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Fixed point property on symmetric

products of chainable continua
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Abstract. We prove that the third symmetric product of a chainable continuum
has the fixed point property.
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1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a
continuum X and a positive integer n, the nth-symmetric product of X is defined
as

Fn(X) = {A ⊂ X : A is nonempty and A has at most n points}.

The hyperspace Fn(X) is considered with the Hausdorff metric H .
Given ε > 0, an ε-chain in the continuum X is a finite family of open subsets

U1, . . . , Un of X such that diameter(Ui) < ε, for each i ∈ {1, . . . , n}, and Ui∩Uj 6=
∅ if and only if |i− j| ≤ 1. A continuum X is said to be chainable provided that,
for each ε > 0, there exists an ε-chain which covers X .

A map is a continuous function. A continuum X has the fixed point property,
provided that, for each map f : X → X there exists p ∈ X such that f(p) = p.
A map between continua f : X → Y is said to be universal , provided that for
each map g : X → Y , there exists a point p ∈ X such that g(p) = f(p). The
induced map fn : Fn(X) → Fn(Y ) is the map defined as fn(A) = f(A) (the image
of A under f).

Symmetric products were introduced by K. Borsuk and S. Ulam in [2], where
they asked if every symmetric product of a continuum with the fixed point
property must have the fixed point property. J. Oledzki ([8]) constructed a 2-
dimensional continuum to answer this question in the negative. On the other
hand, the author and G. Higuera have recently constructed a continuum X such
that X does not have, but F2(X) has the fixed point property.

In [6, Exercise 22.25], it is asked to show that the second symmetric product
of a chainable continuum has the fixed point property and in [7, p. 77] it is asked
if, for each n ≥ 3, the n-th symmetric product of a chainable continuum has the
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fixed point property. Some other related questions on this topic can be found in
[5] and [7]. A detailed study on the hyperspaces Fn([0, 1]) can be found in [1].

Let N be the set of positive integers. Given n ∈ N, consider the following
property Q(n) that may be or may not be true:

Q(n): For every map f : [0, 1] → [0, 1] such that f(0) = 0 and f(1) = 1, the
induced map fn : Fn([0, 1]) → Fn([0, 1]) is universal.

In this paper we prove the following.

Theorem 3. Let n ∈ N. If Q(n) holds, then the n-th symmetric product of

every chainable continuum has the fixed point property.

Theorem 4. Q(3) holds.

Corollary 5. The third symmetric product of each chainable continuum has the

fixed point property.

2. An auxiliary construction

Given r, n ∈ N, we consider the uniform partition Pr of [0, 1] given by

Pr = {k
r

: k ∈ {0, . . . , r}}.

Define Fn(Pr) = {A ∈ Fn([0, 1]) : A ⊂ Pr}. That is, Fn(Pr) is the family of
nonempty subsets of Pr with at most n points. Given A, B ∈ Fn(Pr), notice that
the inequality H(A, B) ≤ 1

r
means that, for each element k

r
∈ A either k

r
, k+1

r
or

k−1
r

belongs to B and for each element j
r
∈ B either j

r
, j+1

r
or j−1

r
belongs to A.

Let

∆ = {(A1, . . . , As, t1, . . . , ts) : s ∈ N, A1, . . . , As ∈ Fn(Pr), t1, . . . , ts ∈ [0, 1],

t1 + · · · + ts = 1 and H(Ai, Aj) ≤
1

r
for every i, j ∈ {1, . . . , s}}.

Given an element (A1, . . . , As, t1, . . . , ts) ∈ ∆, where s ≥ 2, and i ∈ {1, . . . , s},
we define A(i) = (A1, . . . , Ai−1, Ai+1, . . . , As) and t(i) = (t1, . . . , ti−1, ti+1, . . . , ts).

In this section we define a convex structure on the set ∆ and we prove some of
its properties.

Given a nonempty subset B of Pr, a block of B is a nonempty subset D of B
such that, if x, y ∈ D and x ≤ y, then [x, y]∩Pr ⊂ D and D is maximal with this
property. We can see the blocks in the following way: let G be the graph in which
the points of B are the vertices and the edges are the pairs of adjacent (those at
distance 1

r
) points of B. Then a block of B are those vertices that belong to a

component of G.
Note that the blocks of B are pairwise disjoint and every point of B belongs

to a block of B, so the blocks of B form a partition of B. Given x ∈ B, let
C(x, B) be the block of B containing x and let m(x, B) (resp., M(x, B)) be the
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minimum (resp., maximum) of C(x, B). Hence C(x, B) = [m(x, B), M(x, B)]∩Pr

and B =
⋃

{C(x, B) : x ∈ B}.

Lemma 1. Let s ∈ N and A1, . . . , As ∈ Fn(Pr) be such that H(Ai, Aj) ≤ 1
r

for

every i, j ∈ {1, . . . , s}. Let A = A1 ∪ . . . ∪ As and let D be a block of A. Then

(a) D ∩ Ai 6= ∅ for each i ∈ {1, . . . , s},
(b) diameter(D) ≤ 3n

r
,

(c) {C(a, A) : a ∈ Ai} = {C(a, A) : a ∈ Aj}, for every i, j ∈ {1, . . . , s}.

Proof: (a) Let i ∈ {1, . . . , s}. Let p ∈ D. Then there exists j ∈ {1, . . . , s} such
that p ∈ Aj . Since H(Ai, Aj) ≤

1
r
, there exists q ∈ Ai such that |p − q| ≤ 1

r
, we

may assume that p ≤ q. Then q ∈ {p, p+ 1
r
}. Thus [p, q]∩Pr = {p, q} ⊂ A. Since

D is a block of A, q ∈ D. We have shown that D ∩ Ai 6= ∅ and that, for each
p ∈ D there exists q ∈ Ai such that |p − q| ≤ 1

r
.

