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R E M A R K S ON T H E O R D E R 
FOR QUANTUM OBSERVABLES 

S . PULMANNOVÁ E . VlNCEKOVÁ 

(Communicated by Anatoli] Dvurečenskij) 

A B S T R A C T . Relations between generalized effect algebras and the sets of clas­
sical and quantum observables endowed with an ordering recently introduced in 
[GUDDER, S.: An order for quantum observables, M a t h . Slovaca 5 6 (2006), 
573 589] are studied. In the classical case, a generalized OMP, while in the quan­
t u m case a weak generalized O M P is obtained. Existence of infima for arbitrary 
sets and suprema for above bounded sets in the q u a n t u m case is shown. Com­
patibility in the sense of Mackey is characterized. 

©2007 
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Slovak Academy of Sciences 

1. Introduct ion 

The set of bounded observables for a quantum system is usually represented 
by the set S(H) of bounded self-adjoint operators on a complex Hilbeit space H. 
The traditional order for A, B G S(H) is defined by A < B if (Ax, x) < (Bx, x) 
for every x £ H. In [9], this order is called numerical. Under this ordering, 
(S(H), <) becomes a partially ordered set (poset). A well-known theorem due 
to R . K a d i s o n [14] shows that (S(H), <) is not a lattice, it is even an anti-
lattice in the sense that A/\B exists if and only if A < B or B < A, and A/\B 
is the smaller of the two. If this ordering is applied to the self-adjoint elements 
S(A) of a von Neumann algebra A, then S(A) is a lattice if and only if A is 
abelian. 

Another ordering, so-called spectral order, was introduced in [17], [8] as fol­
lows: let i , B G S(H), and let ( P ^ ) A G R , (Px)xeR be spectral families of A, B, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 81P10; Secondary 06A06, 47C15. 
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orthomodu lar poset, Riesz ideal, Mackey compatibility. 
This work was supported by Science and Technology Assistance Agency under the contract 
No. APVT-51-032002, grant VEGA 2/3163/23 and Center of excellence SAS, CEPI 1/2/2005. 
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respectively. We define A <s B if Pjf < P^ for every A G I R . Then <s extends < 
on projections, is coarser than the usual ordering, but agrees with it on abelian 
subalgebras, and turns S(H) into a boundedly complete lattice, that is, every 
bounded family in S(H) has a supremum and infimum. 

In [9], a new order for quantum observables, represented by the set of bounded 
self-adjoint operators S(H) on a complex Hilbert space IT, has been introduced. 
This new order is determined by assuming that A < B if the proposition that 
A has a value in A implies that B has a value in A for every Borel set A not 
containing 0. It is called the logical order. In the commutative case, we ma\ 
represent observables by fuzzy random variables, and study the new ordering 
on them. There are several characterizations of the ordering <, e.g., A < B if 
and only if AB = A2. This shows that < is the restriction of D r a z i n ' s order 
([4]) from the set B(H) of all bounded operators on if, to the self-adjoint part 
S(H). Indeed, the Drazin order a <d b is introduced by the binary relation 
a*a = a*b = b*a and aa* = ab* = ba*. To the difference of both the traditional 
and the spectral order, the logical order is algebraic in the sense that a partial 
binary operation 0 can be introduced in S(H) such that A < B if there is C 
such that A © C = B. 

In the present paper, we will study the structure of classical and quantum 
observables with respect to the new ordering in more details. We will prove that 
in the classical case, the set Ai(A) of random variables on a probability space 
(Jl,./4, fi) forms a generalized cr-orthocomplete orthomodular poset (GOMP), 
which satisfies the Riesz decomposition properties. Nevertheless, its unitization 
does not form a Boolean algebra. We also show that the set of functions with 
finite support form a Riesz ideal. In the quantum case, the set S(H) forms a 
weak generalized orthocomplete orthomodular poset (WGOMP). Moreover, the 
infimum of any two elements of S(H) exists, while the supremum exists if and 
only if the two elements have a common upper bound. This extends the results 
of [9], where the structure of a generalized cr-orthoalgebra has been shown for the 
classical, and a generalized orthoalgebra for the quantum case, and the existence 
of infima in S(H) has been proved only for the finite-dimensional H. More gen­
erally, we show that the infimum of an arbitrary family exists, and the supremum 
of an arbitrary above bounded family exists. We also find a characterization of 
the Mackey compatibility. Since Mackey compatibility is usually interpreted as 
simultaneous measurability, it turns out that two observables corresponding to 
self-adjoint operators A and B, aie simultaneously measurable (with respect to 
(S(H)i ©, 0)) if and only if AB = (A A B)2. 
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2. Generalized effect algebras 

