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A B S T R A C T . Every root of the top Wronskian of a Wronskian matr ix whose 
rank at the root is equal to the number of columns, is of integer order even if the 
highest derivatives exist only at the root. If the rank of a Wronskian matr ix is 
constant and smaller than the number of rows, then the number of independent 
linear relations between the functions in the first row is equal to the number of 
functions minus the rank. These results were proved under additiona l assumptions 
by Bocher, Curtiss, and Moszner. Their proofs are simplified. 
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1. Introduction 

Every derivative function is equal to a Wronskian of dimension at least two, 
since / ' -= W (1, / ) . The converse is not true because while derivative functions 
have the Darboux property, some Wronskians of dimension at least two do not, as 
was shown in this journal by B a n a s and E1 -S a y e d [1]. However, Wronskians 
share several properties with derivative functions. For example, we showed in 
this journal [13] that the sets on which Wronskians of dimension at least two 
can vanish identically without vanishing identically everywhere, coincide with 
the sets defined similarly for derivative functions rather than Wronskians. In 
this paper we prove an analog, for Wronskians, of the following property of roots 
of real functions: If the kth (k > 0) derivative of a real function / exists and is 
finite and not zero at a point xo, then there is a (unique) nonnegative integer p 
such that lim [/ (x) / (x — XQ)P] exists, is finite and nonzero, that is, the order 

X—>Xo 

of the root XQ of / is p. (Of course, the limit here is equal to /(SI (XQ) /s\, 
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where /( s) is the lowest-order derivative, starting from zeroth order, that does 
not vanish at XQ. If / (XQ) ^ 0, then p = 0.) 

A fcth-order Wronskian matrix is one whose successive rows are n func­
tions and their successive derivatives stopping at order fc. As an analog of the 
above property of functions for Wronskians, we show that every zero of the top 
n-dimensional Wronskian (matrix) of a fcth-order, fc > n, Wronskian matrix of 
n functions is of integer order if the rank of the fcth-order Wronskian matrix ib 
n at the zero even if the fcth derivatives exist only at the zero. If the functions 
involved are fc times continuously differentiable in an entire neighborhood of the 
zero of the Wronskian, then this was proved by B o c h e r [3, IX, p. 58]. The 
proof given in this paper relies on an identity o f C h r i s t o f f e l [5, pp. 297 299] 
and on a result of elementary calculus [9, (1), p. 290]. 

An important consequence is that if the rank of a fcth-order Wronskian matrix 
of n functions is equal to a constant m (< fc) on an interval, then the number 
of independent linear relations between the functions is n — m. Our proof uni­
fies, simplifies, and generalizes those of C u r t is s [7, Theorem X, p. 296] and 
M o s z n e r [10, Theoreme (T), p. 177]. Under the additional assumption of 
continuity of the fcth derivatives of the functions involved, C u r t i s s proved 
this result for fc > n — 1 and M o s z n e r for fc < n — 1. Another unified proof 
was given by the author in [12]. 

The fcth order Wronskian matrix of / i , . . . , fn is denoted by Mk = Mk ( / i , • • • 
. . . , f n ) . This matrix has fc + 1 rows and the ith row is the row of (2 — l)st 

derivatives: f ^ , . . . , / n ^ 1 } . The Wronskian W = W ( /1 , . . . , fn) of f x , . . . , / l 

is det M n _ i ( / 1 , . . . , f n ) . All functions considered are real-valued functions of a 
real variable, defined on a nondegenerate interval of the real line 1 . However, 
the results extend to complex-valued functions (of a real variable). 

2. Zeros of Wronskians 

It follows easily from the local form of Taylor's theorem [9, (1), p. 290] that 
if f^ (xo) 7̂  0 for a function / and a positive integer fc at a point XQ E R, then 
there is a nonnegative integer p such that lim [/ (x) / (x - x0)

p] ^ 0, zboc (and 
X—>XQ 

the limit exists), even if f^ (x) exists only at x = XQ. B o c h e r [3, IX, p. 58] 
proved that a p satisfying such a limit relation exists for / — W ( / 1 , . . . , fn) 
at any x0 at which Mk ( / 1 , . . . , / n ) , fc > n, has the full rank n, provided that 

(k) (k) 

