Commentationes Mathematicae Universitatis Carolinae

Alejandro Illanes

Fixed point property on symmetric products of chainable continua

Commentationes Mathematicae Universitatis Carolinae, Vol. 50 (2009), No. 4, 615--628

Persistent URL: http://dml.cz/dmlcz/137451

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Fixed point property on symmetric products of chainable continua

Alejandro Illanes

Abstract

We prove that the third symmetric product of a chainable continuum has the fixed point property.

Keywords: chainable continuum, fixed point property, symmetric product, universal map

Classification: Primary 54B20; Secondary 54F15

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a continuum X and a positive integer n, the n th-symmetric product of X is defined as

$$
F_{n}(X)=\{A \subset X: A \text { is nonempty and } A \text { has at most } n \text { points }\} .
$$

The hyperspace $F_{n}(X)$ is considered with the Hausdorff metric H.
Given $\varepsilon>0$, an ε-chain in the continuum X is a finite family of open subsets U_{1}, \ldots, U_{n} of X such that diameter $\left(U_{i}\right)<\varepsilon$, for each $i \in\{1, \ldots, n\}$, and $U_{i} \cap U_{j} \neq$ \emptyset if and only if $|i-j| \leq 1$. A continuum X is said to be chainable provided that, for each $\varepsilon>0$, there exists an ε-chain which covers X.

A map is a continuous function. A continuum X has the fixed point property, provided that, for each map $f: X \rightarrow X$ there exists $p \in X$ such that $f(p)=p$. A map between continua $f: X \rightarrow Y$ is said to be universal, provided that for each map $g: X \rightarrow Y$, there exists a point $p \in X$ such that $g(p)=f(p)$. The induced $\operatorname{map} f_{n}: F_{n}(X) \rightarrow F_{n}(Y)$ is the map defined as $f_{n}(A)=f(A)$ (the image of A under f).

Symmetric products were introduced by K. Borsuk and S. Ulam in [2], where they asked if every symmetric product of a continuum with the fixed point property must have the fixed point property. J. Oledzki ([8]) constructed a 2dimensional continuum to answer this question in the negative. On the other hand, the author and G. Higuera have recently constructed a continuum X such that X does not have, but $F_{2}(X)$ has the fixed point property.

In [6, Exercise 22.25], it is asked to show that the second symmetric product of a chainable continuum has the fixed point property and in [7, p. 77] it is asked if, for each $n \geq 3$, the n-th symmetric product of a chainable continuum has the
fixed point property. Some other related questions on this topic can be found in [5] and [7]. A detailed study on the hyperspaces $F_{n}([0,1])$ can be found in [1].

Let \mathbb{N} be the set of positive integers. Given $n \in \mathbb{N}$, consider the following property $Q(n)$ that may be or may not be true:
$Q(n):$ For every map $f:[0,1] \rightarrow[0,1]$ such that $f(0)=0$ and $f(1)=1$, the induced map $f_{n}: F_{n}([0,1]) \rightarrow F_{n}([0,1])$ is universal.

In this paper we prove the following.
Theorem 3. Let $n \in \mathbb{N}$. If $Q(n)$ holds, then the n-th symmetric product of every chainable continuum has the fixed point property.

Theorem 4. $Q(3)$ holds.
Corollary 5. The third symmetric product of each chainable continuum has the fixed point property.

2. An auxiliary construction

Given $r, n \in \mathbb{N}$, we consider the uniform partition P_{r} of $[0,1]$ given by

$$
P_{r}=\left\{\frac{k}{r}: k \in\{0, \ldots, r\}\right\} .
$$

Define $F_{n}\left(P_{r}\right)=\left\{A \in F_{n}([0,1]): A \subset P_{r}\right\}$. That is, $F_{n}\left(P_{r}\right)$ is the family of nonempty subsets of P_{r} with at most n points. Given $A, B \in F_{n}\left(P_{r}\right)$, notice that the inequality $H(A, B) \leq \frac{1}{r}$ means that, for each element $\frac{k}{r} \in A$ either $\frac{k}{r}, \frac{k+1}{r}$ or $\frac{k-1}{r}$ belongs to B and for each element $\frac{j}{r} \in B$ either $\frac{j}{r}, \frac{j+1}{r}$ or $\frac{j-1}{r}$ belongs to A. Let

$$
\begin{aligned}
\Delta=\{ & \left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right): s \in \mathbb{N}, A_{1}, \ldots, A_{s} \in F_{n}\left(P_{r}\right), t_{1}, \ldots, t_{s} \in[0,1], \\
& \left.t_{1}+\cdots+t_{s}=1 \text { and } H\left(A_{i}, A_{j}\right) \leq \frac{1}{r} \text { for every } i, j \in\{1, \ldots, s\}\right\} .
\end{aligned}
$$

Given an element $\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right) \in \Delta$, where $s \geq 2$, and $i \in\{1, \ldots, s\}$, we define $A(i)=\left(A_{1}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{s}\right)$ and $t(i)=\left(t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{s}\right)$.

In this section we define a convex structure on the set Δ and we prove some of its properties.

Given a nonempty subset B of P_{r}, a block of B is a nonempty subset D of B such that, if $x, y \in D$ and $x \leq y$, then $[x, y] \cap P_{r} \subset D$ and D is maximal with this property. We can see the blocks in the following way: let G be the graph in which the points of B are the vertices and the edges are the pairs of adjacent (those at distance $\frac{1}{r}$) points of B. Then a block of B are those vertices that belong to a component of G.

Note that the blocks of B are pairwise disjoint and every point of B belongs to a block of B, so the blocks of B form a partition of B. Given $x \in B$, let $C(x, B)$ be the block of B containing x and let $m(x, B)$ (resp., $M(x, B)$) be the
minimum (resp., maximum) of $C(x, B)$. Hence $C(x, B)=[m(x, B), M(x, B)] \cap P_{r}$ and $B=\bigcup\{C(x, B): x \in B\}$.

Lemma 1. Let $s \in \mathbb{N}$ and $A_{1}, \ldots, A_{s} \in F_{n}\left(P_{r}\right)$ be such that $H\left(A_{i}, A_{j}\right) \leq \frac{1}{r}$ for every $i, j \in\{1, \ldots, s\}$. Let $A=A_{1} \cup \ldots \cup A_{s}$ and let D be a block of A. Then
(a) $D \cap A_{i} \neq \emptyset$ for each $i \in\{1, \ldots, s\}$,
(b) diameter $(D) \leq \frac{3 n}{r}$,
(c) $\left\{C(a, A): a \in A_{i}\right\}=\left\{C(a, A): a \in A_{j}\right\}$, for every $i, j \in\{1, \ldots, s\}$.

Proof: (a) Let $i \in\{1, \ldots, s\}$. Let $p \in D$. Then there exists $j \in\{1, \ldots, s\}$ such that $p \in A_{j}$. Since $H\left(A_{i}, A_{j}\right) \leq \frac{1}{r}$, there exists $q \in A_{i}$ such that $|p-q| \leq \frac{1}{r}$, we may assume that $p \leq q$. Then $q \in\left\{p, p+\frac{1}{r}\right\}$. Thus $[p, q] \cap P_{r}=\{p, q\} \subset A$. Since D is a block of $A, q \in D$. We have shown that $D \cap A_{i} \neq \emptyset$ and that, for each $p \in D$ there exists $q \in A_{i}$ such that $|p-q| \leq \frac{1}{r}$.
(b) Let $m=\min D$ and $M=\max D$. Then $D=[m, M] \cap P_{r}$ and diameter $(D)=$ $M-m$. If $M-m>\frac{3 n}{r}$, then we consider the intervals $\left[m-\frac{1}{r}, m+\frac{1}{r}\right],\left[m+\frac{2}{r}, m+\frac{4}{r}\right]$, $\left[m+\frac{5}{r}, m+\frac{7}{r}\right], \ldots,\left[m-\frac{3 n-1}{r}, m+\frac{3 n+1}{r}\right]$. Since $m+\frac{3 n}{r}<M$ and all the elements $m+\frac{3 \cdot 0}{r}, m+\frac{3 \cdot 1}{r}, \ldots, m+\frac{3 \cdot n}{r}$ belong to D, by the fact we proved in the paragraph above, each one of these intervals contains an element of A_{1}. This is a contradiction since A_{1} has at most n elements. Therefore, $M-m \leq \frac{3 n}{r}$.
(c) Given $i \in\{1, \ldots, s\}$, by (a) each block of A contains an element of A_{i}. Then $\left\{C(a, A): a \in A_{i}\right\}$ coincides with the set of blocks of A. This proves (c).