Effect algebras were introduced in [6] (see also [7] and [15] for alternative 
definitions) as an abstract generalization of the Hilbert space effects, that is, self-
adjoint operators between the zero and identity operators (in the usual ordering), 
which play an important role in the theory of quantum mechanical measurements 

([i])-
Another important example is the unit interval [0,1] of real numbers organized 

into an effect algebra by defining a _ L b i f a + b < l , and then putting a 0 b = a-f-b. 
We note that [0,1] is also a prototypical example of an MV-algebra, a structure 
introduced by C h a n g [2] as an algebraic base for many-valued logic 

For the details about effect algebras and related structures see, e.g., [5]. 

DEFIN IT ION 2.1. An effect algebra (EA) is a system (P?, 0 ,0 ,1 ) consisting of 
a set E with two special elements 0,1 G E and with a partially defined binary 
operation 0 satisfying the following conditions for all p , g , r G E: 

(El) if p 0 q is defined, then q 0 p is defined and p 0 q = q 0 p 
(commutative law), 

(E2) if q 0 r is defined and p 0 (q 0 r) is defined, then p © g and (p 0 q) 0 r 
are defined and p 0 (q 0 r) = (p 0 q) 0 r (associative law), 

(E3) for every p e E there exists a unique q G E such that p 0 q is defined and 
p 0 q = 1 (orthosupplement law), 

(E4) if p 0 1 is defined, then p = 0. 

The element q in (E3) is denoted by p' and is called an orthosupplement of the 
element p. 

We recall that an effect algebra E is an orthoalgebra (OA) if a _L a implies 
a = 0; E is an orthomodular poset (OMP) if whenever a, b, c are mutually 
orthogonal, then a _L b 0 c; E is an orthomodular lattice if it is a lattice ordered 
OMP. 

DEF IN IT ION 2.2. ([11], [5]) A generalized effect algebra (GEA) is a system 
(P, 0 ,0 ) satisfying conditions (El) and (E2) and 

(E3') if a 0 b = a 0 c, then b = c (cancelation law), 

(E4') if a 0 b = 0, then a = 0 = b (positivity), 

(E5) a 0 0 = a for every a e P. 

On an effect algebra or a generalized effect algebra E, we further define: 
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• a binary relation _L by 

a _L b <=-=-=> a © b exists, 

• a dual partial binary operation © to the operation © by 

c © a = b <==> a _L b and a © b = c, 

• and a binary relation < by 

a < b <=> 3c e E : c(Ba = b, 

which is a partial order on E, where 0 is the least element and in the case of 
effect algebra, 1 is the greatest element. A generalized effect algebra becomes 
an effect algebra iff it contains a greatest element 1. 

A GEA P is a generalized orthoalgebra (GOA) if a _L a implies a = 0; P 
is a weak generalized orthomodular poset (WGOMP) ifaffib = a V b whenever 
a © b exists, and a _L (b © c) whenever a, b, c are mutually orthogonal; P is a 
generalized orthomodular poset (GOMP) i f a © b = a V b whenever a _L b, and 
if b V c exists and a _L b, a JL c then a _L b V c. A lattice ordered GOMP is a 
generalized orthomodular lattice (GOML). 

It is well known that every generalized effect algebra P can be embedded into 
a uniquely defined effect algebra E such that for every a E E, either a e P or its 
orthosupplement a' e P. In analogy with the theory of rings, we call this effect 
algebra E the unitization of the GEA P (for more details see [11], [5], [19], [18]). 