/1 , . . . , /A exist and are continuous in a neighborhood of XQ. Theorem 3 below 
moves this result closer to the one from calculus by freeing it from the assumption 
of existence and continuity of / } , . . . , / n on an entire neighborhood of XQ . 
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The proof of Theorem 3 relies on two lemmas. Lemma 1 is a generalization, to 
higher derivatives, of the following observation: If / is differentiable at x0 G R 
and h(x) = (f (x) - f (x0)) / (x - x0) (x ^ x0), h(x0) = fr (x0), then h is 
continuous at x0. Lemma 1 could be stated in any elementary calculus text 
made honest. It is surprising that its proof is not entirely routine. The part of 
Lemma 2 about W is due to C h r i s t off el [5, p. 297-299] and about M*. to 
C h a u n d y [4]. 

LEMMA 1. Let a function f be k, k > 1, times differentiable at a point x0. The 
function h equal to (f (x) — f (x0)) / (x — x0) at x ^ x0 and to ff (x0) at x0 is 
k — 1 times continuously differentiable at x0 and (I + 1) h^ (x0) = /^+1^ (x0), 
I = 0 , . . . , k — 1. This result extends to one-sided derivatives. 

Proof . We only prove the two-sided case, since the one-sided extension au­
tomatically follows from it. Without loss of generality we assume that x0 = 
f (x0) = 0. Then the equality / (x) = xh (x) in a neighborhood U of 0 where / 
is k - 1 times differentiable, implies that for x G U, x ^ 0, / = 0 , 1 , . . . , k - 1 
(with an arbitrary /i^-1^), 

fW(x) = lh«-V(x)+xh^(x). (1) 

If in particular, / > 0, then 

h®(x) = ^(x)-lh^l-1)(x))/x (2) 

= (fW(x)-f^(0))/x-Tl(x), 

where 

Tt(x)xl+1 = xl (lh«-V (x) - /<') (0)) (3) 

= Ix1-1 (/C-1) (x) -(l-l) M'-2) (x)) - / « (0) xl, 

(Ti (x) xl+1)' = / x < - 7 « (x) + 1(1-1) x ' - 2 / ( ' _ 1 ) (x) -1(1-1) x ' - 1 /^ - 1 ) (x) 

- . ( . - l ) 2 x ' - 2 / . < ' - 2 ) ( x ) - Z x ' - 1 / ( ' ) ( 0 ) 

^ s ' - H / W (*)-/<'>(<))). (4) 

(The second equalities in (3) and (4) follow from (1) with / replaced by / — 1.) 
We prove by induction on / that for / = 0 , . . . , k — 1, 

lim h® (x) = /^ + 1 ) (0) / (/ + 1). (5) 
x—>0 

For / = 0, (5) is just the observation before Lemma 1. Let 1 < / < k — 1. 
From (5) with / replaced by / — 1 (the induction hypothesis) and from (3) 
we obtain that limp) (x)xl+1] = 0. Then by FHopital's rule and by (4), 

x—>0 
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lim 7} (a) - l im[T,(:r)x'+1 /x '+1] lim [l (/«> (x) - / « (0)) ((. + -)*)] 
x—>0 x—>0 x 0 

//(-+-) (0) / (l + 1). Therefore, (5) holds by (2). 
Since the derivative of a continuous function cannot have removable discon-

tinuitie , the conclu ion of the lemma follows by induction on / from (5) for 
1-0,... k-1. 

LEMMA 2. ( C h r i s t o f f e l [5] and C h a u n d y [4]) We have \\ (<pgi, • • , 9g 
ipnW ( g i , . . . , gn) and if gi — 1 everywhere, then W (^gi, ...,<£# 

- cpnW (g'2,..., g'n). Let k > n The n-rowed determinants of Mk (<P9i, • • •. WQT 
are linear combinahons (with variable coefficients) of those of Mk (gi, • • • ? <7n)-
If, in particular, g\ — 1 everyv here, then they are linear combinations of the 
(n — 1)-rowed determinant of Mk i (g'2,..., g'n). 