Lemma 2 is devoted to define a convex structure on Δ.
Lemma 2. There exists a function $\sigma: \Delta \rightarrow F_{n}([0,1])$ such that for every $\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right) \in \Delta$, the following properties hold:
(a) the function defined by $\sigma\left(A_{1}, \ldots, A_{s}, u_{1} \ldots, u_{s}\right)$ from the set $\left\{\left(u_{1}, \ldots, u_{s}\right)\right.$ $\left.\in[0,1]^{s}: u_{1}+\cdots+u_{s}=1\right\}$ into $F_{n}([0,1])$ is continuous,
(b) for each $A \in F_{n}\left(P_{r}\right), \sigma(A, 1)=A$,
(c) if $i \in\{1, \ldots, s\}$ and $t_{i}=0$, then $\sigma\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right)=\sigma(A(i), t(i))$,
(d) if $\alpha:\{1, \ldots, s\} \rightarrow\{1, \ldots, s\}$ is bijective, then $\sigma\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right)=$ $\sigma\left(A_{\alpha(1)}, \ldots, A_{\alpha(s)}, t_{\alpha(1)}, \ldots, t_{\alpha(s)}\right)$ (generalized commutativity),
(e) if $A=A_{1} \cup \ldots \cup A_{s}$ and $i \in\{1, \ldots, s\}$, then $\sigma\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right)$ is contained in the union of, and intersects each one of the intervals of the family $\left\{[m(a, A), M(a, A)]: a \in A_{i}\right\}=\{[m(a, A), M(a, A)]: a \in A\}$,
(f) if $i \in\{1, \ldots, s\}$, then $H\left(A_{i}, \sigma\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right)\right) \leq \frac{3 n}{r}$,
(g) if $A_{1}=A_{2}$, then $\sigma\left(A_{1}, \ldots, A_{s}, t_{1}, \ldots, t_{s}\right)=\sigma\left(A_{2}, \ldots, A_{s}, t_{1}+t_{2}, t_{3}, \ldots, t_{s}\right)$, that is, if some A_{i} coincide, then they can be grouped.
Proof: We define σ by induction on s.
If $(A, 1) \in \Delta$, define

$$
\begin{equation*}
\sigma(A, 1)=A \tag{2.1}
\end{equation*}
$$

Clearly, properties (a)-(g) hold for the case $s=1$.

If $\left(A_{1}, A_{2}, t_{1}, t_{2}\right) \in \Delta$ and $A_{1}=A_{2}$, let

$$
\begin{equation*}
\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)=A_{1} \tag{2.2}
\end{equation*}
$$

If $\left(A_{1}, A_{2}, t_{1}, t_{2}\right) \in \Delta$ and $A_{1} \neq A_{2}$, let $A=A_{1} \cup A_{2}$ and

$$
\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)=\left\{\begin{align*}
&\left\{\left(1-2 t_{1}\right) a+2 t_{1} m(a, A): a \in A_{2}\right\} \tag{2.3}\\
& \text { if } t_{1} \in\left[0, \frac{1}{2}\right] \\
&\left\{\left(2 t_{1}-1\right) a+\left(2-2 t_{1}\right) m(a, A): a \in A_{1}\right\} \\
& \text { if } t_{1} \in\left[\frac{1}{2}, 1\right]
\end{align*}\right.
$$

We check that properties (a)-(g) hold for $s=2$.
In (2.3), if $t_{1}=0$, then $t_{2}=1$ and $\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)=A_{2}$; if $t_{1}=1$, then $t_{2}=0$ and $\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)=A_{1}$. These equalities, (2.1) and (2.2) imply property (c). If $t_{1}=\frac{1}{2}$, the first line in the definition gives the set $\left\{m(a, A): a \in A_{2}\right\}$ and the second line gives $\left\{m(a, A): a \in A_{1}\right\}$. By Lemma $1(\mathrm{c})$, both sets coincide, so σ is well defined. Clearly, σ depends continuously on $\left(t_{1}, t_{2}\right)$.

Properties (d) and (g) follow from the equality $t_{1}+t_{2}=1$.
Now we prove (e). In the case that $A_{1}=A_{2}$, we have that $A=A_{1}=$ $\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)$. Then $\bigcup\left\{[m(a, A), M(a, A)]: a \in A_{1}\right\} \cap P_{r}=A$. Hence (e) holds. So, we take $\left(A_{1}, A_{2}, t_{1}, t_{2}\right) \in \Delta$ with $A_{1} \neq A_{2}$, let $A=A_{1} \cup A_{2}$ and take $i \in\{1,2\}$. By Lemma 1 (c), we may assume that $i=1$.

Let $B=\sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)$. Take $p \in B$. If $p=\left(1-2 t_{1}\right) a+2 t_{1} m(a, A)$, for some $a \in A_{2}$, by Lemma 1 (c), there exists a point $x \in A_{1}$ such that $C(x, A)=C(a, A)$. Thus p belongs to the interval $[m(x, A), M(x, A)]$. In the case that $p=\left(2 t_{1}-\right.$ $1) b+\left(2-2 t_{1}\right) m(b, A)$, for some $b \in A_{1}$, we obtain that $p \in[m(b, A), M(b, A)]$. We have shown that $B \subset \bigcup\left\{[m(a, A), M(a, A)]: a \in A_{1}\right\}$. Now, take $w \in$ A_{1}. By Lemma 1(a), there exists a point $y \in A_{2} \cap C(w, A)$. Thus $C(w, A)=$ $C(y, A)$. If $t_{1} \in\left[0, \frac{1}{2}\right]$, then the point $u=\left(1-2 t_{1}\right) y+2 t_{1} m(y, A)$ belongs to $B \cap[m(w, A), M(w, A)]$, and if $t_{1} \in\left[\frac{1}{2}, 1\right]$, then the point $v=\left(2 t_{1}-1\right) w+(2-$ $\left.2 t_{1}\right) m(w, A)$ belongs to $B \cap[m(w, A), M(w, A)]$. Hence B intersect each one of the intervals of the form $[m(w, A), M(w, A)]$, where $w \in A$. This completes the proof of (e).

Finally, we prove that (e) implies (f). Let $i \in\{1,2\}$ and $A=A_{1} \cup A_{2}$. Given a point $x \in \sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)$, by (e), there exists $a \in A_{i}$ such that $x \in$ $[m(a, A), M(a, A)]$. By Lemma $1(\mathrm{~b}),|x-a| \leq \frac{3 n}{r}$. Similarly, for each point $b \in A_{i}$, there exists $y \in \sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)$ such that $|b-y| \leq \frac{3 n}{r}$. Therefore, $H\left(A_{i}, \sigma\left(A_{1}, A_{2}, t_{1}, t_{2}\right)\right) \leq \frac{3 n}{r}$.

Now, suppose that $s \geq 2$, suppose also that we have defined σ for all the elements in Δ with length at most $2 s$ and that properties (a)-(g) are satisfied for these elements. We define σ for elements of Δ with length $2(s+1)$ in the following way. Take $\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right) \in \Delta$. Let $A=A_{1} \cup \ldots \cup A_{s+1}$. We consider two cases.

Case 1. The set $\left\{A_{1}, \ldots, A_{s+1}\right\}$ has less than $s+1$ elements.
In this case let $\left\{A_{1}, \ldots, A_{s+1}\right\}=\left\{B_{1}, \ldots, B_{k}\right\}$, where $k \leq s$ and $B_{i} \neq B_{j}$, if $i \neq j$. For each $j \in\{1, \ldots, k\}$, let u_{j} be the sum of all the elements t_{i} such that $i \in\{1, \ldots, s+1\}$ and $A_{i}=B_{j}$. Then define

$$
\begin{equation*}
\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\sigma\left(B_{1}, \ldots, B_{k}, u_{1} \ldots, u_{k}\right) \tag{2.4}
\end{equation*}
$$

Notice that $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ is well defined since we are assuming that the property (d) holds for the integer k.

Case 2. The sets A_{1}, \ldots, A_{s+1} are pairwise different.
For each $j \in\{1, \ldots, s+1\}$, let $R_{j}=\bigcup\left\{A_{k}: k \in\{1, \ldots, s+1\}-\{j\}\right\}$. Fix $i \in\{1, \ldots, s+1\}$ such that $t_{i}=\min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}$. Let $u=(s+1) t_{i}$. Then $0 \leq u \leq 1$.