(b) Let m = min D and M = max D. Then D = [m, M ]∩Pr and diameter(D) =
M−m. If M−m > 3n

r
, then we consider the intervals [m− 1

r
, m+ 1

r
], [m+ 2

r
, m+ 4

r
],

[m + 5
r
, m + 7

r
],. . . ,[m− 3n−1

r
, m + 3n+1

r
]. Since m + 3n

r
< M and all the elements

m + 3·0
r

, m + 3·1
r

, . . . , m + 3·n
r

belong to D, by the fact we proved in the para-
graph above, each one of these intervals contains an element of A1. This is a
contradiction since A1 has at most n elements. Therefore, M − m ≤ 3n

r
.

(c) Given i ∈ {1, . . . , s}, by (a) each block of A contains an element of Ai. Then
{C(a, A) : a ∈ Ai} coincides with the set of blocks of A. This proves (c). �

Lemma 2 is devoted to define a convex structure on ∆.

Lemma 2. There exists a function σ : ∆ → Fn([0, 1]) such that for every

(A1, . . . , As, t1, . . . , ts) ∈ ∆, the following properties hold:

(a) the function defined by σ(A1, . . . , As, u1 . . . , us) from the set {(u1, . . . , us)
∈ [0, 1]s : u1 + · · · + us = 1} into Fn([0, 1]) is continuous,

(b) for each A ∈ Fn(Pr), σ(A, 1) = A,

(c) if i ∈ {1, . . . , s} and ti = 0, then σ(A1, . . . , As, t1, . . . , ts) = σ(A(i), t(i)),
(d) if α : {1, . . . , s} → {1, . . . , s} is bijective, then σ(A1, . . . , As, t1, . . . , ts) =

σ(Aα(1), . . . , Aα(s), tα(1), . . . , tα(s)) (generalized commutativity),
(e) if A = A1 ∪ . . . ∪ As and i ∈ {1, . . . , s}, then σ(A1, . . . , As, t1, . . . , ts) is

contained in the union of, and intersects each one of the intervals of the

family {[m(a, A), M(a, A)] : a ∈ Ai} = {[m(a, A), M(a, A)] : a ∈ A},
(f) if i ∈ {1, . . . , s}, then H(Ai, σ(A1, . . . , As, t1, . . . , ts)) ≤

3n
r

,

(g) if A1 =A2, then σ(A1, . . . , As, t1, . . . , ts)=σ(A2, . . . , As, t1+t2, t3, . . . , ts),
that is, if some Ai coincide, then they can be grouped.

Proof: We define σ by induction on s.
If (A, 1) ∈ ∆, define

(2.1) σ(A, 1) = A.

Clearly, properties (a)–(g) hold for the case s = 1.
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If (A1, A2, t1, t2) ∈ ∆ and A1 = A2, let

(2.2) σ(A1, A2, t1, t2) = A1.

If (A1, A2, t1, t2) ∈ ∆ and A1 6= A2, let A = A1 ∪ A2 and

(2.3) σ(A1, A2, t1, t2) =



















{(1 − 2t1)a + 2t1m(a, A) : a ∈ A2},

if t1 ∈ [0, 1
2 ],

{(2t1 − 1)a + (2 − 2t1)m(a, A) : a ∈ A1}

if t1 ∈ [ 12 , 1].

We check that properties (a)–(g) hold for s = 2.
In (2.3), if t1 = 0, then t2 = 1 and σ(A1, A2, t1, t2) = A2; if t1 = 1, then t2 = 0

and σ(A1, A2, t1, t2) = A1. These equalities, (2.1) and (2.2) imply property (c).
If t1 = 1

2 , the first line in the definition gives the set {m(a, A) : a ∈ A2} and the
second line gives {m(a, A) : a ∈ A1}. By Lemma 1(c), both sets coincide, so σ is
well defined. Clearly, σ depends continuously on (t1, t2).

Properties (d) and (g) follow from the equality t1 + t2 = 1.
Now we prove (e). In the case that A1 = A2, we have that A = A1 =

σ(A1, A2, t1, t2). Then
⋃

{[m(a, A), M(a, A)] : a ∈ A1} ∩ Pr = A. Hence (e)
holds. So, we take (A1, A2, t1, t2) ∈ ∆ with A1 6= A2, let A = A1 ∪ A2 and take
i ∈ {1, 2}. By Lemma 1(c), we may assume that i = 1.

Let B = σ(A1, A2, t1, t2). Take p ∈ B. If p = (1− 2t1)a + 2t1m(a, A), for some
a ∈ A2, by Lemma 1(c), there exists a point x ∈ A1 such that C(x, A) = C(a, A).
Thus p belongs to the interval [m(x, A), M(x, A)]. In the case that p = (2t1 −
1)b + (2 − 2t1)m(b, A), for some b ∈ A1, we obtain that p ∈ [m(b, A), M(b, A)].
We have shown that B ⊂

⋃

{[m(a, A), M(a, A)] : a ∈ A1}. Now, take w ∈
A1. By Lemma 1(a), there exists a point y ∈ A2 ∩ C(w, A). Thus C(w, A) =
C(y, A). If t1 ∈ [0, 1

2 ], then the point u = (1 − 2t1)y + 2t1m(y, A) belongs to

B ∩ [m(w, A), M(w, A)], and if t1 ∈ [ 12 , 1], then the point v = (2t1 − 1)w + (2 −
2t1)m(w, A) belongs to B ∩ [m(w, A), M(w, A)]. Hence B intersect each one of
the intervals of the form [m(w, A), M(w, A)], where w ∈ A. This completes the
proof of (e).

Finally, we prove that (e) implies (f). Let i ∈ {1, 2} and A = A1 ∪ A2.
Given a point x ∈ σ(A1, A2, t1, t2), by (e), there exists a ∈ Ai such that x ∈
[m(a, A), M(a, A)]. By Lemma 1(b), |x − a| ≤ 3n

r
. Similarly, for each point

b ∈ Ai, there exists y ∈ σ(A1, A2, t1, t2) such that |b − y| ≤ 3n
r

. Therefore,

H(Ai, σ(A1, A2, t1, t2)) ≤
3n
r

.
Now, suppose that s ≥ 2, suppose also that we have defined σ for all the

elements in ∆ with length at most 2s and that properties (a)–(g) are satisfied for
these elements. We define σ for elements of ∆ with length 2(s+1) in the following
way. Take (A1, . . . , As+1, t1, . . . , ts+1) ∈ ∆. Let A = A1∪ . . .∪As+1. We consider
two cases.
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Case 1. The set {A1, . . . , As+1} has less than s + 1 elements.

