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Strong Versions of Kummer-Type Congruences
for Genocchi Numbers and Polynomials
and Tangent Coefficients

Mehmet Cenkci

Abstract. We use the properties of p-adic integrals and measures to obtain
general congruences for Genocchi numbers and polynomials and tangent coef-
ficients. These congruences are analogues of the usual Kummer congruences
for Bernoulli numbers, generalize known congruences for Genocchi numbers,
and provide new congruences systems for Genocchi polynomials and tangent
coefficients.

1. Introduction

The Bernoulli polynomials Bn (x) may be defined by

text

et − 1
=

∞∑

n=0

Bn (x)
tn

n!
, (|t| < 2π)

and their values at x = 0 are called Bernoulli numbers and denoted by Bn. These
numbers have been extensively studied and many properties for them are known.
One of the most important theorem relating to Bernoulli numbers is the Staudt-
Clausen Theorem:

Theorem 1.1. ([2]) For m ≥ 1,

B2m = A2m −
∑

(p−1)|2m

1

p
,

where A2m is an integer and the summation is over all primes p such that
(p− 1) |2m.
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Another remarkable result is the Kummer congruences, which in the simplest
form state that

Bm

m
≡ Bn

n
(modpZp)

for positive integers m and n such that m ≡ n (mod (p− 1)), where p is an odd
prime ([16, Corollary 5.14]). The strong form of the Kummer congruences ([1])
states that if p is an odd prime, c ≡ 0 (mod (p− 1) pa) with a ≥ 0 and p− 1 does
not divide m, then

∆k
c

{(
1 − pm−1

) Bm

m

}
≡ 0

(
modpk(a+1)Zp

)
,

where ∆c is the forward difference operator with increment c and ∆k
c denotes the

kth compositional iterate of this operator (see preliminary section for definitions in
detail).

Recently, several authors obtained generalizations of these congruences by ap-
plying either p-adic interpolation or p-adic integration techniques. In [17, 18],
Young extended several known congruences, involving Kummer-type congruences
for Bernoulli numbers and Euler polynomials of higher order, Stirling and weighted
Stirling numbers of the second kind, and the values of Bernoulli and Euler poly-
nomials. Developing the theory of “degenerate number sequences”, he showed
that degenerate Stirling numbers and degenerate Eulerian polynomials could be
expressed as p-adic integrals of generalized factorials, and proved an analogue of
Kummer’s congruences for expressions involving degenerate Bernoulli numbers and
polynomials introduced by Carlitz [3], which extended known congruences for or-
dinary Bernoulli numbers. He also gave versions of Kummer’s congruences modulo
powers of a general positive integer n for Bernoulli polynomials with n-adic integer
argument ([19, 20]). For the generalized Bernoulli polynomials associated with a
primitive Dirichlet character χ having conductor fχ ∈ N, Fox illustrated how a
particular expression, involving the generalized Bernoulli polynomials, satisfied the
systems of congruence relations if and only if a similar expression, involving the
generalized Bernoulli numbers, satisfied the same congruence relations, which par-
ticularly included Kummer congruences ([9]). In [12], Jang and Kim gave higher
order extensions of generalized Bernoulli polynomials, and proposed a question
whether these extensions satisfied Kummer-type congruences. The answer of a
part of the question was given in [11].

The Genocchi numbers Gn may be defined by the generating function

2t

et + 1
=

∞∑

n=0

Gn
tn

n!
, (|t| < π) (1.1)

([4, p. 49]), which have several combinatorial interpretations in terms of certain
surjective maps on finite sets ([5, 6, 7]). The well known identity

Gn = 2 (1 − 2n)Bn (1.2)

shows the relation between Genocchi and Bernoulli numbers. It follows from (1.2)
and the Staudt-Clausen Theorem that the Genocchi numbers are integers.
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The Euler polynomials En (x) may be defined by the generating function ([13])

2ext

et + 1
=

∞∑

n=0

En (x)
tn

n!
, (|t| < π) . (1.3)

It is easy to see that

Gn = 2nE2n−1 (0) , (1.4)

and from (1.3), (1.4) we deduce that

En (x) =

n∑

k=0

(
n

k

)
Gk+1

k + 1
xn−k.