Subcase 2.1. $u<1$.
For each $j \in\{1, \ldots, s+1\}$, let $x_{j}=\frac{1}{1-u}\left(t_{j}-t_{i}\right)$. Since $1-t_{j}=t_{1}+\cdots+$ $t_{j-1}+t_{j+1}+\cdots+t_{s+1} \geq s t_{i}$, we have $u-t_{i} \leq 1-t_{j}$ and $t_{j}-t_{i} \leq 1-u$. Hence $0 \leq x_{j} \leq 1$. Notice that $x_{i}=0$ and $x_{1}+\cdots+x_{s+1}=\frac{1}{1-u}\left(1-(s+1) t_{i}\right)=1$.

Given $w \in \sigma(A(i), x(i))$, by property (e) for the integer s, there exists $a_{w} \in$ $R_{i} \subset A$ with the property that $w \in\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right]$. Then define

$$
\begin{equation*}
\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\left\{(1-u) w+u m\left(a_{w}, A\right): w \in \sigma(A(i), x(i))\right\} . \tag{2.5}
\end{equation*}
$$

In order to see that σ is well defined for this case, we need to show that it depends neither on the choice of i nor on the choice of the numbers a_{w}. So, suppose that $1 \leq i \leq k \leq s+1$ and $t_{i}=t_{k}=\min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}$. Then $u=(s+1) t_{i}=(s+1) t_{k}$ and the points x_{1}, \ldots, x_{s+1} do not depend on the choice of i or k. Notice that $x_{i}=x_{k}=0$. In the case that $i<k$, we define $W=\left(A_{1}, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{k-1}, A_{k+1}, \ldots, A_{s+1}\right)$ and we define $Y=$ $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{s+1}\right)$, by property (c) for the integer s, $\sigma(A(i), x(i))=\sigma(W, Y)=\sigma(A(k), x(k))$. And in the case that $i=k$, clearly, $\sigma(A(i), x(i))=\sigma(A(k), x(k))$. Given $w \in \sigma(A(i), x(i))$, let $a_{w} \in R_{i}$ and $b_{w} \in R_{k}$ be such that $w \in\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right]$ and $w \in\left[m\left(b_{w}, R_{k}\right), M\left(b_{w}, R_{k}\right)\right]$. We may assume that $m\left(a_{w}, R_{i}\right) \leq m\left(b_{w}, R_{k}\right)$. Then $m\left(b_{w}, R_{k}\right)$ belongs to both sets $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \cap A$ and $\left[m\left(b_{w}, R_{k}\right), M\left(b_{w}, R_{k}\right)\right] \cap A$ which are contained in A. Moreover, since $R_{i}, R_{k} \subset A$, each one of the sets $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \cap A$ and $\left[m\left(b_{w}, R_{k}\right), M\left(b_{w}, R_{k}\right)\right] \cap A$ is contained in block of A and they intersect each other. Hence, we have that they are contained in the same block of A. Thus $C\left(a_{w}, A\right)=C\left(b_{w}, A\right)$ and $m\left(a_{w}, A\right)=m\left(b_{w}, A\right)$. This implies that the definition of $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)((2.5))$ does not depend either on the choice of i nor on the choice of the elements a_{w} which were taken for each $w \in \sigma(A(i), x(i))$. Thus $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ is well defined.
Subcase 2.2. $u=1$.

In this case $t_{i}=\frac{1}{s+1}$. By the minimality of t_{i} and the fact that $t_{1}+\ldots+t_{s+1}=$ 1 , we have $\left(t_{1}, \ldots, t_{s+1}\right)=\left(\frac{1}{s+1}, \ldots, \frac{1}{s+1}\right)$. Then define

$$
\begin{equation*}
\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\left\{m(a, A): a \in A_{1}\right\} \tag{2.6}
\end{equation*}
$$

This completes the definition of σ.

We show that $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ depends continuously on the variables $\left(t_{1}, \ldots, t_{s+1}\right)$. Fix elements $A_{1}, \ldots, A_{s+1} \in F_{n}\left(P_{r}\right)$ such that $H\left(A_{i}, A_{j}\right) \leq \frac{1}{r}$ for every $i, j \in\{1, \ldots, s+1\}$. In the case that $\left\{A_{1}, \ldots, A_{s+1}\right\}$ has less than $s+1$ elements, the continuity follows from the property (a) in the induction hypothesis. Thus suppose that the sets A_{1}, \ldots, A_{s+1} are pairwise different. Notice that the number $u=(s+1) \min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}$ depends continuously on $\left(t_{1}, \ldots, t_{s+1}\right)$. Let $\left\{\left(t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)\right\}_{k=1}^{\infty}$ be a sequence of elements of $[0,1]^{s+1}$ such that $t_{1}^{(k)}+\cdots+t_{s+1}^{(k)}=1$ and $\lim \left(t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)=\left(t_{1}^{(0)}, \ldots, t_{s+1}^{(0)}\right)$. We may assume that there exists $i \in\{1, \ldots, s+1\}$ such that $t_{i}^{(k)}=\min \left\{t_{j}^{(k)}: j \in\{1, \ldots, s+1\}\right\}$, for every $k \in \mathbb{N}$. Thus $t_{i}^{(0)}=\min \left\{t_{j}^{(0)}: j \in\{1, \ldots, s+1\}\right\}$.

First we consider the case that $u_{0}=(s+1) t_{i}^{(0)}<1$. Since the numbers $u_{k}=(s+$ 1) $\min \left\{t_{j}^{(k)}: j \in\{1, \ldots, s+1\}\right\}$ tend to u_{0}, we may assume that $u_{k}<1$ for every $k \in \mathbb{N}$. Thus we apply definition (2.5) to compute $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)$ and $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(0)}, \ldots, t_{s+1}^{(0)}\right)$. For each $k \in \mathbb{N} \cup\{0\}$ and each $j \in\{1, \ldots, s+$ $1\}$, let $x_{j}^{(k)}=\frac{1}{1-u_{k}}\left(t_{j}^{(k)}-t_{i}^{(k)}\right)$. Then $\lim x_{j}^{(k)}=x_{j}^{(0)}$. By the property (a) for the integer s, we have that $\lim \sigma\left(A(i), x^{(k)}(i)\right)=\sigma\left(A(i), x^{(0)}(i)\right)$. Thus, we assume that $H\left(\sigma\left(A(i), x^{(k)}(i)\right), \sigma\left(A(i), x^{(0)}(i)\right)\right)<\frac{1}{r}$, for each $k \in \mathbb{N}$.

Given $w \in \sigma\left(A(i), x^{(0)}(i)\right)$ and $k \in \mathbb{N}$, let w_{k} be the element of $\sigma\left(A(i), x^{(k)}(i)\right)$ which is closest to w, then $\lim w_{k}=w$ and $\left|w-w_{k}\right|<\frac{1}{r}$. Let $a_{w}, a_{w_{k}} \in R_{i}$ be such that $w \in\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right]$ and $w_{k} \in\left[m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)\right]$. Since the elements $m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right), m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)$ belong to P_{r}, if $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \cap\left[m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)\right]=\emptyset$, the distance from each element of $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right]$ to each element of $\left[m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)\right]$ is at least $\frac{1}{r}$. This contradicts the fact that $\left|w-w_{k}\right|<\frac{1}{r}$. We have shown that $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \cap\left[m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)\right] \neq \emptyset$. Since both sets $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \cap P_{r}$ and $\left[m\left(a_{w_{k}}, R_{i}\right), M\left(a_{w_{k}}, R_{i}\right)\right] \cap P_{r}$ are blocks of R_{i}, they must coincide. Thus $C\left(a_{w}, R_{i}\right)=C\left(a_{w_{k}}, R_{i}\right), m\left(a_{w}, R_{i}\right)=m\left(a_{w_{k}}, R_{i}\right)$, $C\left(a_{w}, A\right)=C\left(a_{w_{k}}, A\right)$ and $m\left(a_{w}, A\right)=m\left(a_{w_{k}}, A\right)$. Thus

$$
\begin{array}{r}
\left|\left(1-u_{0}\right) w+u_{0} m\left(a_{w}, A\right)-\left(\left(1-u_{k}\right) w_{k}+u_{k} m\left(a_{w_{k}}, A\right)\right)\right| \\
\leq\left|\left(1-u_{0}\right) w-\left(1-u_{k}\right) w_{k}\right|+\left|u_{0}-u_{k}\right| .
\end{array}
$$