In this case let {A1, . . . , As+1} = {B1, . . . , Bk}, where k ≤ s and Bi 6= Bj , if
i 6= j. For each j ∈ {1, . . . , k}, let uj be the sum of all the elements ti such that
i ∈ {1, . . . , s + 1} and Ai = Bj . Then define

(2.4) σ(A1, . . . , As+1, t1, . . . , ts+1) = σ(B1, . . . , Bk, u1 . . . , uk).

Notice that σ(A1, . . . , As+1, t1, . . . , ts+1) is well defined since we are assuming
that the property (d) holds for the integer k.

Case 2. The sets A1, . . . , As+1 are pairwise different.

For each j ∈ {1, . . . , s + 1}, let Rj =
⋃

{Ak : k ∈ {1, . . . , s + 1} − {j}}. Fix
i ∈ {1, . . . , s + 1} such that ti = min{tj : j ∈ {1, . . . , s + 1}}. Let u = (s + 1)ti.
Then 0 ≤ u ≤ 1.

Subcase 2.1. u < 1.

For each j ∈ {1, . . . , s + 1}, let xj = 1
1−u

(tj − ti). Since 1 − tj = t1 + · · · +
tj−1 + tj+1 + · · · + ts+1 ≥ sti, we have u − ti ≤ 1 − tj and tj − ti ≤ 1 − u. Hence
0 ≤ xj ≤ 1. Notice that xi = 0 and x1 + · · · + xs+1 = 1

1−u
(1 − (s + 1)ti) = 1.

Given w ∈ σ(A(i), x(i)), by property (e) for the integer s, there exists aw ∈
Ri ⊂ A with the property that w ∈ [m(aw, Ri), M(aw, Ri)]. Then define

(2.5) σ(A1, . . . , As+1, t1, . . . , ts+1) = {(1−u)w+um(aw, A) : w ∈ σ(A(i), x(i))}.

In order to see that σ is well defined for this case, we need to show that it
depends neither on the choice of i nor on the choice of the numbers aw. So,
suppose that 1 ≤ i ≤ k ≤ s + 1 and ti = tk = min{tj : j ∈ {1, . . . , s + 1}}.
Then u = (s + 1)ti = (s + 1)tk and the points x1, . . . , xs+1 do not depend on
the choice of i or k. Notice that xi = xk = 0. In the case that i < k, we
define W = (A1, . . . , Ai−1, Ai+1, . . . , Ak−1, Ak+1, . . . , As+1) and we define Y =
(x1, . . . , xi−1, xi+1, . . . , xk−1, xk+1, . . . , xs+1), by property (c) for the integer s,
σ(A(i), x(i)) = σ(W, Y ) = σ(A(k), x(k)). And in the case that i = k, clearly,
σ(A(i), x(i)) = σ(A(k), x(k)). Given w ∈ σ(A(i), x(i)), let aw ∈ Ri and bw ∈ Rk

be such that w ∈ [m(aw, Ri), M(aw, Ri)] and w ∈ [m(bw, Rk), M(bw, Rk)]. We
may assume that m(aw, Ri) ≤ m(bw, Rk). Then m(bw, Rk) belongs to both sets
[m(aw, Ri), M(aw, Ri)] ∩ A and [m(bw, Rk), M(bw, Rk)] ∩ A which are contained
in A. Moreover, since Ri, Rk ⊂ A, each one of the sets [m(aw, Ri), M(aw, Ri)]∩A
and [m(bw, Rk), M(bw, Rk)]∩A is contained in block of A and they intersect each
other. Hence, we have that they are contained in the same block of A. Thus
C(aw, A) = C(bw, A) and m(aw, A) = m(bw, A). This implies that the definition
of σ(A1, . . . , As+1, t1, . . . , ts+1) ((2.5)) does not depend either on the choice of i
nor on the choice of the elements aw which were taken for each w ∈ σ(A(i), x(i)).
Thus σ(A1, . . . , As+1, t1, . . . , ts+1) is well defined.

Subcase 2.2. u = 1.
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In this case ti = 1
s+1 . By the minimality of ti and the fact that t1 + . . .+ ts+1 =

1, we have (t1, . . . , ts+1) = ( 1
s+1 , . . . , 1

s+1 ). Then define

(2.6) σ(A1, . . . , As+1, t1, . . . , ts+1) = {m(a, A) : a ∈ A1}.

This completes the definition of σ.

We show that σ(A1, . . . , As+1, t1, . . . , ts+1) depends continuously on the vari-
ables (t1, . . . , ts+1). Fix elements A1, . . . , As+1 ∈ Fn(Pr) such that H(Ai, Aj) ≤

1
r

for every i, j ∈ {1, . . . , s + 1}. In the case that {A1, . . . , As+1} has less than s + 1
elements, the continuity follows from the property (a) in the induction hypothe-
sis. Thus suppose that the sets A1, . . . , As+1 are pairwise different. Notice that
the number u = (s + 1)min{tj : j ∈ {1, . . . , s + 1}} depends continuously on

(t1, . . . , ts+1). Let {(t
(k)
1 , . . . , t

(k)
s+1)}

∞

k=1 be a sequence of elements of [0, 1]s+1 such

that t
(k)
1 + · · ·+t

(k)
s+1 = 1 and lim(t

(k)
1 , . . . , t

(k)
s+1) = (t

(0)
1 , . . . , t

(0)
s+1). We may assume

that there exists i ∈ {1, . . . , s + 1} such that t
(k)
i = min{t

(k)
j : j ∈ {1, . . . , s + 1}},

for every k ∈ N. Thus t
(0)
i = min{t

(0)
j : j ∈ {1, . . . , s + 1}}.