The generalized Euler numbers Hn (λ) attached to an algebraic number λ 6= 1
have been defined by

1 − λ

et − λ
=

∞∑

n=0

Hn (λ)
tn

n!
(1.5)

in [15]. We note from (1.5) and (1.1) that

Gn+1

n+ 1
= Hn (−1) .

The Genocchi polynomials Gn (x) can be defined as follows:

2text

et + 1
=

∞∑

n=0

Gn (x)
tn

n!
, (|t| < π) .

Note that Gn (0) = Gn, and

Gn (x) =

n∑

k=0

(
n

k

)
Gkx

n−k.

It is well known that the tangent coefficients Tn, defined by

tant =

∞∑

n=1

(−1)
n−1

T2n
t2n−1

(2n− 1)!
,
(
|t| < π

2

)
,

are closely related to the Bernoulli numbers, i.e., ([13, p. 35])

Tn = 2n (2n − 1)
Bn

n
.

Ramanujan ([14, p. 5]) observed that 2n (2n − 1)Bn/n, therefore tangent coeffi-
cients, are integers for n ≥ 1.

Primary focus of this study is the applications of p-adic integration methods to
obtain strong versions of Kummer-type congruences for Genocchi numbers, what
remained to prove in [20]. These methods are considered for Genocchi polynomials
and tangent coefficients as well. All these congruences, involving the kth compo-
sitional iterate of the forward difference operator with increment c and binomial
coefficient operator, are deduced from some basic properties of p-adic Γ-transforms
which are recorded in Theorem 2.1 below.
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2. Preliminaries

Throughout this study p will denote a prime number, Zp the ring of p-adic in-
tegers, Z×

p the multiplicative group of units in Zp, and Qp is the field of p-adic
numbers. Define the quantity q by 4 if p = 2 and p otherwise. We use Zp [T − 1]
and Zp [[T − 1]] to denote, respectively, the ring of polynomials and of formal power
series in the indeterminate (T − 1) over Zp. The p-adic valuation “ordp” is defined
by setting ordp (x) = k if x = pky with y ∈ Z×

p . A congruence x ≡ y (modmZp)
is equivalent to ordp (x− y) ≥ordp (m), and if x and y are rational numbers, this
congruence is equivalent to the definition of congruence x ≡ y (modm) given by
Howard in [10, Section 2] for all primes p.

If c is a non-negative integer, the difference operator ∆c operates on the se-
quence {am} by

∆cam = am+c − am.

The powers ∆k
c of ∆c are defined by ∆0

c =identity, and ∆k
c = ∆c ◦∆k−1

c for positive
integer k, so that

∆k
cam =

k∑

j=0

(
k

j

)
(−1)

k−j
am+jc,

for all non-negative integers k. To define binomial coefficient operators
(
D
k

)
associ-

ated to an operator D, we write the binomial coefficient
(
X

k

)
=
X (X − 1) · · · (X − k + 1)

k!
,

for k ≥ 0 as a polynomial in X , and replace X by D.
Define the linear operator ϕ by

(ϕf) (T ) = f (T )− 1

p

∑

ζp=1

f (ζT ) . (2.1)

This operator is well defined and stable on rational functions, and also on Zp [[T − 1]]
([17, Eq. (2.14)]). If f (et) =

∑
ant

n/n!, write (ϕf) (et) =
∑
ânt

n/n!. The follow-
ing congruences for numbers ân were proved in [17].

Theorem 2.1. Let f ∈ Zp [[T − 1]] and write (ϕf) (et) =
∑∞

n=0 ânt
n/n!. Then

ân ∈ Zp for all n. Furthermore, if c ≡ 0 (modφ (q) pa), where φ is the Euler φ-
function, with a ≥ 0 then

∆k
c âm ≡ 0

(
modpka′

Zp

)

for all m, k ≥ 0, where a′ = a + 1 if p > 2 and a′ = a + 3 if p = 2. Also for
0 ≤ r ≤ a′ and all m, k ≥ 0

(
p−r∆c

k

)
âm ∈ Zp.