Similarly, for each $w_{k} \in \sigma\left(A(i), x^{(k)}(i)\right)$, there exists $w \in \sigma\left(A(i), x^{(0)}(i)\right)$ such that

$$
\begin{array}{r}
\left|\left(1-u_{0}\right) w+u_{0} m\left(a_{w}, A\right)-\left(\left(1-u_{k}\right) w_{k}+u_{k} m\left(a_{w_{k}}, A\right)\right)\right| \\
\leq\left|\left(1-u_{0}\right) w-\left(1-u_{k}\right) w_{k}\right|+\left|u_{0}-u_{k}\right|
\end{array}
$$

Since $\lim \left|\left(1-u_{0}\right) w-\left(1-u_{k}\right) w_{k}\right|+\left|u_{0}-u_{k}\right|=0$, we conclude that

$$
\lim \sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)=\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(0)}, \ldots, t_{s+1}^{(0)}\right)
$$

Now consider the case that $u_{0}=(s+1) t_{i}^{(0)}=1$. In this case $\left(t_{1}^{(0)}, \ldots, t_{s+1}^{(0)}\right)=$ $\left(\frac{1}{s+1}, \ldots, \frac{1}{s+1}\right)$. Thus $\lim \left(t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)=\left(\frac{1}{s+1}, \ldots, \frac{1}{s+1}\right)$ and $u_{k}=(s+1) t_{i}^{(k)}$ tends to 1 . Since the formula (2.6) is clearly continuous in the variables t_{1}, \ldots, t_{s+1}, we may assume that $u_{k}<1$ for each $k \in \mathbb{N}$. So we compute $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)$ with (2.5). For each $k \in \mathbb{N}$ and for each $j \in$ $\{1, \ldots, s+1\}$, let $x_{j}^{(k)}=\frac{1}{1-u_{k}}\left(t_{j}^{(k)}-t_{i}^{(k)}\right)$. Fix $i_{0} \in\{1, \ldots, s+1\}-\{i\}$.

Let $k \in \mathbb{N}$. For each $w \in \sigma\left(A(i), x^{(k)}(i)\right)$, fix $a_{w} \in R_{i}$ such that $w \in$ $\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right]$. We show that

$$
\begin{equation*}
\left\{m\left(a_{w}, A\right): w \in \sigma\left(A(i), x^{(k)}(i)\right)\right\}=\left\{m(a, A): a \in A_{i_{0}}\right\} \tag{*}
\end{equation*}
$$

Given $w \in \sigma\left(A(i), x^{(k)}(i)\right), a_{w} \in A_{l}$ for some $l \in\{1, \ldots, s+1\}$. By Lemma 1(c), there exists $a \in A_{i_{0}}$ such that $m\left(a_{w}, A\right)=m(a, A)$. On the other hand, given $a \in A_{i_{0}}$, by property (e) for the integer s, there exists an element $w \in$ $\sigma\left(A(i), x^{(k)}(i)\right) \cap\left[m\left(a, R_{i}\right), M\left(a, R_{i}\right)\right]$. Since $a \in R_{i}$ and a and w are in the block $\left[m\left(a, R_{i}\right), M\left(a, R_{i}\right)\right] \cap R_{i}$ of R_{i}, we obtain that $m\left(a, R_{i}\right)=m\left(a_{w}, R_{i}\right)$. Since $\left[m\left(a, R_{i}\right), M\left(a, R_{i}\right)\right] \cap R_{i}$ is contained in a block of A, we conclude that $m(a, A)=m\left(a_{w}, A\right)$. This completes the proof of (*).

Notice that $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right)$ is computed by using (2.5). So,

$$
\begin{aligned}
& \lim \sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(k)}, \ldots, t_{s+1}^{(k)}\right) \\
& =\lim \left\{\left(1-u_{k}\right) w+u_{k} m\left(a_{w}, A\right): w \in \sigma\left(A(i), x^{(k)}(i)\right)\right\} \\
& =\left\{m(a, A): a \in A_{i_{0}}\right\} \quad(\text { by property }(*)) \\
& =\left\{m(a, A): a \in A_{1}\right\} \quad(\text { by Lemma } 1(\mathrm{c})) \\
& = \\
& =\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}^{(0)}, \ldots, t_{s+1}^{(0)}\right) \quad(\text { by }(2.6)) .
\end{aligned}
$$

This completes the proof that $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ depends continuously on $\left(t_{1}, \ldots, t_{s+1}\right)$. Therefore, property (a) holds for the integer $s+1$.

Property (b) holds by definition (2.1).
We prove property (c) for $s+1$. Let $\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right) \in \Delta$ and $A=A_{1} \cup \ldots \cup A_{s+1}$. Suppose that $l \in\{1, \ldots, s+1\}$ is such that $t_{l}=0$. We consider two cases.

Case 1. The set $\left\{A_{1}, \ldots, A_{s+1}\right\}$ has less than $s+1$ elements.
Let $\left\{A_{1}, \ldots, A_{s+1}\right\}=\left\{B_{1}, \ldots, B_{k}\right\}$, where $k \leq s$ and $B_{i} \neq B_{j}$, if $i \neq j$. For each $j \in\{1, \ldots, k\}$, let u_{j} be the sum of all the elements t_{i} such that $i \in$ $\{1, \ldots, s+1\}$ and $A_{i}=B_{j}$. We may assume that $A_{l}=B_{k}$. We consider two subcases.

Subcase 1.1. $A_{j} \neq B_{k}$ for each $j \neq l$.
In this subcase $u_{k}=0$. Using (2.4) and property (c) for k and properties (d) and (g) for s, we obtain

$$
\begin{array}{r}
\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\sigma\left(B_{1}, \ldots, B_{k}, u_{1} \ldots, u_{k}\right) \\
\\
=\sigma\left(B_{1}, \ldots, B_{k-1}, u_{1} \ldots, u_{k-1}\right)=\sigma(A(l), t(l)) .
\end{array}
$$

Subcase 1.2. There exists $j \neq l$ such that $A_{j}=A_{l}=B_{k}$.
We have $\left\{A_{1}, \ldots, A_{s+1}\right\}=\left\{B_{1}, \ldots, B_{k}\right\}=\left\{A_{1}, \ldots, A_{l-1}, A_{l+1}, \ldots, A_{s+1}\right\}$, u_{k} is the sum of all the elements t_{i} such that $i \in\{1, \ldots, s+1\}$ and $A_{i}=B_{k}$ and u_{k} is also the sum of all the elements t_{i} such that $i \in\{1, \ldots, s+1\}-\{l\}$ and $A_{i}=B_{k}$. Using (2.4) and properties (d) and (g) for s, we obtain that

$$
\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\sigma\left(B_{1}, \ldots, B_{k}, u_{1} \ldots, u_{k}\right)=\sigma(A(l), t(l)) .
$$

Case 2. The sets A_{1}, \ldots, A_{s+1} are pairwise different.
In this case, $t_{l}=\min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}$ and $u=(s+1) t_{l}=0<1$. For each $j \in\{1, \ldots, s+1\}, x_{j}=\frac{1}{1-u}\left(t_{j}-t_{l}\right)=t_{j}$. Applying (2.5), we have $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\sigma(A(l), x(l))=\sigma(A(l), t(l))$. This completes the proof of (c).