First we consider the case that u0 = (s+1)t
(0)
i < 1. Since the numbers uk = (s+

1)min{t
(k)
j : j ∈ {1, . . . , s + 1}} tend to u0, we may assume that uk < 1 for every

k ∈ N. Thus we apply definition (2.5) to compute σ(A1, . . . , As+1, t
(k)
1 , . . . , t

(k)
s+1)

and σ(A1, . . . , As+1, t
(0)
1 , . . . , t

(0)
s+1). For each k ∈ N ∪ {0} and each j ∈ {1, . . . , s+

1}, let x
(k)
j = 1

1−uk
(t

(k)
j − t

(k)
i ). Then limx

(k)
j = x

(0)
j . By the property (a) for the

integer s, we have that limσ(A(i), x(k)(i)) = σ(A(i), x(0)(i)). Thus, we assume
that H(σ(A(i), x(k)(i)), σ(A(i), x(0)(i))) < 1

r
, for each k ∈ N.

Given w ∈ σ(A(i), x(0)(i)) and k ∈ N, let wk be the element of σ(A(i), x(k)(i))
which is closest to w, then limwk = w and |w − wk| < 1

r
. Let aw, awk

∈ Ri

be such that w ∈ [m(aw, Ri), M(aw, Ri)] and wk ∈ [m(awk
, Ri), M(awk

, Ri)].
Since the elements m(aw, Ri), M(aw, Ri), m(awk

, Ri), M(awk
, Ri) belong to Pr,

if [m(aw, Ri), M(aw, Ri)] ∩ [m(awk
, Ri), M(awk

, Ri)] = ∅, the distance from each
element of [m(aw, Ri), M(aw, Ri)] to each element of [m(awk

, Ri), M(awk
, Ri)]

is at least 1
r
. This contradicts the fact that |w − wk| < 1

r
. We have shown

that [m(aw, Ri), M(aw, Ri)] ∩ [m(awk
, Ri), M(awk

, Ri)] 6= ∅. Since both sets
[m(aw, Ri), M(aw, Ri)] ∩ Pr and [m(awk

, Ri), M(awk
, Ri)] ∩ Pr are blocks of Ri,

they must coincide. Thus C(aw , Ri) = C(awk
, Ri), m(aw, Ri) = m(awk

, Ri),
C(aw, A) = C(awk

, A) and m(aw, A) = m(awk
, A). Thus

|(1 − u0)w + u0m(aw, A) − ((1 − uk)wk + ukm(awk
, A))|

≤ |(1 − u0)w − (1 − uk)wk| + |u0 − uk|.
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Similarly, for each wk ∈ σ(A(i), x(k)(i)), there exists w ∈ σ(A(i), x(0)(i)) such
that

|(1 − u0)w + u0m(aw, A) − ((1 − uk)wk + ukm(awk
, A))|

≤ |(1 − u0)w − (1 − uk)wk| + |u0 − uk|.

Since lim |(1 − u0)w − (1 − uk)wk| + |u0 − uk| = 0, we conclude that

limσ(A1, . . . , As+1, t
(k)
1 , . . . , t

(k)
s+1) = σ(A1, . . . , As+1, t

(0)
1 , . . . , t

(0)
s+1).

Now consider the case that u0 = (s + 1)t
(0)
i = 1. In this case (t

(0)
1 , . . . , t

(0)
s+1) =

( 1
s+1 , . . . , 1

s+1 ). Thus lim(t
(k)
1 , . . . , t

(k)
s+1) = ( 1

s+1 , . . . , 1
s+1 ) and uk = (s + 1)t

(k)
i

tends to 1. Since the formula (2.6) is clearly continuous in the variables
t1, . . . , ts+1, we may assume that uk < 1 for each k ∈ N. So we compute

σ(A1, . . . , As+1, t
(k)
1 , . . . , t

(k)
s+1) with (2.5). For each k ∈ N and for each j ∈

{1, . . . , s + 1}, let x
(k)
j = 1

1−uk
(t

(k)
j − t

(k)
i ). Fix i0 ∈ {1, . . . , s + 1} − {i}.

Let k ∈ N. For each w ∈ σ(A(i), x(k)(i)), fix aw ∈ Ri such that w ∈
[m(aw, Ri), M(aw, Ri)]. We show that

(∗) {m(aw, A) : w ∈ σ(A(i), x(k)(i))} = {m(a, A) : a ∈ Ai0}.

Given w ∈ σ(A(i), x(k)(i)), aw ∈ Al for some l ∈ {1, . . . , s+1}. By Lemma 1(c),
there exists a ∈ Ai0 such that m(aw, A) = m(a, A). On the other hand,
given a ∈ Ai0 , by property (e) for the integer s, there exists an element w ∈
σ(A(i), x(k)(i)) ∩ [m(a, Ri), M(a, Ri)]. Since a ∈ Ri and a and w are in the
block [m(a, Ri), M(a, Ri)] ∩ Ri of Ri, we obtain that m(a, Ri) = m(aw, Ri).
Since [m(a, Ri), M(a, Ri)] ∩ Ri is contained in a block of A, we conclude that
m(a, A) = m(aw, A). This completes the proof of (∗).

Notice that σ(A1, . . . , As+1, t
(k)
1 , . . . , t

(k)
s+1) is computed by using (2.5). So,

limσ(A1, . . . , As+1, t
(k)
1 , . . . , t

(k)
s+1)

= lim{(1 − uk)w + ukm(aw, A) : w ∈ σ(A(i), x(k)(i))}

= {m(a, A) : a ∈ Ai0} (by property (∗))

= {m(a, A) : a ∈ A1} (by Lemma 1(c))

= σ(A1, . . . , As+1, t
(0)
1 , . . . , t

(0)
s+1) (by (2.6)).

This completes the proof that σ(A1, . . . , As+1, t1, . . . , ts+1) depends continu-
ously on (t1, . . . , ts+1). Therefore, property (a) holds for the integer s + 1.

Property (b) holds by definition (2.1).