Moreover, a GEA P is a generalized orthoalgebra iff its unitization E is an 
orthoalgebra; P is a WGOMP iff its unitization E is an orthomodular poset 
([16]); P is a GOMP iff E is an orthomodular poset and the embedding of P into 
E preserves existing suprema ([16]); and finally P is a generalized orthomodular 
lattice iff its unitization E is an orthomodular lattice ([12]). 

3. The commutative case 

Classical commuting observables are represented by random variables on a 
probability space (ft, A, /i), where A is usually thought of as the set of events for 
some statistical experiment. The set A can be organized into an effect algebra 
if we put A _L B if AC\B = 0 and define the orthosum A © B = A U B whenever 
A J_ B. Then (.4, ©, 0, ft) is an effect algebra with A! = Ac(= ft \ A). In fact, 
A is a Boolean cr-algebra. 

We identify an event A e A with its characteristic function XA, which can 
be considered as a two-valued measurement with outcomes 0 and 1, or "no" 
and "yes". That is, for any u e ft, XA(W) gives the values 1 or 0 depending 
on whether UJ e A or u £ A. We have /j,(A © B) = n(A) + n(B) whenever 
A © B is defined, and //(ft) = 1. That is, // is a state on A (i.e., an effect 
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algebra morphism from A to [0,1], considered as effect algebras). We note that 
here the effect algebra order __ coincides with the usual order, i.e., XA "̂  XB iff 
\A(U) < XB(U) for all „ G ( 1 . 

In [9] it is suggested to extend the orthosum to all measurements associated 
with A, which are represented by the set M(A) of all random variables on 
(ft, A, kt). The extension is obtained by defining / _L g if fg — 0 for / , g G M(A). 
Denote the support of / by supp(/) :— {cu G ft : f(u) ^- 0} , and the null space 
of / by null(/) := {cu G ft : f(u) = 0} = / _ 1 ( 0 ) - Observe that / _L g iff 
supp(/) C nu\l(g) iff supp(/) _L supp(#). We define / 0 O = / + a i f f / _ L # . 
Define a partial order __ on M(A) by / __ g if there is an h G M(A) such that 
/ _L h and / 0 h = g. Then (M(A), __) is a poset and 0 __ / for all / G M(A). 

In fact, in [9], it was proved that (M(A), 0 , 0 ) admits a structure of a gener­
alized O--orthocomplete orthoalgebra. Moreover, the infimum / A g ex sts for all 
/ , g G M(A), while the supremum of / , g exists iff there is h G M(A) such that 
f,g_h. In what follows, we give a more precise description of the structure 
of (M(A), 0 , 0). We need the following characterization of the partial order -<, 
proved in [9, Th. 3.1]. 

THEOREM 3 .1 . The following statements are equivalent: 

(i) / - 9, 

(ii) f(u) = g(u) for all u G supp( / ) , 

(iii) / - g - X s u P P ( / ) , 

(iv) fg - f2, 

(v) f~x(A) c g-1(A) for everV A € # ( K ) with 0 ^ A . 

THEOREM 3.2. The structure (M(A),®,0) is a 

a) WGOMP, 
b) GOMP. 

P r o o f . 
a) Recall that by [5, Th. 1.5.13] and [5, Remark 1.5.16], we have to prove: 

(i) If / , g G M(A) and / _L O, then / 0 g = f V g, i.e., / 0 g is the supremum 
of / and r/. 

(ii) If f,g,he M(A) are such that / _L h, g _L h, and / - L a , then h ± f (B g. 

