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ABSTRACT. The k-restricted domination number of a graph G is the minimum 
number d^ such that for any subset U of k vertices of G, there is a dominating 
set in G including U and having at most d^ vertices. Some new upper bounds in 
terms of order and degrees for this number are found. 
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1. Introduc t ion 

For a graph theory terminology not presented here, we follow H a y n e s , 
et al. [4]. All our graphs are finite and undirected with no loops or multiple 
edges. We denote the vertex set and the edge set of a graph G by V(G) and 
E(G), respectively. For any vertex v of G its open neighborhood N(v,G) is 
{x e V(G) : vx e E(G)}, its closed neighborhood N[v, G] is N(v, G) U {v}, and 
its degree deg(U, G) is \N(v, G)\. The minimum and maximum degrees of vertices 
in V(G) are denoted by 5(G) and A(G), respectively. For a set S C V(G) its 
open neighborhood N(S,G) is IJ N(v,G), its closed neighborhood N[S,G\ is 

v£S 
N(S,G) U S, and its degree deg(S,G) is \N(S,G) \ S\. The k-set minimum 
degree of G is the greatest integer Sk(G) such that 5k(G) < deg(X,G) for all 
subsets X of V(G) of cardinality k. The subgraph induced by S C V(G) is 
denoted by (S, G). The complement of a graph G is denoted by G. A vertex in 
a graph G is said to dominate every vertex adjacent to it. A set D of vertices 
in G is a dominating set if every vertex in V(G) \ D is dominated by at least 
one vertex in D. The domination number 7(G) of a graph G is the minimum 
cardinality taken over all dominating sets of G. Any dominating set with 7(G) 
vertices is called a j-set. The literature on this subject has been surveyed and 
detailed in the two books by H a y n e s et al. [4], [5]. 

2000 M a t h e m a t i c s S u b j e c t C las s i f i c a t i on : Primary 05C69. 
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In this paper we study restricted domination in graphs. The concept of ic-
stricted domination was introduced by S a n c h i s [11]. We shall use the notation 
which was proposed by H e n n i n g [6]. Let U be a subset of vertices of a grapl 
G. The restricted domination number r(G, U, 7) of U is the minimum cardinal
ity of a dominating set of G containing U. A smallest possible dominating set of 
G containing all the vertices in U is called a ^jj-set. The k-restricted domination 
number of G is the smallest integer rk(G^() such that rfc(G, £/, 7) < rk(G^ 
for all subsets U of V(G) of cardinality k. In the case k = 0, the k-restricted 
domination number is the domination number. When k 1 the k-restricted 
domination number is called the domsaturation number of a graph and is denoted 
by ds(G). Several results connecting ds and other graph-theoretic paiameteis 
are obtained by A r u m u g a m and K a 1 a [1]. 

2. Bounds in terms of order and degrees 

The problem of determining 7(G) for an arbitrary graph is jYP-complete 
( G a r e y , et al. [3]). Various authors have investigated bounds on the domina
tion number of a graph in terms of order and degrees. The earliest such result 
is due to O r e [8]. M c C u a i g and S h e p h e r d [7] investigated upper bounds 
on 7(G) in the case 5(G) > 2. 

T H E O R E M A. Let G be a graph. 

(a) ([8]) //(5(G) > 1. then^G) < \V(G)\/2. 

(b) ([7]) If G is a connected graph of order at least 8 and 5(G) > 2 the 

7 ( G ) < 2 | V ( G ) | / 5 . 

Similar results on the restricted domination number was established b\ 
H e n n i n g [6]: 

THEOREM B . ([6]) Let G be a connected graph and 1 < k < \V(G)\. 

(a) If 5(G) > I, then2rk(G,1)<\V(G)\ + k; 

(b) If 5(G) > 2 . thenork(G,7) < 2 | V ( G ) | + 3k. 

In this paper we obtain upper bounds on the restiicted domination number, 
which are analogous to the following bounds on the domination number due to 
F 1 a c h and V o 1 k m a 11 n [2] and P a y a n [9]: 

THEOREM C. ( F l a c h and V o l k m a n n [2]) Let G be a graph, 5(G > 1, 
A C V(G) and let the graph G — N[A, G] have at least one isolated vertex. The 
27(G) < \V(G)\ + \A\ + (1/6(G) - 1) deg(A, G). 

THEOREM D . ( P a y a n [9]) Let G be a graph of order at least two. The? 
7(G) < 8(G)(A(G) - 1)/( |V(G)| - 1) + 2. 
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We shall need the following lemma. 