It can be observed from this theorem that
(
p−a′

∆c

)k

is a polynomial of degree

k in ∆c with leading coefficient p−ka′

, which sends âm into Zp, whereas the bino-

mial coefficient operator
(

p−a′
∆c

k

)
is a polynomial of degree k in ∆c with leading

coefficient p−ka′

/k!, which sends âm into Zp.
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The proof of this theorem made use of the correspondence

Λ ↔ Zp [[T − 1]] , (2.2)

where Λ denotes the set of all Zp-valued measures on Zp, under which each measure
α ∈ Λ corresponds to the formal power series f ∈ Zp [[T − 1]], defined by

f (T ) =

∫

Zp

T xdα (x) =

∞∑

m=0



∫

Zp

(
x

m

)
dα (x)


 (T − 1)

m
(2.3)

([16, Chap. 12]). From this it follows that

an =

∫

Zp

xndα (x) .

We also observed that ([17, Eq. (2.14)]) that

(ϕf) (T ) =

∫

Z
×
p

T xdα (x) ,

which implies

ân =

∫

Z
×
p

xndα (x) .

Since

(1 − ϕ) f (T ) =

∫

pZp

T xdα (x) =

∫

Zp

T pxdα (px) ,

we see that (1 − ϕ) f (T ) ∈ Zp [[T − 1]] according to correspondences (2.2) and
(2.3). Therefore there is a linear operator ψ on Zp [[T − 1]] such that

(ψf) (T ) =
1

p

∑

Zp=T

f (Z) ,

and this operator coincides on Zp [[T − 1]] with Dwork’s ψ operator ([8, Chap. 5]).
So if we write (ψf) (et) =

∑
a∗nt

n/n!, then a∗n ∈ Zp for all n, and

ân = an − pna∗n.

3. Congruences

From now on we assume that p is a prime number > 2.

Theorem 3.1. If c ≡ 0 (mod (p− 1) pa) with a ≥ 0 and p − 1 does not divide m,
then

∆k
c

{(
1 − pm−1

) Gm

m

}
≡ 0

(
modpk(a+1)Zp

)
,

and (
p−r∆c

k

){(
1 − pm−1

) Gm

m

}
∈ Zp

for 0 ≤ r ≤ a+ 1 and all k ≥ 0,m > 0.
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Proof. Let λ be algebraic over Qp and Zp (λ) [[T − 1]] denotes the ring of formal
power series in the indeterminate (T − 1) over Zp (λ) of the finite extension Qp (λ)
of Qp. Suppose 1 − λ ∈ Z×

p (λ). Then

f (T ) =
1 − λ

T − λ
∈ Zp (λ) [[T − 1]] .

We compute

(1 − ϕ)

(
1 − λ

T − λ

)
=

1

p

∑

ζp=1

1 − λ

ζT − λ
=

1 − λ

T p − λp
.

Let λ = −1 and set T = et. Then we have

(1 − ϕ)

(
2

et + 1

)
=

2

ept + 1
,

or equivalently

ϕ

(
2

et + 1

)
=

2

et + 1
− 2

ept + 1
.

Expanding (ϕf) (et) =
∑
ânt

n/n! as formal power series yields
∞∑

n=0

ân
tn

n!
=

1

t

∞∑

n=0

Gn
tn

n!
− 1

pt

∞∑

n=0

Gn
(pt)

n

n!

=

∞∑

n=0

Gn+1

n+ 1

tn

n!
−

∞∑

n=0

pnGn+1

n+ 1

tn

n!
.

Equating coefficients of the terms tn/n! gives

ân =
Gn+1

n+ 1
− pnGn+1

n+ 1
.

The theorem then follows by taking m = n+ 1 and applying Theorem 2.1. �

Theorem 3.2. Suppose p − 1 does not divide m. If c ≡ 0 (mod (p− 1) pa) with
a ≥ 0, then

∆k
c

{(
1 − pm−1

)
Tm

}
≡ 0

(
mod

1

2
pk(a+1)Zp

)
,

and (
p−r∆c

k

){(
1 − pm−1

)
Tm

}
∈ 1

2
Zp

for 0 ≤ r ≤ a+ 1 and all m, k ≥ 0.