We prove property (c) for s + 1. Let (A1, . . . , As+1, t1, . . . , ts+1) ∈ ∆ and
A = A1 ∪ . . . ∪ As+1. Suppose that l ∈ {1, . . . , s + 1} is such that tl = 0. We
consider two cases.
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Case 1. The set {A1, . . . , As+1} has less than s + 1 elements.

Let {A1, . . . , As+1} = {B1, . . . , Bk}, where k ≤ s and Bi 6= Bj , if i 6= j.
For each j ∈ {1, . . . , k}, let uj be the sum of all the elements ti such that i ∈
{1, . . . , s + 1} and Ai = Bj . We may assume that Al = Bk. We consider two
subcases.

Subcase 1.1. Aj 6= Bk for each j 6= l.

In this subcase uk = 0. Using (2.4) and property (c) for k and properties (d)
and (g) for s, we obtain

σ(A1, . . . , As+1, t1, . . . , ts+1) = σ(B1, . . . , Bk, u1 . . . , uk)

= σ(B1, . . . , Bk−1, u1 . . . , uk−1) = σ(A(l), t(l)).

Subcase 1.2. There exists j 6= l such that Aj = Al = Bk.

We have {A1, . . . , As+1} = {B1, . . . , Bk} = {A1, . . . , Al−1, Al+1, . . . , As+1}, uk

is the sum of all the elements ti such that i ∈ {1, . . . , s + 1} and Ai = Bk and
uk is also the sum of all the elements ti such that i ∈ {1, . . . , s + 1} − {l} and
Ai = Bk. Using (2.4) and properties (d) and (g) for s, we obtain that

σ(A1, . . . , As+1, t1, . . . , ts+1) = σ(B1, . . . , Bk, u1 . . . , uk) = σ(A(l), t(l)).

Case 2. The sets A1, . . . , As+1 are pairwise different.

In this case, tl = min{tj : j ∈ {1, . . . , s + 1}} and u = (s + 1)tl = 0 < 1.
For each j ∈ {1, . . . , s + 1}, xj = 1

1−u
(tj − tl) = tj . Applying (2.5), we have

σ(A1, . . . , As+1, t1, . . . , ts+1) = σ(A(l), x(l)) = σ(A(l), t(l)). This completes the
proof of (c).

We prove (d). Let (A1, . . . , As+1, t1, . . . , ts+1) ∈ ∆, let α : {1, . . . , s + 1} →
{1, . . . , s + 1} be a permutation and A = A1 ∪ . . .∪As+1 = Aα(1) ∪ . . .∪Aα(s+1).
In the case that the set {A1, . . . , As+1} has less than s + 1 elements, property
(d) follows easily from property (d) applied to the number s. Thus suppose that
the sets A1, . . . , As+1 are pairwise different. Let i ∈ {1, . . . , s + 1} be such that
tα(i) = min{tj : j ∈ {1, . . . , s + 1}} = min{tα(j) : j ∈ {1, . . . , s + 1}}. Let
u = (s + 1)tα(i). First, we analyze the case that u < 1. Given j ∈ {1, . . . , s + 1},

let xj = 1
1−u

(tj − tα(i)) and x′

j = 1
1−u

(tα(j) − tα(i)) = xα(j). Since

{1, . . . , α(i)− 1, α(i) + 1, . . . , s + 1} = {α(1), . . . , α(i − 1), α(i + 1), . . . , α(s + 1)},

by property (d) for s, the set

σ(A(α(i)), x(α(i)))

= σ(A1, . . . , Aα(i)−1, Aα(i)+1, . . . , As+1, x1, . . . , xα(i)−1, xα(i)+1, . . . , xs+1)
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is the set

σ(Aα(1), . . . , Aα(i−1), Aα(i+1), . . . , Aα(s+1), xα(1), . . . , xα(i−1), xα(i+1), . . . , xα(s+1)).

Given w ∈ σ(A(α(i)), x(α(i))), let

aw ∈ Rα(i) = A1 ∪ . . . ∪ Aα(i)−1 ∪ Aα(i)+1 ∪ . . . ∪ As+1

= Aα(1) ∪ . . . ∪ Aα(i−1) ∪ Aα(i+1) ∪ . . . ∪ Aα(s+1)

be such that w ∈ [m(aw, Rα(i)), M(aw, Rα(i))]. By (2.5), we have

σ(A1, . . . , As+1, t1, . . . , ts+1) = {(1 − u)w + um(aw, A) : w ∈ σ(A(α(i)), x(α(i)))}

and this set is also equal to σ(Aα(1), . . . , Aα(s+1), tα(1), . . . , tα(s+1)).

On the other hand, in the case that u = 1, tj = 1
s+1 = tα(j) for each j ∈

{1, . . . , s + 1}. In this case we apply (2.6) and Lemma 1(c) to obtain that

σ(A1, . . . , As+1, t1, . . . , ts+1) = {m(a, A) : a ∈ A1}

= {m(a, A) : a ∈ Aα(1)} = σ(Aα(1), . . . , Aα(s+1), tα(1), . . . , tα(s+1)).

This completes the proof of (d).

We prove (e). Let (A1, . . . , As+1, t1, . . . , ts+1) ∈ ∆, A = A1 ∪ . . . ∪ As+1

and i0 ∈ {1, . . . , s + 1}. In the case that the set {A1, . . . , As+1} has less than
s + 1 elements, property (e) follows easily from (2.4) and property (e) in the
induction hypothesis. Thus suppose that the sets A1, . . . , As+1 are pairwise dif-
ferent. Let i ∈ {1, . . . , s + 1} be such that ti = min{tj : j ∈ {1, . . . , s + 1}}.
By Lemma 1(c), the intervals described in property (e) are independent of the
choice of i0, thus we may assume that i 6= i0. Let u = (s + 1)ti. In the case
that u = 1, property (e) follows immediatly from (2.6) and Lemma 1(a). So,
suppose that u < 1. For each j ∈ {1, . . . , s + 1}, let xj = 1

1−u
(tj − ti). No-

tice that (see (2.5)) each element p of σ(A1, . . . , As+1, t1, . . . , ts+1) is a convex
combination of an element w ∈ [m(aw, Ri), M(aw, Ri)] ⊂ [m(aw, A), M(aw, A)]
and m(aw, A). Thus p ∈ [m(aw, A), M(aw, A)]. Since aw ∈ Ri ⊂ A, this inter-
val is of the form [m(a, A), M(a, A)] for some a ∈ Ai0 (by Lemma 1(c)). Thus
σ(A1, . . . , As+1, t1, . . . , ts+1) is contained in the union of these intervals. In order
to see that σ(A1, . . . , As+1, t1, . . . , ts+1) intersects each one of these intervals, let
x ∈ Ai0 ⊂ Ri. By property (e) in the induction hypothesis, there exists an element
w ∈ σ(A(i), x(i))∩[m(x, Ri), M(x, Ri)]. Then the element (1−u)w+um(x, A) be-
longs to the set σ(A1, . . . , As+1, t1, . . . , ts+1)∩ [m(x, A), M(x, A)]. This completes
the proof of (e).

