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Simultaneous inhomogeneous Diophantine
approximation of the values of integral polynomials
with respect to Archimedean and non-Archimedean
valuations

Ella Kovalevskaya and Vasily Bernik

Abstract. We prove an analogue of the convergence part of Khintchine’s the-
orem for the simultaneous inhomogeneous Diophantine approximation on the
Veronese curve (x, x2, . . . , xn) with respect to the different valuations. It is an
extension of the author’s earlier results.

1. Introduction

The problem under the consideration belongs to the metric theory of Diophantine
approximation on manifolds. This theory was formed in papers of V. S p r i n d z̆ u k
[18], [19], W.M. S c h m i d t [17]. Nowadays it is intensively developed ([2]-[16], [20]-
[22]). We prove an analogue of the result [16] for the simultaneous inhomogeneous
Diophantine approximation on the Veronese curve (x, x2, . . . , xn) with respect to
the different valuations.

Let ψ : N → R+ be a monotonically decreasing function and
∑∞

n=1 ψ(n) <∞.
Let Pn = Pn(y) = any

n + · · · + a1y + a0 ∈ Z[y], degPn = n and H = H(Pn) =
max0≤i≤n |ai|. Let p ≥ 2 be a prime number, Qp be the field of p-adic numbers,
| · |p be the p-adic valuation. Suppose that O = R × C × Qp. We define a measure
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µ in O as a product of the Lebesque measures µ1 and µ2 in R and C, and the Haar
measure µ3 in Qp, that is, µ = µ1µ2µ3. We consider the system of inequalities

|Pn(x) + d1| < Hλ1ψν1(H),

|Pn(z) + d2| < Hλ2ψν2(H),

|Pn(ω) + d3|p < Hλ3ψν3(H)

(1)

where (d1, d2, d3) ∈ O, (x, z, ω) ∈ O, λi ≤ 1 (i = 1, 2), λ3 ≤ 0, λ1 +2λ2+λ3 = 3−n,
νi ≥ 0 (i = 1, 2, 3), ν1 + 2ν2 + ν3 = 1, λi − νi < 1 (i = 1, 2), λ3 − ν3 < 0. We prove
the following

Theorem. For every vector (d1, d2, d3) ∈ O the system of inequalities (1) has only
a finite number of solutions in polynomials Pn ∈ Z[y] for almost all (x, z, ω) ∈ O.

E. L u t z (1955) was the first who considered an inhomogeneous problem in
Qp for polynomials with n = 1 and a function H−2−ε in the right hand part of the
third inequality of (1) without two others inequalities. Inhomogeneous questions
are rather different in character to the homogeneous ones in that they concern
questions of how points are distributed rather than how close it is possible to get
to the integers. Also it is well known that if Pn(y) is irreducible then for any two
its different roots ξ1 and ξ2 the following inequality holds

|ξ1 − ξ2| > c(Pn)H−n+1.

The situation is different when Pn(y) + d is considered instead of Pn(y), where
d ∈ R. With a point of view of a continuity it is readily proved that for any w > 0
we can select such a number d that |ρ1 − ρ2| < H−w, where ρ1 and ρ2 are the
roots of the polynomial Pn(y) + d. Besides, the roots of the Pn(y) + d are the
transcendental number if d is one.

Note that the inhomogeneous Diophantine approximation for the Veronese
curve were investigated earlier by V. B e r n i k, H. D i c k i n s o n and M. D o d s o n
[5] in R when λ1 = 1−n, ν1 = 1, V. B e r n i k, H. D i c k i n s o n and J. Y u a n [6] in
Qp when λ3 = −n, ψν3(H) = H−1−ε, by A. U s t i n o v [21] in Qp when λ3 = −n,
ν3 = 1, and [22] in C when λ2 = −(n − 2)/2, ν2 = 1/2, separately. P a n G i o n g
from the X’ian University (China) acquainted us with her result [11]. It is the same
as [21].

In order to prove the Theorem we develop the Sprindžuk’s method of essential
and inessential domains, use a proof scheme of the B e r n i k—B o r b a t result [4]
and one lemma of B e r n i k—K a l o s h a [8]. Proving the Theorem we investigate

7 cases dependent on the values of the derivative |P ′

n(y)|, that is, we consider the

domains where the value of |P ′

n(y)| is large and the domains where the value of

|P ′

n(y)| is small. Then, we combine these domains with respect to above-mention
valuations.

2. Notation and Lemmas

According to the metric ideas [18] we may put x � 1, z � 1, |ω|p � 1, where �
is Vinogradov’s symbol (x � y means that x = O(y)). Let α

(n)
1 , . . . , α

(n)
n be the

roots of the polynomial Pn in C and β
(n)
1 , . . . , β

(n)
n be the roots of the polynomial

Pn in Q∗
p, where Q∗

p is the least field containing Q and all algebraic numbers.
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Lemma 1. Let Pn(y) ∈ Z[y], Pn as above. Then

max
0≤m≤n

|Pn(m)| � max
0≤i≤n

|ai|. (2)

This is Lemma 7 of [18, p. 19]. We denote the smallest m for which (2) is true
by m0.

Lemma 2. Let Pn(y) ∈ Z[y], Pn as above with |an| > cH(Pn), where c is a constant

depending only on n, 0 < c ≤ 1. Then |α(n)
i | < max(n/c, 1) for every root α

(n)
i

(i = 1, . . . , n) of Pn.
This is Lemma 1 of [18, p. 13].