Proof. Consider the polynomial

F (T ) =
T 4 − 1

T 2 − 1
= 2 + (T − 1) (T + 1) .

This polynomial lies in Z [T − 1] and has a constant term 2 ∈ Z×
p when viewed as

an element of Z [T − 1]. Therefore

2

F (T )
∈ 1 +

(
T 2 − 1

)
Zp [[T − 1]]

so that
2

T 4 − 1
=

1

T 2 − 1
+ g (T ) ,
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where g (T ) is a rational function which also lies in Zp [[T − 1]]. Now we substitute
T = et and expanding as formal power series,

1

t

∞∑

n=0

2n (2n − 1)Bn
tn

n!
=

∞∑

n=0

2an
tn

n!
,

where an ∈ Zp. For each n ≥ 0, equating coefficients of tn/n! gives

Tn = 2n+1
(
2n+1 − 1

) Bn+1

n+ 1
= 2an.

Since

ϕ

(
1

T k − 1

)
=

1

T k − 1
− 1

T pk − 1

whenever (k, p) = 1, we see that for this function g (T ) we have
(
1 − pn−1

)
Tn = 2ân.

Therefore by Theorem 2.1, the result follows. �

Dwork’s shift map x → x′ is defined for x ∈ Zp by the relation px′ − x =
µx ∈ {0, 1, . . . , p− 1} so that µx is the representative of −x modpZp which lies in
{0, 1, . . . , p− 1}. The following lemma describes the action of Dwork’s ψ operator
on certain functions in terms of shift map.

Lemma 3.3. For x ∈ Zp we have formally

ψ

(
T x

T − c

)
= cp−1−µx

T x

T − cp
,

or equivalently

ϕ

(
T x

T − c

)
=

T x

T − c
− cp−1−µx

T px′

T p − cp
.

Proof. Using (2.1) we compute

(1 − ϕ)

(
T x

T − c

)
=

1

p

∑

ζp=1

ζxT x

ζT − c
= T x



1

p

∑

ζp=1

ζ−µx

ζT − c





= cp−1−µx
T x+µx

T p − cp

by considering the partial fraction decomposition of the latter rational function.
Since x+ µx = px′, the lemma follows. �

Theorem 3.4. If c ≡ 0 (mod (p− 1) pa) with a ≥ 0, then for all x ∈ Zp we have

∆k
c

{
Gm (x)

m
− (−1)

p−1−µx

pm−1Gm (x′)

m

}
≡ 0

(
modpk(a+1)Zp

)
,

and (
p−r∆c

k

){
Gm (x)

m
− (−1)

p−1−µx

pm−1Gm (x′)

m

}
∈ Zp

for 0 ≤ r ≤ a+ 1 and all k ≥ 0, m > 0.



10 Mehmet Cenkci

Proof. Suppose 1 − λ ∈ Z×
p (λ). Then

h (T ) =
1 − λ

T − λ
T x ∈ Zp (λ) [[T − 1]]

for all x ∈ Zp. From Lemma 3.3 we have

(1 − ϕ) h (T ) = λp−1−µx (1 − λ)
T px′

T p − λp
.

Let λ = −1. Setting T = et and expanding (ϕf) (et) =
∑
ânt

n/n! as formal power
series give

∞∑

n=0

ân
tn

n!
=

2ext

et + 1
− (−1)

p−1−µx
2epx′t

ept + 1

=
1

t

∞∑

n=0

Gn (x)
tn

n!
− (−1)p−1−µx

1

pt

∞∑

n=0

Gn (x′)
(pt)

n

n!
.

Comparing the coefficients of the terms tn/n! yields

ân =
Gn+1 (x)

n+ 1
− (−1)p−1−µx pnGn+1 (x′)

n+ 1
.

The theorem then follows by taking m = n+ 1 and applying Theorem 2.1. �
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