The proof that (e) implies (f) is similar to the proof where we showed the same
implication for s = 2. Thus (f) also holds.

Finally, property (g) follows from definition (2.4) and properties (d) and (g) in
the induction hypothesis. This completes the proof of the lemma. �
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3. Main results

Proof of Theorem 3: Let n ∈ N. Suppose that Q(n) holds. Let X be a
chainable continuum and suppose that there exists a map g : Fn(X) → Fn(X)
without fixed points. Thus there exists ε > 0 such that H(A, g(A)) > (3n + 4)ε
for each A ∈ Fn(X). Let F = {U0, . . . , Ur} be an ε-chain such that r > 1,
X = U0 ∪ . . . ∪ Ur, there exists a point p0 ∈ U0 − clX(U1 ∪ . . . ∪ Ur), there exists
a point q0 ∈ Ur − clX(U0 ∪ . . . ∪ Ur−1) and clX(Ui) ∩ clX(Uj) 6= ∅ if and only if
|i − j| ≤ 1.

Let d be a metric for X . For two nonempty closed subsets A and B of X , let
dist(A, B) = min{d(a, b) : a ∈ A and b ∈ B}. Let η = min{dist(clX(Ui), clX(Uj)) :
i, j ∈ {0, . . . , r} and i + 1 < j}. Since g is uniformly continuous, there is δ > 0
with δ < 1

4 min{dist({p0}, clX(U1 ∪ . . .∪Ur)), dist({q0}, clX(U0 ∪ . . .∪Ur−1)),
1
9r
}

and, if A, B ∈ Fn(X) and H(A, B) < δ, then H(g(A), g(B)) < η.

Let G be a (min{ δ
4 , δd(p0,q0)

3 })-chain covering X such that G refines F. Let
H = {V0, . . . , Vm} be a subchain of G such that p0 ∈ V0 − (V1 ∪ . . . ∪ Vm),
q0 ∈ Vm − (V0 ∪ . . .∪ Vm−1). Then m ≥ 3 and 1

m+1 < δ. For each i ∈ {0, . . . , m},

choose an element j(i) ∈ {0, . . . , r} such that Vi ⊂ Uj(i) and choose a point
pi ∈ Vi − (

⋃

{Vk : k ∈ {0, . . . , m} − {i}}), where pm = q0. Notice that, if
i, j ∈ {0, . . . , m} and |i − j| ≤ 1, then pi, pj belong to a set of the form Vk, so

d(pi, pj) < δ
4 . We use the points p0, . . . , pm to define a function P : Fn(Pm) →

Fn(X) as follows.
For each A = {a1

m
, . . . , as

m
} ∈ Fn(Pm), where a1, . . . , as ∈ {0, . . . , m}, let

(3.1) P (A) = {pa1
, . . . , pas

} ∈ Fn(X).

Notice that, if A, B ∈ Fn(Pm) and H(A, B) ≤ 1
m

, then H(P (A), P (B)) < δ
4 .

For each x ∈ g(P (A)), choose an index e(x) ∈ {0, . . . , r} such that

(3.2) x ∈ Ue(x).

Define ϕ0 : Fn(Pm) → Fn(Pr) by

(3.3) ϕ0(A) = {
e(x)

r
: x ∈ g(P (A))}.

We are going to extend ϕ0 to a continuous function ϕ from Fn([0, 1]) into
itself. It is known that Fn([0, 1]) is an AR ([3, Korollar 2]). However, we need an
extension of ϕ0 which will have a property derived from property (f) of Lemma 2,
so we use the convex structure defined in the previous section and a Dugundji-type
construction.

Define, for each E ∈ Fn(Pm),

(3.4) ϕ(E) = ϕ0(E).
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Given A ∈ Fn([0, 1]) − Fn(Pm), define

B(A) =
{

E ∈ Fn([0, 1]) : H(A, E)(3.5)

< min
{1

2
(min{H(A, G) : G ∈ Fn(Pm)}),

1

16m

}}

.

Let W = {Wα : α ∈ Λ} be a locally finite refinement of the open cover {B(A) :
A ∈ Fn([0, 1]) − Fn(Pm)}, of the set Fn([0, 1]) − Fn(Pm). Let P = {Ψα : α ∈ Λ}
be a partition of the unity subordinated to W.

For each α ∈ Λ, choose an element Cα ∈ Wα, also choose an element Aα ∈
Fn(Pm) such that

(3.6) H(Cα, Aα) = min{H(Cα, A) : A ∈ Fn(Pm)}.

Since for each element t of [0, 1] there exists an element s of Pm such that
|t − s| ≤ 1

2m
, we have that H(Cα, Aα) ≤ 1

2m
.