We prove (d). Let $\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right) \in \Delta$, let $\alpha:\{1, \ldots, s+1\} \rightarrow$ $\{1, \ldots, s+1\}$ be a permutation and $A=A_{1} \cup \ldots \cup A_{s+1}=A_{\alpha(1)} \cup \ldots \cup A_{\alpha(s+1)}$. In the case that the set $\left\{A_{1}, \ldots, A_{s+1}\right\}$ has less than $s+1$ elements, property (d) follows easily from property (d) applied to the number s. Thus suppose that the sets A_{1}, \ldots, A_{s+1} are pairwise different. Let $i \in\{1, \ldots, s+1\}$ be such that $t_{\alpha(i)}=\min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}=\min \left\{t_{\alpha(j)}: j \in\{1, \ldots, s+1\}\right\}$. Let $u=(s+1) t_{\alpha(i)}$. First, we analyze the case that $u<1$. Given $j \in\{1, \ldots, s+1\}$, let $x_{j}=\frac{1}{1-u}\left(t_{j}-t_{\alpha(i)}\right)$ and $x_{j}^{\prime}=\frac{1}{1-u}\left(t_{\alpha(j)}-t_{\alpha(i)}\right)=x_{\alpha(j)}$. Since

$$
\{1, \ldots, \alpha(i)-1, \alpha(i)+1, \ldots, s+1\}=\{\alpha(1), \ldots, \alpha(i-1), \alpha(i+1), \ldots, \alpha(s+1)\}
$$

by property (d) for s, the set

$$
\begin{aligned}
& \sigma(A(\alpha(i)), x(\alpha(i))) \\
& =\sigma\left(A_{1}, \ldots, A_{\alpha(i)-1}, A_{\alpha(i)+1}, \ldots, A_{s+1}, x_{1}, \ldots, x_{\alpha(i)-1}, x_{\alpha(i)+1}, \ldots, x_{s+1}\right)
\end{aligned}
$$

is the set
$\sigma\left(A_{\alpha(1)}, \ldots, A_{\alpha(i-1)}, A_{\alpha(i+1)}, \ldots, A_{\alpha(s+1)}, x_{\alpha(1)}, \ldots, x_{\alpha(i-1)}, x_{\alpha(i+1)}, \ldots, x_{\alpha(s+1)}\right)$.
Given $w \in \sigma(A(\alpha(i)), x(\alpha(i)))$, let

$$
\begin{aligned}
a_{w} \in R_{\alpha(i)} & =A_{1} \cup \ldots \cup A_{\alpha(i)-1} \cup A_{\alpha(i)+1} \cup \ldots \cup A_{s+1} \\
& =A_{\alpha(1)} \cup \ldots \cup A_{\alpha(i-1)} \cup A_{\alpha(i+1)} \cup \ldots \cup A_{\alpha(s+1)}
\end{aligned}
$$

be such that $w \in\left[m\left(a_{w}, R_{\alpha(i)}\right), M\left(a_{w}, R_{\alpha(i)}\right)\right]$. By (2.5), we have
$\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\left\{(1-u) w+u m\left(a_{w}, A\right): w \in \sigma(A(\alpha(i)), x(\alpha(i)))\right\}$
and this set is also equal to $\sigma\left(A_{\alpha(1)}, \ldots, A_{\alpha(s+1)}, t_{\alpha(1)}, \ldots, t_{\alpha(s+1)}\right)$.
On the other hand, in the case that $u=1, t_{j}=\frac{1}{s+1}=t_{\alpha(j)}$ for each $j \in$ $\{1, \ldots, s+1\}$. In this case we apply (2.6) and Lemma 1(c) to obtain that

$$
\begin{aligned}
& \sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)=\left\{m(a, A): a \in A_{1}\right\} \\
& =\left\{m(a, A): a \in A_{\alpha(1)}\right\}=\sigma\left(A_{\alpha(1)}, \ldots, A_{\alpha(s+1)}, t_{\alpha(1)}, \ldots, t_{\alpha(s+1)}\right)
\end{aligned}
$$

This completes the proof of (d).
We prove (e). Let $\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right) \in \Delta, A=A_{1} \cup \ldots \cup A_{s+1}$ and $i_{0} \in\{1, \ldots, s+1\}$. In the case that the set $\left\{A_{1}, \ldots, A_{s+1}\right\}$ has less than $s+1$ elements, property (e) follows easily from (2.4) and property (e) in the induction hypothesis. Thus suppose that the sets A_{1}, \ldots, A_{s+1} are pairwise different. Let $i \in\{1, \ldots, s+1\}$ be such that $t_{i}=\min \left\{t_{j}: j \in\{1, \ldots, s+1\}\right\}$. By Lemma 1(c), the intervals described in property (e) are independent of the choice of i_{0}, thus we may assume that $i \neq i_{0}$. Let $u=(s+1) t_{i}$. In the case that $u=1$, property (e) follows immediatly from (2.6) and Lemma 1(a). So, suppose that $u<1$. For each $j \in\{1, \ldots, s+1\}$, let $x_{j}=\frac{1}{1-u}\left(t_{j}-t_{i}\right)$. Notice that (see (2.5)) each element p of $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ is a convex combination of an element $w \in\left[m\left(a_{w}, R_{i}\right), M\left(a_{w}, R_{i}\right)\right] \subset\left[m\left(a_{w}, A\right), M\left(a_{w}, A\right)\right]$ and $m\left(a_{w}, A\right)$. Thus $p \in\left[m\left(a_{w}, A\right), M\left(a_{w}, A\right)\right]$. Since $a_{w} \in R_{i} \subset A$, this interval is of the form $[m(a, A), M(a, A)]$ for some $a \in A_{i_{0}}$ (by Lemma 1(c)). Thus $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ is contained in the union of these intervals. In order to see that $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right)$ intersects each one of these intervals, let $x \in A_{i_{0}} \subset R_{i}$. By property (e) in the induction hypothesis, there exists an element $w \in \sigma(A(i), x(i)) \cap\left[m\left(x, R_{i}\right), M\left(x, R_{i}\right)\right]$. Then the element $(1-u) w+u m(x, A)$ belongs to the set $\sigma\left(A_{1}, \ldots, A_{s+1}, t_{1}, \ldots, t_{s+1}\right) \cap[m(x, A), M(x, A)]$. This completes the proof of (e).

The proof that (e) implies (f) is similar to the proof where we showed the same implication for $s=2$. Thus (f) also holds.

Finally, property (g) follows from definition (2.4) and properties (d) and (g) in the induction hypothesis. This completes the proof of the lemma.

3. Main results

Proof of Theorem 3: Let $n \in \mathbb{N}$. Suppose that $Q(n)$ holds. Let X be a chainable continuum and suppose that there exists a map $g: F_{n}(X) \rightarrow F_{n}(X)$ without fixed points. Thus there exists $\varepsilon>0$ such that $H(A, g(A))>(3 n+4) \varepsilon$ for each $A \in F_{n}(X)$. Let $\mathfrak{F}=\left\{U_{0}, \ldots, U_{r}\right\}$ be an ε-chain such that $r>1$, $X=U_{0} \cup \ldots \cup U_{r}$, there exists a point $p_{0} \in U_{0}-\mathrm{cl}_{X}\left(U_{1} \cup \ldots \cup U_{r}\right)$, there exists a point $q_{0} \in U_{r}-\operatorname{cl}_{X}\left(U_{0} \cup \ldots \cup U_{r-1}\right)$ and $\operatorname{cl}_{X}\left(U_{i}\right) \cap \operatorname{cl}_{X}\left(U_{j}\right) \neq \emptyset$ if and only if $|i-j| \leq 1$.

Let d be a metric for X. For two nonempty closed subsets A and B of X, let $\operatorname{dist}(A, B)=\min \{d(a, b): a \in A$ and $b \in B\}$. Let $\eta=\min \left\{\operatorname{dist}\left(\mathrm{cl}_{X}\left(U_{i}\right), \mathrm{cl}_{X}\left(U_{j}\right)\right):\right.$ $i, j \in\{0, \ldots, r\}$ and $i+1<j\}$. Since g is uniformly continuous, there is $\delta>0$ with $\delta<\frac{1}{4} \min \left\{\operatorname{dist}\left(\left\{p_{0}\right\}, \operatorname{cl}_{X}\left(U_{1} \cup \ldots \cup U_{r}\right)\right), \operatorname{dist}\left(\left\{q_{0}\right\}, \operatorname{cl}_{X}\left(U_{0} \cup \ldots \cup U_{r-1}\right)\right), \frac{1}{9 r}\right\}$ and, if $A, B \in F_{n}(X)$ and $H(A, B)<\delta$, then $H(g(A), g(B))<\eta$.

