,\{x\}, \gamma)+1 \leq \sigma+1$. The proof is completed.

Remark. From Corollary 2.8 we immediately have Theorem D, because of $\delta(\bar{G})=|V(G)|-\Delta(G)-1$ and $\Delta(\bar{G})=|V(G)|-\delta(G)-1$.

REFERENCES

[1] ARUMUGAM, S.-KALA, R.: Domsaturation number of a graph, Indian J. Pure Appl. Math. 33 (2002), 1671-1676.
[2] FLACH, P. VOLKMANN, L: Estimations for the domination number of a graph, Discrete Math. 80 (1990), 145-151.
[3] GAREY, M. R. JONSON, D. S.: Computers and Intractability: A Guide to the Theory of NP Completeness, Freeman, New York, 1979.
[4] HAYNES, T. W.-HEDETNIEMI, S. T. SLATER, P. J.: Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] Domination in Graphs: Advanced Topics (T. W. Haynes, S. T. Hedetniemi, P. J. Slater, eds.), Marcel Dekker, New York, 1998.

VLADIMIR SAMODIVKIN

[6] HENNING, M. A.: Restricted domination in graphs, Discrete Math. 254 (2002), 175189.
[7] McCUAIG, W. SHEPHERD, B.: Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749762.
[8] ORE, O.: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Amer. Math. Soc., Providence, RI, 1962.
[9] PAYAN, C.: Sur le nombre d'absorption d'un graph simple, Cahiers du centre d'etud s de recherche operationélle 17 (1975), 307317.
[10] SAMPATHKUMAR, E. NEERLAGI, P. S.: Domination and nerghborhood critıcal. fixed, free and totally free points, Sankhyā Ser. A 54 (1992), 403407.
[11] SANCHIS, L. A.: Bounds related to domination in graphs with minimum degree two, J. Graph Theory 25 (1997), 139152.

Received 30. 3. 2004
Revised 14. 4. 2005

Department of Mathematics
University of Architecture,
Civil Engineering and Geodesy
1 Hr. Smirnenski Blv.
BG 1046 Sofia
BULGARIA
E-mail: vlsam_fte@uacg.bg

[^0]: 2000 Mathematics Subject Classification: Primary 05C69.
 Keywords: dominating set, restricted domination number.