LEMMA 2 . 1 . Let G be a graph, 5(G) > 1, 0 ^ X C V0 C V(G) and Z0 ^ 0 be 

the set of isolated vertices of G — V0. Let D C jV(Z0, G) be minimal with respect 
to the property Z0 C N(D, G). Then: 

(a) ([2})2\D\<\Z0\ + \N(Z0,G)\/5(G); 

(b) 2 r ( G , X , 7 ) < 2r((V0,G) , K , 7 ) + 2|D| + |F(G) | - |Vb| - |Z0 | . 

P r o o f . 
(b) Let P be a 7x~set of the graph (V0,G) and Q be a 7-set of the graph 

(V(G) - (V0 U Z0),G). Then the set S = P U Q U D is a dominating set of G 
and I c S . Hence r(G,X,j) < \S\ < \P\ + \Q\ + \D\ and from Theorem A it 
follows r(G,Xn) < r((V0,G) , X , 7 ) + (\V(G)\ - \V0\ - \Z0\)/2+\D\. Hence we 
have the result. • 

THEOREM 2.2. Let G be a graph, 5(G) > 1, 0 ^ X C F(G) and Z0 be the set 
of isolated vertices of the graph G — N[X, G]. 

(i) IfZ0 = Q then2r(G,X,*y) < \V(G)\ + \X\ - deg(X, G). 

(ii) J / Z o ^ 0 * / i e n 2 r ( G , . X . , 7 ) < ^ ^ 

P r o o f . Let Vb = N[X,G]. Then r ( (y 0 , G) , X , 7 ) = \X\ and |Vb| = deg(X,G) 
+ \X\. 

(i): If Vb = V(G) then the result is obvious. Now, let V0 ^ V(G) and let 
M be a 7-set of G — Vb. Then X U M is a dominating set of G. Hence by 
Theorem A, r(G,X,j) < \X\ + \M\ < \X\ + (\V(G)\ - \X\ - deg(X, G))/2 and 
the result follows. 

(ii): Let z E Z0. Since deg(z, G - iV[X,G]) = 0 and 5(G) > 1, we have 
0 ^ N(z,G) C jY[X,G]. Let y E 7V(z,G). If y E X then * <E 7V[X,G] 
a contradiction. Hence y E N(X,G) \X. So, we proved that N(Z0,G) C 
N(X,G) \ X. From this and by Lemma 2.1 we have 2 r ( G , K , 7 ) < 2|X| + 
|Z0 | + \N(Z0,G)\/S(G) + \V(G)\ - \X\ - deg(X,G) - \Z0\ < \V(G)\ + \X\ + 
deg(K ,G) / (5 (G)-deg(X,G) . • 

COROLLARY 2.3. Let G be a graph, 5(G) > 1 and 1 < k < \V(G)\. Then 
2r , (G,7) < \V(G)\ + k + 5k(G)(l/5(G) - 1). 

Remark. Note that if 5(G) > 2 and \V(G)\ < k + 55k(G) - 5Sk(G)/S(G), 
then the upper bound stated in Corollary 2.3 supersedes Henning's bound (see 
Theorem B(b)) . In particular, for the Petersen graph P^^ which clearly has 
r2(P$,2) = 4 and £2(^5,2) = 4, from Corollary 2.3 it follows that r2(P5 ,2) < 4 
whereas from Theorem B (b) — ^2(^5.2) < 5. So, the bound stated in Corol
lary 2.3 is attainable. 
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S a m p a t h k u m a r and N e e r a l a g i [10] (see also [5, Chap. 10, pp. 291] 
defined a vertex x of a graph G to be ^f-totally free if x belongs to no 7-set If x 
is a 7-totally free vertex of a graph G and X is a 7-set of G, then clearly x ^ A" 
find X U {x} is 7/^ j (G)-set of G. Hence if x is a 7-totally free vertex of a graph 
(7, then 1 + 7(G) = r(G, {x}, 7) = n (G, 7) = ds(G). Now from Theorem 2.2 we 
have: 

COROLLARY 2.4. Let G be a graph, 5(G) > 1 and let x be a j-totally free 
vertex. Then 7(G) + 1 = ds(G) = n ( G , ^ ) = r (G ,{x} , 7 ) < (\V(G)\ + 1 + 
d e g ( x , G ) ( l / < 5 ( G ) - l ) ) / 2 . 