Let \mathfrak{G} be a $\left(\min \left\{\frac{\delta}{4}, \frac{\delta d\left(p_{0}, q_{0}\right)}{3}\right\}\right)$-chain covering X such that \mathfrak{G} refines \mathfrak{F}. Let $\mathfrak{H}=\left\{V_{0}, \ldots, V_{m}\right\}$ be a subchain of \mathfrak{G} such that $p_{0} \in V_{0}-\left(V_{1} \cup \ldots \cup V_{m}\right)$, $q_{0} \in V_{m}-\left(V_{0} \cup \ldots \cup V_{m-1}\right)$. Then $m \geq 3$ and $\frac{1}{m+1}<\delta$. For each $i \in\{0, \ldots, m\}$, choose an element $j(i) \in\{0, \ldots, r\}$ such that $V_{i} \subset U_{j(i)}$ and choose a point $p_{i} \in V_{i}-\left(\bigcup\left\{V_{k}: k \in\{0, \ldots, m\}-\{i\}\right\}\right)$, where $p_{m}=q_{0}$. Notice that, if $i, j \in\{0, \ldots, m\}$ and $|i-j| \leq 1$, then p_{i}, p_{j} belong to a set of the form V_{k}, so $d\left(p_{i}, p_{j}\right)<\frac{\delta}{4}$. We use the points p_{0}, \ldots, p_{m} to define a function $P: F_{n}\left(P_{m}\right) \rightarrow$ $F_{n}(X)$ as follows.

For each $A=\left\{\frac{a_{1}}{m}, \ldots, \frac{a_{s}}{m}\right\} \in F_{n}\left(P_{m}\right)$, where $a_{1}, \ldots, a_{s} \in\{0, \ldots, m\}$, let

$$
\begin{equation*}
P(A)=\left\{p_{a_{1}}, \ldots, p_{a_{s}}\right\} \in F_{n}(X) \tag{3.1}
\end{equation*}
$$

Notice that, if $A, B \in F_{n}\left(P_{m}\right)$ and $H(A, B) \leq \frac{1}{m}$, then $H(P(A), P(B))<\frac{\delta}{4}$. For each $x \in g(P(A))$, choose an index $e(x) \in\{0, \ldots, r\}$ such that

$$
\begin{equation*}
x \in U_{e(x)} . \tag{3.2}
\end{equation*}
$$

Define $\varphi_{0}: F_{n}\left(P_{m}\right) \rightarrow F_{n}\left(P_{r}\right)$ by

$$
\begin{equation*}
\varphi_{0}(A)=\left\{\frac{e(x)}{r}: x \in g(P(A))\right\} . \tag{3.3}
\end{equation*}
$$

We are going to extend φ_{0} to a continuous function φ from $F_{n}([0,1])$ into itself. It is known that $F_{n}([0,1])$ is an AR ([3, Korollar 2]). However, we need an extension of φ_{0} which will have a property derived from property (f) of Lemma 2, so we use the convex structure defined in the previous section and a Dugundji-type construction.

Define, for each $E \in F_{n}\left(P_{m}\right)$,

$$
\begin{equation*}
\varphi(E)=\varphi_{0}(E) \tag{3.4}
\end{equation*}
$$

Given $A \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$, define

$$
\begin{align*}
\mathfrak{B}(A) & =\left\{E \in F_{n}([0,1]): H(A, E)\right. \tag{3.5}\\
& \left.<\min \left\{\frac{1}{2}\left(\min \left\{H(A, G): G \in F_{n}\left(P_{m}\right)\right\}\right), \frac{1}{16 m}\right\}\right\}
\end{align*}
$$

Let $\mathfrak{W}=\left\{\mathfrak{W}_{\alpha}: \alpha \in \Lambda\right\}$ be a locally finite refinement of the open cover $\{\mathfrak{B}(A)$: $\left.A \in F_{n}([0,1])-F_{n}\left(P_{m}\right)\right\}$, of the set $F_{n}([0,1])-F_{n}\left(P_{m}\right)$. Let $\mathfrak{P}=\left\{\Psi_{\alpha}: \alpha \in \Lambda\right\}$ be a partition of the unity subordinated to \mathfrak{W}.

For each $\alpha \in \Lambda$, choose an element $C_{\alpha} \in \mathfrak{W}_{\alpha}$, also choose an element $A_{\alpha} \in$ $F_{n}\left(P_{m}\right)$ such that

$$
\begin{equation*}
H\left(C_{\alpha}, A_{\alpha}\right)=\min \left\{H\left(C_{\alpha}, A\right): A \in F_{n}\left(P_{m}\right)\right\} \tag{3.6}
\end{equation*}
$$

Since for each element t of $[0,1]$ there exists an element s of P_{m} such that $|t-s| \leq \frac{1}{2 m}$, we have that $H\left(C_{\alpha}, A_{\alpha}\right) \leq \frac{1}{2 m}$.

Given $E \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$, let $\alpha_{1}(E), \ldots, \alpha_{k_{E}}(E)$ be the elements in Λ such that $\Psi_{\alpha}(E)>0$. Then define

$$
\begin{equation*}
\varphi(E)=\sigma\left(\varphi_{0}\left(A_{\alpha_{1}(E)}\right), \ldots, \varphi_{0}\left(A_{\alpha_{k_{E}}(E)}\right), \Psi_{\alpha_{1}(E)}(E), \ldots, \Psi_{\alpha_{k_{E}}(E)}(E)\right) \tag{3.7}
\end{equation*}
$$

where φ_{0} was previously defined on $F_{n}\left(P_{m}\right)$ and σ is as in Lemma 2.
We check that φ is well defined. In order to do this, we need to verify that

$$
\left(\varphi_{0}\left(A_{\alpha_{1}(E)}\right), \ldots, \varphi_{0}\left(A_{\alpha_{k_{E}}(E)}\right), \Psi_{\alpha_{1}(E)}(E), \ldots, \Psi_{\alpha_{k_{E}}(E)}(E)\right) \in \Delta
$$

that is, we need to show that, if $i, j \in\left\{1, \ldots, k_{E}\right\}$, then $H\left(\varphi_{0}\left(A_{\alpha_{i}(E)}\right), \varphi_{0}\left(A_{\alpha_{j}(E)}\right)\right)$ $\leq \frac{1}{r}$. Since $\Psi_{\alpha_{i}(E)}(E)>0$, there exists $D \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$ such that $E \in \mathfrak{W}_{\alpha_{i}(E)} \subset \mathfrak{B}(D)$. Since $C_{\alpha_{i}(E)} \in \mathfrak{W}_{\alpha_{i}(E)} \subset \mathfrak{B}(D), H\left(E, C_{\alpha_{i}(E)}\right)<\frac{1}{4 m}$ (see (3.5)). Thus $H\left(E, A_{\alpha_{i}(E)}\right)<\frac{3}{4 m}$. Similarly, $H\left(E, A_{\alpha_{j}(E)}\right)<\frac{3}{4 m}$. Hence, $H\left(A_{\alpha_{i}(E)}, A_{\alpha_{j}(E)}\right)<\frac{3}{2 m}$. Since, for each two points $t, s \in P_{m}$, the inequality $|t-s|<\frac{3}{2 m}$ implies $|t-s| \leq \frac{1}{m}$; and $A_{\alpha_{i}(E)}, A_{\alpha_{j}(E)} \subset P_{m}$, we obtain that $H\left(A_{\alpha_{i}(E)}, A_{\alpha_{j}(E)}\right) \leq \frac{1}{m}$. As we noticed after (3.1), this implies that $H\left(P\left(A_{\alpha_{i}(E)}\right), P\left(A_{\alpha_{j}(E)}\right)\right)<\frac{\delta}{2}$. By the choice of $\delta, H\left(g\left(P\left(A_{\alpha_{i}(E)}\right)\right), g\left(P\left(A_{\alpha_{j}(E)}\right)\right)\right)$ $<\eta$. Let $u=\frac{e(x)}{r} \in \varphi_{0}\left(A_{\alpha_{i}(E)}\right)$, with $x \in g\left(P\left(A_{\alpha_{i}(E)}\right)\right)$. Then there exists $y \in g\left(P\left(A_{\alpha_{j}(E)}\right)\right)$ such that $d(x, y)<\eta$. Since $x \in U_{e(x)}$ and $y \in U_{e(y)}$ (see (3.2)), by the choice of $\eta,|e(x)-e(y)| \leq 1$. Thus $v=\frac{e(y)}{r} \in \varphi_{0}\left(A_{\alpha_{j}(E)}\right)$ and $|u-v| \leq \frac{1}{r}$. Similarly, for each $v \in \varphi_{0}\left(A_{\alpha_{j}(E)}\right)$, there exists $u \in \varphi_{0}\left(A_{\alpha_{i}(E)}\right)$ such that $|u-v| \leq \frac{1}{r}$. Therefore, $H\left(\varphi_{0}\left(A_{\alpha_{i}(E)}\right), \varphi_{0}\left(A_{\alpha_{j}(E)}\right)\right) \leq \frac{1}{r}$. We have shown that

$$
\left(\varphi_{0}\left(A_{\alpha_{1}(E)}\right), \ldots, \varphi_{0}\left(A_{\alpha_{k_{E}}(E)}\right), \Psi_{\alpha_{1}(E)}(E), \ldots, \Psi_{\alpha_{k_{E}}(E)}(E)\right) \in \Delta
$$

Combining this with property (d) of Lemma 2, we obtain that φ is well defined and it does not depend on the way we order the indexes $\alpha_{1}(E), \ldots, \alpha_{k_{E}}(E)$.