(i): Let /,_; G A4(.4), / ± _/. Clearly, f g __ / 0 </. Now let /i G yVi(.4): 
f,g~<h. While for every u G supp( / 0 g) either u G supp(/) or u G supp(g), 
along with / , g __ b, we have VOJ G supp( / 0 #): ( / 0 g)(u) — f(uj) — h(u) or 
( / ® g)0^) — g(^) — M1^) a n ( l therefore by Theorem 3.1, f (& g _ h. 

ii): When / , g, h are mutually orthogonal, their supports are disjoint and 
so obviously supp( / 0 g) H supp(b,) [supp(/) U supp(#)] D supp(I7) — 0 ==.> 
/ e _ 7 - L / i . 
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b) A WGOMP is GOMP iff V/ ,g , h £ M(A): f ± /i, g ± h and the existence 
of / V g imply / V g ± h. So let us have / ,g , h £ M(A) such that f,g ± h and 
fVg exists. Observe that when the supremum of / , g exists, then the functions 
are equal on the set supp(/)nsupp(#) . So we may define p := f • XsuPP(f)nsupp(g), 
/ i := / ( l -Xsupp(g)), gi -= g(l -XsuP P(/))- Therefore the function / i © p © # i is 
defined and it can be easily seen that it is in fact the supremum fVg = / i©F©g i . 
Since supp(/ i © P © # i ) = supp(/) U supp(p) and fyg ± h, straightforwardly 
supp( / V g) ± supp(ft) and thus / V g ± h. • 

Recall that a generalized effect algebra A satisfies the Riesz decomposition 
property (RDP in short) if for any a, b, c £ A, a < b © c implies that there 
are bi < b, c\ < c such that a = bi © ci . More generally, A satisfies the 
a-Riesz decomposition property if a < 0 bi implies a = 0 a ,̂ where a* < bi for 
a l l i G N . *GN ieN 

THEOREM 3.3. The structure (yVf(.4),ffi,0) satisfies the a-RDP. 

P r o o f . Assume that f < 0 gi. It follows that supp(/) C |J supp(^) , and to 
ieN ieN 

every UJ G supp(/) there is i G N with f(u) = gi(u). Define hi := gi • XsuPP(/)-
Then supp(/z*) = supp(^) D supp(/) , and clearly hi ^ gi for each i G N, and 
hi ± hj whenever i ^ j . Therefore 0 hi exists, and since supp(/) = |J supp(/ii), 
we have / = 0 hi. ieN <eN D 

Let us define 
T := {/ G M(A) : supp(/) is finite}. 

We recall that a subset I of a generalized effect algebra P is an ideal if for 
any a,b E P, 

(i) a e I, b < a implies b G / (that is, I is an order ideal), 

(ii) a, 6 £ / , a J_ b implies a © b £ I. 

An ideal is a .Riesz idea/ if 

(Rl) a e I, b,c e P, a <b®c implies a < bx © ci where bi, c\ el and bi < b, 

ci < c; 

(R2) i £ I, i < a and a © z _L b implies 3 j £ I, j < b and b © j JL a. 
The importance of Riesz ideals is given by the fact that the quotient P/I of a 
generalized effect algebra P with respect to a Riesz ideal is again a generalized 
effect algebra (for more details see [10], [5], [3], [18]). 

PROPOS IT ION 3.4. The set T is an ideal in M(A). 

P r o o f . At first, it is obvious that T is an order ideal, because if / £ T and 
g < f then supp(#) C supp(/) , so that g £ T. As for the second property of an 
ideal, if / , g £ T and / _L g then since supp( / ® 9) = supp(/) U supp(a), clearly 

f®geT. n 
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T H E O R E M 3.5. The set T is a Riesz ideal in M(A). 

P r o o f . We have to prove: 

(Rl) / G T, g,h G M(A), f __< g © h implies that there are _7_ _< g, hi __< h 
such that g\,hi G T and / __. gi 0 /ii, 

(R2a) g,h E M(A), f e T, h ^ g, g Q h ± f implies that there is / i G _F 
such that / i _^/i, ( g G / i ) - L / . 