S k e t c h of P r o o f . The first statements about W and Mk follow from the 
fact that every determinant is a linear function of each of its row vectors and 
from Leibniz' rule for the higher derivative of a product. The second state 
rnents follow from the first ones by expanding W (g i , . . . ,gn) and every n-rowed 
determinant of Mk (g i , . . •, gn) by their first column and observing that only the 
top entry in that column is different from zero if g\ 1 everywhere. • 

THEOREM 3. Let / i , . . . , fn be n — 1 times differentiable functions on a nonde-
generate interval I. If at a point xo G I the matrix Mk ( / i , • • fn\ %o) exists for 
some k > n and its rank is n then there is an integer p, p _ 0, such that the 
following limit exists and 

lim - y / / l ' " - : / r t ) # 0 , ± o o . ( 6 ) 
x I,x x0 [X XO) 

P r o o f . We denote Theorem 3 for given n, k, n < k, by T n ^ . It is clear that 
Ti?fc is equivalent to the calculus fact quoted at the beginning of this section. In 
the next paragraph we deduce T ,^, 2 < n < k, from Tn_i?fc i \ hen | / i (xo) + 
• * • + |/n (xo)\ > 0. In the last paragraph we show that if / i (x0) • • • fn xo 

0, then T n ? n , n > 2, holds and T n &, 2 < n < k, follows from T n k-\- Based 
on these results, the proof is completed by verifying the conjunction / \ T7 +s 

using induction on , s 0 , 1 , . . . n 

Let the hypothe es of T n ^ , k _ n > 2, be satisfied and let / i (xo)| + . • • 
+ \fn (xo)\ > 0. We a ume that /] (xo) ^ 0, since this i only a matter of nota­
tion. Then / i does not vani h on an entire nondegenerate interval J containing 
xo. Let g% = fi/fi on J . It follows from Lemma 2 (take <p — f\) that the rank 
of A/*, i(g2,...,gn;x0)isn 1. Therefore, lim {W (g'2,..., g'n) (x x0) 

X I,X-^XQ 

^ 0, ±oo for some integer p, p > 0, if T n 1^k-i hold . Then (6) holds (with the 
same p) because W ( / i , . . . , fn) f?W (g'2,.. , gn) by Lemma 2. 

51S 



THE ORDER OF A ZERO OF A WRONSKIAN AND LINEAR DEPENDENCE 

Let the hypotheses of Tn ?^, k > n > 2, be satisfied and let f1 (xo) = • • • 
= fn (~o) — 0- The n-rowed determinants of the matrix Mk ( / i , • • •, fn', xo) con­
taining its first row are all zero. Consequently, the rank of Mk-i (/{, • . . , fn, XQ) 
is n. We write each fi by Lemma 1 as fi = hi (x - xo), where hi is k — 1 times 
differentiable on / . It follows from Lemma 1 that the n-rowed determinants 
of Mk-1 (hi,..., hn; xo) and the n-rowed determinants of Mk-i ( / i , • • •, /n5 xo) 
differ from each other only by nonzero multiplicative constants. Therefore, the 
rank of Mk-i (hi,..., hn; xo) is n . On the other hand, from Lemma 2 we obtain 
that 

W(f1,...,fn) = (x-x0)
nW(h1,...,hn), x e l . (7) 

If k = n, then this shows that (6) is true with p = n, since lim W (hi,..., hn) 

= W(hi,... ,hn;xo) by the continuity of h\k~X\ i = l , . . . , n , at x0 (see 
Lemma 1), and since VV(/ii,.. .,hn;xo) ^ 0 because the rank of Mn__i ( / i i , . . . 
...,hn; x0) is n. If k > n, then lim \W (hi,..., hn) j(x - x0)

p] ^ 0, ±oo 
x £ l , X—+XQ 

for some nonnegative integer p if T n ^ - i holds. Then by (7), relation (6) holds 
with p replaced by n + p. • 

3. Consequences 

COROLLARY 4. / / the zeros ofW(f1,..., fn) cluster at a point xo € / , then the 
rank of Mk ( / i , • • •, fn] xo) is less than n for every k (> n) for which Mk ( / i , . . . 
. . . , / n ; x 0 ) exists. 

COROLLARY 5. If the zeroes ofW ( / i , • • •, fn) cluster at a point xo of an interval 
/ , thenW(fu...,fn,gu...,gm;x0) = 0 provided that / i , . . . , fn,gi,... ,g m are 
n + m - 1 times differentiable at XQ and m > 1. 