We see that φ is continuous. Let $E \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$. Let \mathfrak{U} be an open neighborhood of E in $F_{n}([0,1])$ such that $\mathfrak{U} \cap F_{n}\left(P_{m}\right)=\emptyset$ and \mathfrak{U} intersects only finitely many sets, $\mathfrak{W}_{\beta_{1}}, \ldots, \mathfrak{W}_{\beta_{l}}$, of the family \mathfrak{W}. Notice that for each $D \in \mathfrak{U}$, $\left\{\alpha_{1}(D), \ldots, \alpha_{k_{D}}(D)\right\} \subset\left\{\beta_{1}, \ldots, \beta_{l}\right\}$. By properties (c) and (d) of Lemma 2,

$$
\begin{aligned}
\varphi(D) & =\sigma\left(\varphi_{0}\left(A_{\alpha_{1}(D)}\right), \ldots, \varphi_{0}\left(A_{\alpha_{k_{D}}(D)}\right), \Psi_{\alpha_{1}(D)}(D), \ldots, \Psi_{\alpha_{k_{D}}(D)}(D)\right) \\
& =\sigma\left(\varphi_{0}\left(A_{\beta_{1}}\right), \ldots, \varphi_{0}\left(A_{\beta_{l}}\right), \Psi_{\beta_{1}}(D), \ldots, \Psi_{\beta_{l}}(D)\right) .
\end{aligned}
$$

Hence, property (a) of Lemma 2 implies that φ is continuous on \mathfrak{U}. Therefore, φ is continuous at E for each $E \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$.

Now, take $E \in F_{n}\left(P_{m}\right)$. Let

$$
\mathfrak{B}=\left\{D \in F_{n}([0,1]): H(D, E)<\frac{1}{16 m}\right\} .
$$

Given $D \in \mathfrak{B}-\{E\}, D \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$. If $i \in\left\{1, \ldots, k_{D}\right\}$, there exists $G \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$ such that $D \in \mathfrak{W}_{\alpha_{i}(D)} \subset \mathfrak{B}(G)$. Thus, by (3.5),

$$
\begin{aligned}
H(D, G) & <\frac{1}{2}\left(\min \left\{H(G, L): L \in F_{n}\left(P_{m}\right)\right\}\right) \leq \frac{1}{2}(H(E, G)) \\
& \leq \frac{1}{2}(H(E, D)+H(D, G))<\frac{1}{32 m}+\frac{1}{2}(H(D, G))
\end{aligned}
$$

Hence $H(D, G)<\frac{1}{16 m}, H(E, G)<\frac{1}{8 m}$ and $\min \left\{H(G, L): L \in F_{n}\left(P_{m}\right)\right\}<\frac{1}{8 m}$. Since $C_{\alpha_{i}(D)} \in \mathfrak{W}_{\alpha_{i}(D)}, H\left(C_{\alpha_{i}(D)}, G\right)<\frac{1}{8 m}$. Thus $H\left(E, C_{\alpha_{i}(D)}\right) \leq H(E, G)+$ $H\left(G, C_{\alpha_{i}(D)}\right)<\frac{1}{4 m}$. Therefore ((3.6)) H($\left.A_{\alpha_{i}(D)}, C_{\alpha_{i}(D)}\right)<\frac{1}{4 m}$. Hence $H\left(A_{\alpha_{i}(D)}, E\right)<\frac{1}{2 m}$. Since $A_{\alpha_{i}(D)}$ and E belong to $F_{n}\left(P_{m}\right)$, this implies that $A_{\alpha_{i}(D)}=E$. From (3.7), for each $D \in \mathfrak{B}-\{E\}$,

$$
\varphi(D)=\sigma\left(\varphi_{0}(E), \ldots, \varphi_{0}(E), \Psi_{\alpha_{1}(D)}(D), \ldots, \Psi_{\alpha_{k_{D}}(D)}(D)\right)=\varphi_{0}(E)
$$

(see properties (g) and (b) in Lemma 2). This implies that φ is continuous at E. This completes the proof that φ is continuous.

Define $f:[0,1] \rightarrow[0,1]$ as the piecewise linear extension of the function defined on P_{m} by

$$
\begin{equation*}
f\left(\frac{i}{m}\right)=\frac{j(i)}{r} . \tag{3.8}
\end{equation*}
$$

Since $p_{0} \in U_{0}-\operatorname{cl}_{X}\left(U_{1} \cup \ldots \cup U_{r}\right)$ and $q_{0} \in U_{r}-\operatorname{cl}_{X}\left(U_{0} \cup \ldots \cup U_{r-1}\right), f(0)=0$ and $f(1)=1$. Let $f_{n}: F_{n}([0,1]) \rightarrow F_{n}([0,1])$ be the induced map. Given $i \in\{0, \ldots, m-1\}, V_{i} \subset U_{j(i)}$ and $V_{i+1} \subset U_{j(i+1)}$. Since $V_{i} \cap V_{i+1} \neq \emptyset, \mid j(i)-$ $j(i+1) \mid \leq 1$. This proves that

$$
\begin{equation*}
\left|f\left(\frac{i}{m}\right)-f\left(\frac{i+1}{m}\right)\right| \leq \frac{1}{r} . \tag{**}
\end{equation*}
$$

Since we are assuming that $Q(n)$ is true, there exists an element $D \in F_{n}([0,1])$ such that $f_{n}(D)=\varphi(D)$.

We consider two cases.
Case 1. $D \notin F_{n}\left(P_{m}\right)$.
Let $D_{0}=A_{\alpha_{1}(D)}$. By property (f) of Lemma 2 and (3.7), $H\left(\varphi_{0}\left(D_{0}\right), \varphi(D)\right) \leq$ $\frac{3 n}{r}$. For each $x \in D$, choose $k(x) \in\{0, \ldots, m-1\}$ such that $x \in\left[\frac{k(x)}{m}, \frac{k(x)+1}{m}\right]$. Let $D_{1}=\left\{\frac{k(x)}{m} \in[0,1]: x \in D\right\}$ and $D_{2}=\left\{\frac{k(x)+1}{m} \in[0,1]: x \in D\right\}$. Then $D_{1}, D_{2} \in$ $F_{n}\left(P_{m}\right)$ and $H\left(D, D_{1}\right), H\left(D, D_{2}\right) \leq \frac{1}{m}$. Let $G \in F_{n}([0,1])-F_{n}\left(P_{m}\right)$ be such that $\mathfrak{W}_{\alpha_{1}(D)} \subset \mathfrak{B}(G)$. Then $H(D, G), H\left(C_{\alpha_{1}(D)}, G\right)<\frac{1}{16 m}$. Thus $H\left(D_{1}, G\right)<\frac{9}{8 m}$ and $H\left(A_{\alpha_{1}(D)}, C_{\alpha_{1}(D)}\right) \leq H\left(D_{1}, C_{\alpha_{1}(D)}\right)<\frac{10}{8 m}$. Hence $H\left(D_{0}, D_{1}\right)<\frac{20}{8 m}$. Since $D_{0}, D_{1} \in F_{n}\left(P_{m}\right), H\left(D_{0}, D_{1}\right) \leq \frac{2}{m}$. Given $\frac{i}{m} \in D_{0}$, there exists $\frac{j}{m} \in D_{1}$ such that $\left|\frac{i}{m}-\frac{j}{m}\right| \leq \frac{2}{m}$. By $\left({ }^{* *}\right),\left|f\left(\frac{i}{m}\right)-f\left(\frac{j}{m}\right)\right| \leq \frac{2}{r}$. Similarly, Given $\frac{j}{m} \in D_{1}$, there exists $\frac{i}{m} \in D_{0}$ such that $\left|f\left(\frac{i}{m}\right)-f\left(\frac{j}{m}\right)\right| \leq \frac{2}{r}$. Thus $H\left(f_{n}\left(D_{0}\right), f_{n}\left(D_{1}\right)\right) \leq \frac{2}{r}$. Given $x \in D$, since $x \in\left[\frac{k(x)}{m}, \frac{k(x)+1}{m}\right]$ and $\left|f\left(\frac{k(x)}{m}\right)-f\left(\frac{k(x)+1}{m}\right)\right| \leq \frac{1}{r}$, we have that $\left|f\left(\frac{k(x)}{m}\right)-f(x)\right| \leq \frac{1}{r}$. This implies that $H\left(f_{n}(D), f_{n}\left(D_{1}\right)\right) \leq \frac{1}{r}$. Since $\varphi(D)=f_{n}^{m}(D)$,