We notice that condition (R2a) is equivalent with (R2), which is in the original 
definition of a Riesz ideal (see [5]), what was proved in [13]. While (Rl) follows 
by Theorem 3.3, we proceed immediately to (R2a): 

Let g, h G M(A), f G T, h __< g and gQh _L / . We put fi'.^g- XsuPP(/) and 
show that it has required properties. At first, if u G supp(/ i ) , then obviously 
u G supp(/) and u G supp(g). But since gQh _L / , this implies also u G supp(/i). 
Therefore we have / i __< h. In fact, we have supp(/ i) = supp(/)Dsupp(g) , which 
already implies that g Q fi J- / • Finally, it is clear from the definition of fx 

(supp(/i) C supp(/)) , that / i G T, which ends the proof. • 

4. The quantum case 

In this section, S(H) will denote the set of bounded self-adjoint operators on 
a complex Hilbert space H, and the set of orthogonal projections on H will be 
denoted by V(H). Usually, V(H) is interpreted as the set of events and S(H) as 
the set of bounded observables (measurable physical quantities) for a quantum 
system. If A G S(H) and PA(A), A G B(R), is the spectral measure for A, then 
PA(A) is interpreted as the event that A admits a value in A . If p is a density 
operator on H (i.e., positive with trace 1), then p corresponds to a state of the 
system and tr(pPA(A)) is interpreted as the probability that A has a value in A 
in the state p. 

For P, Q G V(H), we have P ±Q if P + Q < I, equivalent^, if PQ = 0. In 
[9], the latter definition is extended to elements of S(H) by defining A _L B if 
AB = 0, in which case A ® B := A + B. In agreement with [9], we denote the 
closure of the range of A by fan(_4) and the projection on fan(_4) by PA- By 
null(_4) we denote the kernel of A. The proof of the next lemma ([9, Lemma 1]) 
is straightforward. 

L E M M A 4 . 1 . For A,B G S(H), the following statements are equivalent. 

(i) A JL B. 

(ii) ran(_4) C null(_5). 

(hi) fan(B) C null(_4). 

(iv) PAPB = 0. 

(v) fan(_4) _L ran(I3). 
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By [9, Theorem 4.2], the structure (S(H), 0 , 0) is a generalized orthoalgebra. 
The partial order is then defined by A •< B if there is a C E S(H) with A ± C 
and A 0 C = B. 

The following characterizations of the partial order were proved in 
[9, Lemma 4.3], [9, Theorem 4.6]. 

PROPOS ITION 4.2. For A,B E S(H), the following statements are equivalent. 

(i) A IB. 

(ii) Ax = Bx for all x E fan(A). 

(hi) A = BPA. 

(iv) AB = A2. 

(v) PA(A) < PB(A) for all A E B(R) with 0 g A. 

By [9, Corollary 4.5], every A E S(H) is principal. This implies the follow­
ing statement, which in turn implies that the unitization of (S(H), 0 ,0 ) is an 
orthomodular poset. 

THEOREM 4.3. The structure (<5(II),0,O) is a weak generalized orthomodular 
poset (WGOMP). 

P r o o f . We have to prove 

(i) if A ± B, then A 0 B = A V B, 

(ii) A±B,B ±C,C ±A imply A&B ±C. 

To prove (i), observe that A, B •< A 0 B, and assume that for a C E S(H), 
A,B ~<C. Since C is principal, it follows that A 0 B •< C, hence A 0 B is the 
least upper bound of A and B. 

To prove (ii), observe that AC = 0 = BC implies (A + B)C = AC + BC = 0, 
hence A@B ±C. • 

Remark 1. 
1. We do not know if (<S(II), 0 ,0 ) is a GOMP. 
2. In analogy with the classical case, we may consider the set T := {A ES(H): 

dim(ran(A)) < oo}. It can be easily seen that T is an ideal in S(H). We do not 
know if it is a Riesz ideal. 

In what follows, we need the following lemma. 

LEMMA 4.4. Let (Pv)v be an arbitrary set of projections on H, and let P = \J Pv 

in V(H). If B E S(H) is such that B < I and Pv < B for all v, then P < B. 