COROLLARY 2 .5. Let G be a graph, 5(G) > 1 and r = (\V(G)\ + 1 + A(G) • 
•(l/5(G)-l))/2. 

(i) If G has a 7-totally free vertex of degree A(G) then 7(G) f 1 = ds(G) 
r i ( G , 7 ) < r . 

(ii) IfG has no 7-totally free vertex of degree A(G) then 7(G) < r andds(G) 
ri(G,1)<T+l. 

(iii) ([2]) 7(G) < T. 

We require one observation for the proof of the next theorem. 

OBSERVATION 2.6. Let G be a graph. 

(i) J / 8 / I C V(G) then X U f| N(u,G) is a dominating set of G ar d 
_ uex 

I H N(u,G)\>r(G,X,7)-\X\. 
uex 

(ii) IfXCYC V(G) then r(G,X,j) < r(G,Y,j). 

THEOREM 2 .7 . Let G be a graph, X C V(G), A = V(G) - N[X,G] and B 
f| N(u,G)^<ft. Then 

uex 

r(G, A-,7) < (lAI(W(O)l - 1) - E d e ^ ' G ) + l-BI^D/d l̂ + 1̂ 1) + L 

*6A 

P r o o f . If A = 0, then we have to prove that r(G, A, 7) < |A| + 1 , whicl 
is trivially true. So, we may assume A 7̂  0. Let A\ A [A, G] — (A B 
and let M C E(G) be the set of all edges between A and B in G. Note that 
A — f] jY(r/, G ) . Counting the number of edges from F? to yl in G, using 

qex _ 
Observation 2.6, we see that \M\ = £ \A n TV(£, G ) | = £ | fl i V ( ^ G ) > 

tGB tGB sEAu{ j} 

£ (r(G,XU{t},j) - \X\ - 1) > |B | ( r (G,X,7) - \X\ - 1). 
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On the other hand, counting the number of edges from A to B in G, we 
see that \M\ = £ \B n N(t,G)\ = £ \(V(G) - (X U AU Ai)) n N(t,G)\ < 

teA teA 
£ Wt,G)\ - £ \XnN(t,G)\ - £ | A n iV(i ,G) | < £ |N ( t ,G | - \X\\A\ -
teA teA teA teA 
£ {r(G,XU{t}n)-\X\-l) < £ \N(t,G)\-\X\\A\-\A\(r(G,Xn)-\X\ - 1). 
teA _ teA 
Since |jN(t,G)| = | F ( G ) | - l - d e g ( t , G), we have |M| < \A\\V(G)\- ]T deg(t,G) 
-\A\r(G,Xn). ^A 

Combining this we have | £ | ( r ( G , X , 7 ) - \X\ - 1) < \M\ < |A||V(G)| -
Y, deg(t, G) - \A\r(G,X, 7). Hence we have the result. D 

COROLLARY 2.8. Le6 G be a graph of order n > 2 and /e£ a = (n - A(G) - 1) • 
• ( n - ( 5 ( G ) - 2 ) / ( n - l ) + 2. 

(i) 7/ G Zias a 7-totally free vertex of degree A(G) then 7(G) + 1 = n (G, 7) = 
ds(G) < CT; 

(ii) If G has no ^-totally free vertex of degree A(G) then 7(G) < a and 
r i (G ,7 ) = ds(G)<O- + l . 

P r o o f . If A(G) = 0 then the result is obvious. So, we may assume A(G) > 1. 
Let x G V(G) and deg(x,G) = A(G) . Let X = {x}, A = V(G) - N[x,G] and 
B = N(x, G) . Clearly \B\ = A(G) and \A\ = n - l - A ( G ) . Hence ^ deg(t, G) > 

teA 
S(G)(n - 1 - A(G)) . Now, from Theorem 2.7 we have: r(G, {x},j) < ((n - 1 -
A(G))(n - 1) - S(G)(n - 1 - A(G)) + A(G)) / (n - 1) + 1 = a. If x is 7-totally 
free then 7(G) + 1 = ds(G) = r i (G ,7 ) = r(G, {x},7), so we have (i). If x is 
not 7-totally free then r(G, {x}, 7 ) = 7(G) < r i (G ,7 ) = ds(G) < 7(G) + 1 = 
r(G, {x},7) + 1 < a + 1. The proof is completed. D 

R e m a r k . From Corollary 2.8 we immediately have Theorem D, because of 
5(G) = \V(G)\ - A(G) - 1 and A ( G ) = \V(G)\ - 5(G) - 1. 
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