Given E ∈ Fn([0, 1]) − Fn(Pm), let α1(E), . . . , αkE
(E) be the elements in Λ

such that Ψα(E) > 0. Then define

(3.7) ϕ(E) = σ(ϕ0(Aα1(E)), . . . , ϕ0(AαkE
(E)), Ψα1(E)(E), . . . , ΨαkE

(E)(E)),

where ϕ0 was previously defined on Fn(Pm) and σ is as in Lemma 2.
We check that ϕ is well defined. In order to do this, we need to verify that

(ϕ0(Aα1(E)), . . . , ϕ0(AαkE
(E)), Ψα1(E)(E), . . . , ΨαkE

(E)(E)) ∈ ∆,

that is, we need to show that, if i, j ∈ {1, . . . , kE}, then H(ϕ0(Aαi(E)), ϕ0(Aαj(E)))

≤ 1
r
. Since Ψαi(E)(E) > 0, there exists D ∈ Fn([0, 1]) − Fn(Pm) such that

E ∈ Wαi(E) ⊂ B(D). Since Cαi(E) ∈ Wαi(E) ⊂ B(D), H(E, Cαi(E)) < 1
4m

(see (3.5)). Thus H(E, Aαi(E)) < 3
4m

. Similarly, H(E, Aαj(E)) < 3
4m

. Hence,

H(Aαi(E), Aαj(E)) < 3
2m

. Since, for each two points t, s ∈ Pm, the in-

equality |t − s| < 3
2m

implies |t − s| ≤ 1
m

; and Aαi(E), Aαj(E) ⊂ Pm, we ob-

tain that H(Aαi(E), Aαj(E)) ≤ 1
m

. As we noticed after (3.1), this implies that

H(P (Aαi(E)), P (Aαj(E))) < δ
2 . By the choice of δ, H(g(P (Aαi(E))), g(P (Aαj(E))))

< η. Let u = e(x)
r

∈ ϕ0(Aαi(E)), with x ∈ g(P (Aαi(E))). Then there exists
y ∈ g(P (Aαj(E))) such that d(x, y) < η. Since x ∈ Ue(x) and y ∈ Ue(y) (see

(3.2)), by the choice of η, |e(x) − e(y)| ≤ 1. Thus v = e(y)
r

∈ ϕ0(Aαj(E)) and

|u − v| ≤ 1
r
. Similarly, for each v ∈ ϕ0(Aαj(E)), there exists u ∈ ϕ0(Aαi(E)) such

that |u − v| ≤ 1
r
. Therefore, H(ϕ0(Aαi(E)), ϕ0(Aαj(E))) ≤ 1

r
. We have shown

that

(ϕ0(Aα1(E)), . . . , ϕ0(AαkE
(E)), Ψα1(E)(E), . . . , ΨαkE

(E)(E)) ∈ ∆.

Combining this with property (d) of Lemma 2, we obtain that ϕ is well defined
and it does not depend on the way we order the indexes α1(E), . . . , αkE

(E).
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We see that ϕ is continuous. Let E ∈ Fn([0, 1]) − Fn(Pm). Let U be an open
neighborhood of E in Fn([0, 1]) such that U ∩ Fn(Pm) = ∅ and U intersects only
finitely many sets, Wβ1

, . . . , Wβl
, of the family W. Notice that for each D ∈ U,

{α1(D), . . . , αkD
(D)} ⊂ {β1, . . . , βl}. By properties (c) and (d) of Lemma 2,

ϕ(D) = σ(ϕ0(Aα1(D)), . . . , ϕ0(AαkD
(D)), Ψα1(D)(D), . . . , ΨαkD

(D)(D))

= σ(ϕ0(Aβ1
), . . . , ϕ0(Aβl

), Ψβ1
(D), . . . , Ψβl

(D)).

Hence, property (a) of Lemma 2 implies that ϕ is continuous on U. Therefore,
ϕ is continuous at E for each E ∈ Fn([0, 1]) − Fn(Pm).

Now, take E ∈ Fn(Pm). Let

B =

{

D ∈ Fn([0, 1]) : H(D, E) <
1

16m

}

.

Given D ∈ B − {E}, D ∈ Fn([0, 1]) − Fn(Pm). If i ∈ {1, . . . , kD}, there exists
G ∈ Fn([0, 1]) − Fn(Pm) such that D ∈ Wαi(D) ⊂ B(G). Thus, by (3.5),

H(D, G) <
1

2
(min{H(G, L) : L ∈ Fn(Pm)}) ≤

1

2
(H(E, G))

≤
1

2
(H(E, D) + H(D, G)) <

1

32m
+

1

2
(H(D, G)).

Hence H(D, G) < 1
16m

, H(E, G) < 1
8m

and min{H(G, L) : L ∈ Fn(Pm)} < 1
8m

.

Since Cαi(D) ∈ Wαi(D), H(Cαi(D), G) < 1
8m

. Thus H(E, Cαi(D)) ≤ H(E, G) +

H(G, Cαi(D)) < 1
4m

. Therefore ((3.6)) H(Aαi(D), Cαi(D)) < 1
4m

. Hence

H(Aαi(D), E) < 1
2m

. Since Aαi(D) and E belong to Fn(Pm), this implies that
Aαi(D) = E. From (3.7), for each D ∈ B − {E},

ϕ(D) = σ(ϕ0(E), . . . , ϕ0(E), Ψα1(D)(D), . . . , ΨαkD
(D)(D)) = ϕ0(E)

(see properties (g) and (b) in Lemma 2). This implies that ϕ is continuous at E.
This completes the proof that ϕ is continuous.

Define f : [0, 1] → [0, 1] as the piecewise linear extension of the function defined
on Pm by

(3.8) f(
i

m
) =

j(i)

r
.

Since p0 ∈ U0 − clX(U1 ∪ . . .∪Ur) and q0 ∈ Ur − clX(U0 ∪ . . .∪Ur−1), f(0) = 0
and f(1) = 1. Let fn : Fn([0, 1]) → Fn([0, 1]) be the induced map. Given
i ∈ {0, . . . , m − 1}, Vi ⊂ Uj(i) and Vi+1 ⊂ Uj(i+1). Since Vi ∩ Vi+1 6= ∅, |j(i) −
j(i + 1)| ≤ 1. This proves that

(∗∗) |f(
i

m
) − f(

i + 1

m
)| ≤

1

r
.
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Since we are assuming that Q(n) is true, there exists an element D ∈ Fn([0, 1])
such that fn(D) = ϕ(D).

We consider two cases.

Case 1. D /∈ Fn(Pm).