COROLLARY 6. ( C u r t i s s [7]) If f i,..., fn are k (> n) times differentiable and 
W (fi,..., fn) = 0 on a nondegenerate interval / , then rankM^ ( / i , . . . , fn) < n 
throughout I. 

COROLLARY 7. ( C u r t i s s [6]) / / / i , . . . ,fn,fn-\-i are n times differentiable 
functions on a nondegenerate interval / , then W (f1,..., fn;x) = 0, x £ / , 
implies W ( / i , . . . , fn, / n + 1 ; x) = 0, x G / . 

P r o o f of C o r o l l a r i e s 4 -7 . Corollary 4 is the contrapositive of Theorem 3 
when the latter is taken with the weaker conclusion that the zeroes of W(fi,... 
... ,fn) do not cluster at xo- Corollary 5 follows from Corollary 4 by expanding 
W ( / i , . . . , fn, gi,..., gm; xo) by its first n columns. Corollary 6 is a special case 
of Corollary 4 and Corollary 7 is a special case of Corollary 5. • 
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Corollary 4 when /} , . . . , fn exist and are continuous throughout / , was 
stated and proved by C u r t i s s [7, Th. IV, pp. 285 289]. Thereby he reproved a 
weaker version of B 6 c h e r 's result mentioned in our Introduction. C h a u n d } 
[4, (C), p. 6] assumed only the existence (without the continuity) of/} , . . . , fr 

throughout / to prove the conclusion of Corollary 4. He also simplified C u r -
t i s s ' proof. (Actually, C h a u n d y [4, (C), p. 6] states Corollary 4 in its 
general form as above, but he uses the existence of /} , . . . , fn throughout I 
in his proof. He only works out his induction step from 1 to 2 and from 2 to 3 and 
seems to need a general lemma like Lemma 1 above to make his proof complete.) 
Both C u r t i s s [7, Th. VII, p. 293] and C h a u n d y [4, (A), p. 5] deduce 
Corollary 6 from their version of Corollary 4. For C h a u n d y , Corollary 6 
is a trivial special case but for C u r t i s s , Corollary 6 represents extra work 
because he assumes the continuity of / } , . . . , fn in his version of Corollary 4. 
Of course, Corollary 7 follows from Corollary 6 by determinant expansion. (The 
converse is a little more complicated.) Corollary 7 was first proved by B 6 c h e r 
[2, Theorem VIII, p. 148] assuming continuous nth derivatives and by C u r t i s s 
[6] in the general case. Our proof of Theorem 3 is shorter than C h a u n d y ' s 
proof of his version of Corollary 4 and uses some of the ideas of that proof. 

The author presented a proof of Corollary 7 in a preceding issue of this journal 
([13]). That proof relies on properties of Wronskian matrices different from the 
one expressed in Theorem 3. 

Corollary 8 below is due to C u r t i s s [7, Theorem X, p. 296] (for k > n — 1) 
a n d M o s z n e r [10, Theoreme (T), p. 177] (for k < n - 1) when f[k\ . . . , f£ 
are continuous throughout I. (Actually, in his announcement [6, Th. V, p. 
484], C u r t i s s does not assume this continuity but in [7, Theorem X, p. 296] 
he does.) The unified proof of Corollary 8 below without assuming the continuity 
of / } , . . . , / n is simpler than C u r t i s s ' o r M o s z n e r ' s proof. In the proof 
of Corollary 8 we use a classical theorem of Peano (see Theorem 9), a proof of 
which is included here for completeness. 

The author presented a proof of Corollary 8 in [12]. That proof is different 
from the one below and is based on properties of Wronskian matrices differ­
ent from the one expressed in Theorem 3. The author also showed (see [12, 
Corollary 4]) that Corollary 7 can be deduced from Corollary 8. 

COROLLARY 8. Let / i , . . . , / n be k times differentiate functions on a nonde-
generate interval I and let m = rankM^ ( / i , . . . , / n ; x) be independent of x G / 
and not larger than k. The number of independent linear relations for / i , . . . , fn 

on I is equal to n — m. 