P r o o f . Let us denote Mv = TZI\(PV). We have ||(I - B)xl2x\2 < | |P^x | | 2 , 
for every x E II and all v. Therefore, if x E \JMV, (I — B)ll2x = 0, hence 
(I—B)x = 0 holds for every x E |J Mv. It follows that I—B reduces |J Mv, hence 
also ({jMv)±, and if x E ({JMV)L = P\(MV)^, then ((I-B)x,x) < \\x\\2. This 
entails that ((I - B)x,x) < | |P n ( M i / ) xx | | 2 = || A ^ ^ l l 2 = l l ^ ^ l l 2 - Therefore 
(Px, x) < (Bx, x) for all x E II. • 
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The following theorem extends [9, Theorem 4.8]. 

THEOREM 4.5. Let (Aa)a be a net of elements ofS(H) (that is, for every ai, ot2 
there is (3 such that AaiJAa2 _ Ap) such that for every a: Aa _ B, B G S(H). 
Then A — \J Aa exists in (S(H), _ ) and A = \\mAa in the strong operator 
topology. 

P r o o f . Similarly as in the proof of [9, Theorem 4.8], we obtain that Aa _ Ap 
implies PAa < PAf3. Therefore (PAa)a is a net of projections. According to 
Vigier's theorem (see e.g. [20, Lemma 1]), the supremum P = V PAa (in S(H)) 

a 
exists, and P = limP_4Q in the strong operator topology. By Lemma 4.4, P 
coincides with the supremum of (PAa)a in the complete lattice V(H), hence P 
is a projection. Since Aa _ B for every a, we have Aa = BPAa = PAaB, and 
P lim PAa in strong operator topology, together with the one-sided continuity 
of product, implies that BP = PB. Proceeding similarly as in the proof of [9, 
Theorem 4.8], define the operator A G S(H) by A = BP. Since 

Aa = BPAa = BPPAa = APAa, 

we conclude by Proposition 4.2 that Aa _ A. Suppose Aa _ C for all cY, where 
C G S(H). Then CPAa = Aa = BPAa so that CP = BP = A. Since C(CP) = 
C2p2 _ (CP)2, by Proposition 4.2, A = CP _ C. Hence A = \J Aa. Since 
Aa APAa, we conclude that lim Aa = A in the strong operator topology. • 

In [9], it was proved that (S(H), _ ) is a near lattice in the sense that for 
A,B e S(H), AABzmdAvB exist in S(H) if there is C e S(H) with 
A,B < C. By [9, Theorem 4.17], if d imH < oc, then A A B exists for every 
A, B G S(H). In the next theorem, we extend the latter result to every Hilbert 
space H and to arbitrary subsets of elements. 

COROLLARY 4.6. 

(i) For every family (A\)\ C S(H) and B G S(H) such that A\ _ B for all 
A. the supremum \ / A\ exists. 

A 

(ii) For an arbitrary family (A\)\ C S(H) the infimum f\A\ exists. 
A 

P r o o f . 
(i) For any finite subfamily F of (^4A)A the supremum exists by [9, Corol­

lary 4.13]. The finite suprema form a net in a natural way (with respect to _ ) 
each element of which is above bounded by B. Applying Theorem 4.5 we ob­
tain that the supremum of this net exists, and it is clearly also the supremum 
oi(A\)\. 

(ii) Consider the family of all lower bounds of (^A)A- By (i), supremum of 
this family exists, and it is the greatest lower bound of (^4A)A- D 

Notice that if A G S(H) is invertible, then PA = 7, therefore A _ B implies 
A BI- B. 

In conclusion we have the following statement. 
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COROLLARY 4.7. The infimum A A B of any two elements A, B G S(H) exists, 
while the supremum AV B exists if and only if there is C G S(H) with A,B <C 

5. Compatibility 

We recall that two elements a, b in a (generalized) effect algebra P are called 
(Mackey) compatible (written a <-> 6) if there are elements a i ,b i , c G P such 
that ai 0 bi 0 c is defined, and a = a\ 0 c, b = b\ 0 c If Q is a subset of P , we 
say that a, 6 are compatible in Q if a i , bi, c belong to Q. Notice that if E is 
the unitization of P , then a,b £ P are compatible in E if and only if they are 
compatible in P . If P is a WGOMP, so that E is an OMP, then c = a A 6, and 
Oi0bi0c = a i V b i V c = a V b . Consequently, any two compatible observables 
in a WGOMP have a supremum. 