Let D0 = Aα1(D). By property (f) of Lemma 2 and (3.7), H(ϕ0(D0), ϕ(D)) ≤
3n
r

. For each x ∈ D, choose k(x) ∈ {0, . . . , m−1} such that x ∈ [k(x)
m

, k(x)+1
m

]. Let

D1 = {k(x)
m

∈ [0, 1] : x ∈ D} and D2 = {k(x)+1
m

∈ [0, 1] : x ∈ D}. Then D1, D2 ∈

Fn(Pm) and H(D, D1), H(D, D2) ≤
1
m

. Let G ∈ Fn([0, 1])−Fn(Pm) be such that

Wα1(D) ⊂ B(G). Then H(D, G), H(Cα1(D), G) < 1
16m

. Thus H(D1, G) < 9
8m

and H(Aα1(D), Cα1(D)) ≤ H(D1, Cα1(D)) < 10
8m

. Hence H(D0, D1) < 20
8m

. Since

D0, D1 ∈ Fn(Pm), H(D0, D1) ≤ 2
m

. Given i
m

∈ D0, there exists j
m

∈ D1 such

that | i
m

− j
m
| ≤ 2

m
. By (**), |f( i

m
) − f( j

m
)| ≤ 2

r
. Similarly, Given j

m
∈ D1,

there exists i
m

∈ D0 such that |f( i
m

)−f( j
m

)| ≤ 2
r
. Thus H(fn(D0), fn(D1)) ≤

2
r
.

Given x ∈ D, since x ∈ [k(x)
m

, k(x)+1
m

] and |f(k(x)
m

) − f(k(x)+1
m

)| ≤ 1
r
, we have

that |f(k(x)
m

) − f(x)| ≤ 1
r
. This implies that H(fn(D), fn(D1)) ≤ 1

r
. Since

ϕ(D) = fn(D),

H(ϕ0(D0), fn(D0)) ≤ H(ϕ0(D0), ϕ(D)) + H(ϕ(D), fn(D1))

+ H(fn(D1), fn(D0)) ≤
3n + 3

r
.

Thus H(ϕ0(D0), fn(D0)) ≤
3n+3

r
.

Since D0 ∈ Fn(Pm), we can put D0 = {a1

m
, . . . , as

m
}. Then fn(D0) =

{ j(a1)
r

, . . . , j(as)
r

} (see (3.8)) and P (D0) = {pa1
, . . . , pas

} (see (3.1)). Given x ∈

g(P (D0)),
e(x)

r
∈ ϕ0(D0) ((3.3)). So, there exists v ∈ fn(D0) such that | e(x)

r
−v| ≤

3n+3
r

. Then there exists i ∈ {0, . . . , s} such that v = f(ai

m
) = j(ai)

r
((3.8)). Thus

|e(x)−j(ai)| ≤ 3n+3. Recall that x ∈ Ue(x) ((3.2)) and pai
∈ Vai

⊂ Uj(ai). Hence
d(x, pai

) < (3n + 4)ε. We have shown that, for each x ∈ g(P (D0)), there exists
pai

∈ P (D0) such that d(x, pai
) < (3n + 4)ε. Similarly, for each pai

∈ P (D0)
there exists x ∈ g(P (D0)) such that d(x, pai

) < (3n + 4)ε. This proves that
H(P (D0), g(P (D0))) < (3n + 4)ε. Contrary to the choice of ε.

Case 2. D ∈ Fn(Pm).

In this case, H(ϕ0(D), fn(D)) = 0 ≤ 3n+3
r

. Thus we can repeat the argument
in the paragraph above with D instead D0 to obtain a contradiction.

We have obtained a contradiction from assuming that Fn(X) does not have
the fixed point property. Thus Theorem 3 is proved. �

Proof of Theorem 4: Let B = {A ∈ F3([0, 1]) : A∩{0, 1} 6= ∅} and C = {A ∈
F3([0, 1]) : {0, 1} ⊂ A}. Using Theorem 6 in [2], it is easy to show that there exists
a homeomorphism h : F3([0, 1]) → D3, where D3 is the unit ball, centered at the
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origin, in the Euclidean space R
3, such that h(B) is the unit sphere S2 ⊂ D3 and

h(C) is the equator E which results of intersecting S2 with the plane z = 0 in R
3.

Suppose that Q(3) does not hold, then there exists a map f : [0, 1] → [0, 1]
such that f(0) = 0 and f(1) = 1, and there exists a map g : F3([0, 1]) → F3([0, 1])
such that g(A) 6= f3(A) for each A ∈ F3([0, 1]), where f3 is the induced map of f
from F3([0, 1]) into itself.

Notice that f3(B) ⊂ B and f3(C) ⊂ C. Let G = h◦g◦h−1 and F = h◦f3◦h−1.
Then G, F : D3 → D3, F |S2 : S2 → S2, and G(p) 6= F (p) for each p ∈ D3. Define
ϕ : D3 → S2 by ϕ(p) is the only point in the intersection of S2 and the convex
ray which starts in G(p) and passes through F (p). Then ϕ is continuous and
ϕ(p) = F (p) for each p ∈ S2.

Consider the map K : S2 × [0, 1] → S2 given by K(p, t) = ϕ(tp). Then, for
each p ∈ S2, K(p, 1) = F (p) and K(p, 0) = ϕ(0). Thus F |S2 is homotopic to a
constant map.

Let λ : [0, 1] × [0, 1] → [0, 1] be given by λ(x, t) = tx + (1 − t)f(x). Then λ is
continuous, λ(0, t) = 0 and λ(1, t) = 1 for each t ∈ [0, 1]. Let Λ : S2 × [0, 1] → S2

be given by Λ(p, t) = h(λ(h−1(p) × {t})). Then Λ is continuous, Λ(p, 0) = F (p)
and λ(p, 1) = p, for each p ∈ S2. Thus F |S2 is homotopic to the identity map
defined on S2. This is impossible since S2 is not contractible. Hence Q(3) holds
and Theorem 4 is proved. �

Question 6. Does Q(n) hold for each n ≥ 4?
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