P r o o f . If m = 0 or m = n, then Corollary 8 is obvious. Let 0 < m < n 
and let xo G I. Since rankM^ = ra, there are m linearly independent columns 
in M/c (xo), say the first m columns. Then it follows from Theorem 3 that 
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there is an open interval J containing x0 , such that W ( / i , • • . , fm',x) ^ 0 if 
x G J n I and x 7-- XQ. However, W ( / i , . . . , / m , /^; x) = 0, x G I, m < i < n, 
because rank Mk = m. Therefore, it follows from Theorem 9 below that each /$, 
m < i < n, is a linear combination of / i , . . . , fm on the left and right components 
of (J fl I) \ {xfj} separately, and then separately on their closures by continuity. 
Since rankM^ = m, we obtain that the number of independent linear relations 
between / i , . . . , fn on the closure of each of these components is n — m. 

Since Xn G I was arbitrary, a Borel covering argument shows the following: I 
is the union of a finite or infinite chain *_f of adjacent nondegenerate subintervals 
on each of which the number of independent linear relations between / i , . . . , / n is 
n—m. For every J eff, let Vj be the vector space of constant vectors ( c r , . . . , cn) 
such that c_/i (x) + • • • + c n / n (x) = 0, x G J . If ( c r , . . . , cn) G Vj and a is an 
endpoint of J belonging to J , then fc-fold one-sided differentiation shows that 
cif[s) (a) + . - - + c n / n

s ) (a) = 0, s = 0 , . . . , k. Therefore, Vj C ^ - ( / 1 ? . . . , / n ; a), 
where Jt^ ( / i , . . . , / n ; a) denotes the orthogonal complement, in I__n, of the vec­
tor subspace _#& ( / i , . . . , / n ; a) spanned by the rows of M/c ( / i , . . . , / n ; a). Then 
Vj = _ ^ - ( / i , . . . , / n ; a), since rankM^ = m and since by the paragraph above, 
dim Vj — n — m. Similarly, VK — ̂ t (/i? • • •>/^5a) f° r t n e subinterval K eff 
on the other side of a, if such a I_~ exists. Consequently, Vj and V_; are the 
same for adjacent subintervals Jeff and K G *_f, and thus Vj is indepen­
dent oi J e ff. This means that the number of independent linear relations for 
/l? • • • ? /n on the entire interval I is n — m . • 

THEOREM 9. ( P e a n o [11]) If W ( / i , . . . , / n - i ; x ) / 0 , „ G / , and W ( / i , . . . 
. . . , / n ; x) = 0. x G I. On a nondegenerate interval I, then fn is a unique linear 
combination of f \ , . . . , / n _ i . 

P r o o f a f t e r F r o b e n i u s . ([8, p. 238]) Since W ( /_ , . . . , / „ _ i ; _ ) 7̂  0, 
x G I, by Cramer's rule there are unique differentiable cr (__•),..., cn_i (x) such 
that fn

s) (x) = d (x) f[s) (x) + • • • + cn_i (x) / n _ ! (x), x G I, 5 = 0 , . . . , n - 2. 
Since it follows from the hypotheses that the last row of W ( / 1 , . . . , / n ; x) is a 
linear combination of its first n — 1 rows, this equality holds for 5 = n — 1, as 
well. Differentiation of the equalities for s — 0 , . . . , n — 2 yields that fn ' (x) — 

Cl (X) fiS+1) (_) + .. . + Cn_1 (X) / ^ (_) + ci (X) /{•> (X) + - • • + < _ ! (X) f^ (X), 
x G I, s = 0 , . . . , n — 2. Comparison of the two expressions thus obtained for 
/ n

s + 1 ) (x), s = 0 , . . . , n - 2 , gives that c[ (x) f[s) (x) + ^- + cfn_l (x) /^_- (x) = 0, 
x G I, s = 0 , . . . , n — 2. The determinant of this system of n — 1 homogeneous 
linear equations for the n —1 unknowns c[ ( x ) , . . . , c'n_1 (x) is W ( / 1 , . . . , / n _ i ; x) 
7-= 0. Therefore, ĉ  (x) = • • • = c n - 1 (x) = 0, x G I: the c, are constant and thus 
/ n is a linear combination of / 1 , . . . , / n - i - Since VV ( / 1 , . . . , / n _ i ; x) 7- 0, x G I, 
this linear combination is unique. • 
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