PROPOSITION 5 .1 . The unitization of the system (M(A), 0 ,0 ) is not a Boolean 
algebra. 

P r o o f . Let f,g G M(A) be such that f(uo) ^ 0 for all UJ G fi, and g £ f. 
Then / V # does not exist in ./Vf(.4). Indeed, if / •< h, then f(tj) = h(u>) 
for all CJ G supp(/ ) , hence h = f. Therefore / and g have no upper bound 
in M(A), consequently, f <-* g does hot hold. Since an OMP is a Boolean 
algebra iff all pairs of elements are compatible, we conclude that the unitization 
of (M(A), 0 ,0 ) is not a Boolean algebra. • 

We remark that since an OMP with the Riesz decomposition properties is a 
Boolean algebra, the Riesz decomposition property is not satisfied in the uniti­
zation. 

In the next theorem, we formulate a necessary and sufficient condition for the 
compatibility of two elements in S(H). 

THEOREM 5.2. In (5(H) , 0 ,0 ) the following statements for A, B G S(H) are 
equivalent. 

(i) A <-> B. 

(ii) AB= (AAB)2. 

P r o o f . 
(i) implies (ii): If A <-> P , then A and B are compatible in the unitization of 

S(H), which is an OMP. Therefore we may write A = (A 0 (A A B)) 0 A A P , 
P = (B 0 (A A B)) 0 A A P , and (AQ(AA B)) 0 (A A B) 0 (P 0 (A A B)) is 

defined. It follows that A _L (P 0 (A A P ) ) , hence AB - A(A A B) = 0. From 
A A B ^ A we have 4(,4 A P ) = (A A P ) 2 . 

(ii) implies (i) can be proved by reversing the order of the reasoning. • 
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REMARKS ON THE ORDER FOR QUANTUM OBSERVABLES 

THEOREM 5.3. If H is a finite dimensional Hilbert space, then A,B G S(H) 
with / 4 A B / 0 are Mackey compatible if and only if their spectral resolutions 
have the following form: 

t r-l 

A = YJ^i?i+ Yl ViPi+V'Pr, (1) 
i=l i=t+l 

t 5 - 1 

B = J2XJQJ+ S NQj+Q'Qs, (2) 
j=l j=t+l 

where A's, v 's and [i 's are nonzero eigenvalues, and the following conditions are 
satisfied: 

Pi<Qs + Qu i = l , 2 , . . . , t ; Pi<Qs, % = t + 1 , . . . , r - 1; 

Qj <Pr + Pj, j = 1, 2 , . . . , t\ Qj<Pr, j = t + 1 , . . . , s - 1. 

P r o o f . According to [9, Theorem 4.17], operators A and B have a nonzero 
t 

lower bound iff they are of the form (1) and (2), and D = A A B = ]T A ^ A Qi. 
2 = 1 

Now the condition AB = D2 yields PiQj = QjPi for all i, j , and the rest follows 
by a routine computation. • 

Notice that if A A B = 0, then A, B are Mackey compatible iff AB = 0, i.e., 
A _L B. Moreover, if in the above theorem, 0 is not an eigenvalue of A, then 
A <-* B iff B -< A. Consequently, if none of A, B has zero eigenvalue, then they 
are compatible iff they are equal. 

It is well known that S(H) can be covered by maximal families of mutually 
commuting elements. If H is separable, then every such family can be repre­
sented by the family of all real-valued bounded measurable functions M(A) on a 
measure space (Q,A, /i). It is easily seen that every such M(A) is a subalgebra 
of S(H) in the sense that 0 G M(A), and if A,B G M(A) with A 1 B , then 
A® B G M(A). Hence S(H) can be covered by subalgebras satisfying RDP, 
but these subalgebras do not belong to blocks of the unitization-OMP of S(H). 
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