$$
\begin{aligned}
H\left(\varphi_{0}\left(D_{0}\right), f_{n}\left(D_{0}\right)\right) \leq & H\left(\varphi_{0}\left(D_{0}\right), \varphi(D)\right)+H\left(\varphi(D), f_{n}\left(D_{1}\right)\right) \\
& +H\left(f_{n}\left(D_{1}\right), f_{n}\left(D_{0}\right)\right) \leq \frac{3 n+3}{r}
\end{aligned}
$$

Thus $H\left(\varphi_{0}\left(D_{0}\right), f_{n}\left(D_{0}\right)\right) \leq \frac{3 n+3}{r}$.
Since $D_{0} \in F_{n}\left(P_{m}\right)$, we can put $D_{0}=\left\{\frac{a_{1}}{m}, \ldots, \frac{a_{s}}{m}\right\}$. Then $f_{n}\left(D_{0}\right)=$ $\left\{\frac{j\left(a_{1}\right)}{r}, \ldots, \frac{j\left(a_{s}\right)}{r}\right\}$ (see (3.8)) and $P\left(D_{0}\right)=\left\{p_{a_{1}}, \ldots, p_{a_{s}}\right\}$ (see (3.1)). Given $x \in$ $g\left(P\left(D_{0}\right)\right), \frac{e(x)}{r} \in \varphi_{0}\left(D_{0}\right)((3.3))$. So, there exists $v \in f_{n}\left(D_{0}\right)$ such that $\left|\frac{e(x)}{r}-v\right| \leq$ $\frac{3 n+3}{r}$. Then there exists $i \in\{0, \ldots, s\}$ such that $v=f\left(\frac{a_{i}}{m}\right)=\frac{j\left(a_{i}\right)}{r}((3.8))$. Thus $\left|e(x)-j\left(a_{i}\right)\right| \leq 3 n+3$. Recall that $x \in U_{e(x)}((3.2))$ and $p_{a_{i}} \in V_{a_{i}} \subset U_{j\left(a_{i}\right)}$. Hence $d\left(x, p_{a_{i}}\right)<(3 n+4) \varepsilon$. We have shown that, for each $x \in g\left(P\left(D_{0}\right)\right)$, there exists $p_{a_{i}} \in P\left(D_{0}\right)$ such that $d\left(x, p_{a_{i}}\right)<(3 n+4) \varepsilon$. Similarly, for each $p_{a_{i}} \in P\left(D_{0}\right)$ there exists $x \in g\left(P\left(D_{0}\right)\right)$ such that $d\left(x, p_{a_{i}}\right)<(3 n+4) \varepsilon$. This proves that $H\left(P\left(D_{0}\right), g\left(P\left(D_{0}\right)\right)\right)<(3 n+4) \varepsilon$. Contrary to the choice of ε.

Case 2. $D \in F_{n}\left(P_{m}\right)$.
In this case, $H\left(\varphi_{0}(D), f_{n}(D)\right)=0 \leq \frac{3 n+3}{r}$. Thus we can repeat the argument in the paragraph above with D instead D_{0} to obtain a contradiction.

We have obtained a contradiction from assuming that $F_{n}(X)$ does not have the fixed point property. Thus Theorem 3 is proved.

Proof of Theorem 4: Let $\mathfrak{B}=\left\{A \in F_{3}([0,1]): A \cap\{0,1\} \neq \emptyset\right\}$ and $\mathfrak{C}=\{A \in$ $\left.F_{3}([0,1]):\{0,1\} \subset A\right\}$. Using Theorem 6 in $[2]$, it is easy to show that there exists a homeomorphism $h: F_{3}([0,1]) \rightarrow D^{3}$, where D^{3} is the unit ball, centered at the
origin, in the Euclidean space \mathbb{R}^{3}, such that $h(\mathfrak{B})$ is the unit sphere $S^{2} \subset D^{3}$ and $h(\mathfrak{C})$ is the equator E which results of intersecting S^{2} with the plane $z=0$ in \mathbb{R}^{3}.

Suppose that $Q(3)$ does not hold, then there exists a map $f:[0,1] \rightarrow[0,1]$ such that $f(0)=0$ and $f(1)=1$, and there exists a map $g: F_{3}([0,1]) \rightarrow F_{3}([0,1])$ such that $g(A) \neq f_{3}(A)$ for each $A \in F_{3}([0,1])$, where f_{3} is the induced map of f from $F_{3}([0,1])$ into itself.

Notice that $f_{3}(\mathfrak{B}) \subset \mathfrak{B}$ and $f_{3}(\mathfrak{C}) \subset \mathfrak{C}$. Let $G=h \circ g \circ h^{-1}$ and $F=h \circ f_{3} \circ h^{-1}$. Then $G, F: D^{3} \rightarrow D^{3}, F \mid S^{2}: S^{2} \rightarrow S^{2}$, and $G(p) \neq F(p)$ for each $p \in D^{3}$. Define $\varphi: D^{3} \rightarrow S^{2}$ by $\varphi(p)$ is the only point in the intersection of S^{2} and the convex ray which starts in $G(p)$ and passes through $F(p)$. Then φ is continuous and $\varphi(p)=F(p)$ for each $p \in S^{2}$.

Consider the map $K: S^{2} \times[0,1] \rightarrow S^{2}$ given by $K(p, t)=\varphi(t p)$. Then, for each $p \in S^{2}, K(p, 1)=F(p)$ and $K(p, 0)=\varphi(0)$. Thus $F \mid S^{2}$ is homotopic to a constant map.

Let $\lambda:[0,1] \times[0,1] \rightarrow[0,1]$ be given by $\lambda(x, t)=t x+(1-t) f(x)$. Then λ is continuous, $\lambda(0, t)=0$ and $\lambda(1, t)=1$ for each $t \in[0,1]$. Let $\Lambda: S^{2} \times[0,1] \rightarrow S^{2}$ be given by $\Lambda(p, t)=h\left(\lambda\left(h^{-1}(p) \times\{t\}\right)\right)$. Then Λ is continuous, $\Lambda(p, 0)=F(p)$ and $\lambda(p, 1)=p$, for each $p \in S^{2}$. Thus $F \mid S^{2}$ is homotopic to the identity map defined on S^{2}. This is impossible since S^{2} is not contractible. Hence $Q(3)$ holds and Theorem 4 is proved.

Question 6. Does $Q(n)$ hold for each $n \geq 4$?
Acknowledgment. The author wishes to thank Professor Jorge M. MartínezMontejano for useful discussions on the topic of this paper.

References

[1] Andersen R.S., Marjanović M.M., Schori R.M., Symmetric products and higher-dimensional dunce hats, Topology Proc. 18 (1993), 7-17.
[2] Borsuk K., Ulam S., Symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875-882.
[3] Ganea T., Symmetrische Potenzen topologischer Räume, Math. Nachr. 11 (1954), 305-316.
[4] Higuera G., Illanes A., Fixed point property on symmetric products, preprint.
[5] Illanes A., Hyperspaces of continua, Open Problems in Topology II, Elliot Pearl (Ed.), pp. 279-288, Elsevier B.V., Amsterdam, 2007.
[6] Illanes A., Nadler S.B., Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, Inc., New York, N.Y., 1999.
[7] Nadler S.B., Jr., The fixed point property for continua, Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts] 30. Sociedad Matemática Mexicana, México, 2005.
[8] Oledski J., On symmetric products, Fund. Math. 131 (1988), 185-190.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, 04510, D.F. Mexico
Email: illanes@matem.unam.mx