Lemma 3. Let Pn(y) ∈ Z[y], Pn as above with |an|p > c1, where c1 is a constant

depending only on n. Then |β(n)
i |p < max(c−1

1 , 1) for every root β
(n)
i (i = 1, . . . , n)

of Pn.
This is Lemma 3 of [6].

Lemma 4. Let

|Pn(x)| < Hλ1ψν1(H), |Pn(z)| < Hλ2ψν2(H), |Pn(ω)|p < Hλ3ψν3(H), (3)

be a system of inequalities with (x, z, ω) ∈ O where H , ψ, O and parameters λi, νi

(i = 1, 2, 3) are defined as in Theorem. Then the system (3) is satisfied by at most
finitely many polynomials Pn ∈ Z[y] for almost all (x, z, ω) ∈ O.

This is a main theorem in [16].

3. Reduction to a polynomial P
(D)
n (y).

Let Q(y) = yn(Pn(y−1 + m0) + d3), where m0 is the fixed integer from Lemma 1.
Consider the third inequality of (1). If it holds infinitely often for a set of positive
measure one can be readily verify that the set of solutions of the inequality

|Q(y)|p < H(Pn)λ3ψν3(H(Pn))

also has positive measure (see [1, Lemma 5] for details). It is easy to show that Q
takes the form

Q(y) = (Pn(m0) + d3)yn + bn−1y
n−1 + · · · + b1y + b0 (4)

where bi ∈ Z, |bi| � H(Pn) for i = 0, 1, . . . , n − 1. If the value of |Pn(m0) + d3|p
is very small then we shall consider |Pn(m0) + d3 + 1|p (or |Pn(m0) + d3 − 1|p)
instead of it. Then the new value equals 1. Let Sd3+1 be a set of ω for which the
third inequality in (1) holds with d3 + 1 for infinitely many Pn. Let Sd3 is the
same set with d3. Let µ3(Sd3+1) = 0. It follows that µ3(Sd3) = 0 as otherwise we
obtain a contradiction (replacing Pn(m0) + d3 by (Pn(m0) − 1) + d3 + 1). Hence,
we may assume without loss of generality that |Pn(m0) + d3|p > c2, where c2 is
a constant depending only on n and d3. Therefore the roots of Q are bounded
according to Lemma 3. Thus, instead of the third inequality of (1), we can consider
the inequality

|P (d3)
n (ω)|p < H(P (d3)

n )λ3ψν3(H(P (d3)
n )),

where

P (d3)
n (y) = (an +d3)yn +bn−1y

n−1 + · · ·+b1y+b0 = N1y
n +bn−1y

n−1 + · · ·+b1y+b0
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and the roots of P
(d3)
n lie in the disk |y|p � 1. Note that N1 is not necessarily an

integer. Let

Pn(N, d3) = {P (d3)
n : an + d3 = N, |bi| � N, i = 2, . . . , n,

|β(n)
j |p � 1, j = 1, 2 . . . , n},

where N depends on the height of the polynomial Pn associated with P
(d3)
n , e.g.

N � H(Pn).
Further, according to (4) we can write the left hand parts of the first and the

second inequalities in (1) as

(Pn(m0) +D + (dj −D))yn + bn−1y
n−1 + · · · + b0 (j = 1, 2)

where D denotes the integer part of d3 and |dj − d3| � 1 (j = 1, 2). Hence,
we have |Pn(m0) + D + (dj − D)| � |an + (Pn(m0) − an) + D| (j = 1, 2) when

the height H = H(Pn) = |an| is sufficient large. If H(P
(d3)
n ) = N where N is

sufficient large then N � |an| = H(Pn). Therefore according to Lemma 1 we get

|an + (Pn(m0) − an) + D| � |an + D| � H(Pn). Thus, H(P
(D)
n ) � H(Pn) and

according to Lemmas 1, 2 and 3, instead of (1) we can consider without loss of
generality the following system of inequalities

|P (D)
n (x| � H(P (D)

n )λ1ψν1(H(P (D)
n )), |P (D)

n (z| � H(P (D)
n )λ2ψν2(H(P (D)

n )),

and

|P (D)
n (ω)|p � H(P (D)

n )λ3ψν3(H(P (D)
n )), (5)

where P
(D)
n ∈ P ′

n(N,D) with

P ′

n(N,D) = {P (D)
n : an +D = N, |bi| � N, i = 2, . . . , n,

|α(n)
j | � 1, |β(n)

j |p � 1, j = 1, 2, . . . , n}.
(6)

and N ∈ N, N is a sufficient large number, |D| � 1.

4. Proof of Theorem.

As in [18] (see also [3, p. 40-42]), the investigation of the system (5) can be reduced

to the case of primitive irreducible polynomials P
(D)
n ∈ P ′

n(N,D) when |an +D|p =
|N |p > p−n. Let P∗

n(N,D) be the set of those polynomials. Further, the proof of
the Theorem is the same as the proof of the Lemma 4 ( for more details see [16,
Theorem], or [3, p. 40-52], where we consider only the third inequality in (5)).
As in [16], we investigate 7 cases depending on the behavior of the values of the

derivative |P
′(D)
n | and |P

′(D)
n |p. The distinctions in the proofs appear in the cases

2, 4, 7 which are related to dividing all considered polynomials into the following
classes. Two polynomials

P
(D)
n1 = Nyn + b

(1)
n−1y

n−1 + · · · + b
(1)
1 + b

(1)
0 ,

P
(D)
n2 = Nyn + b

(2)
n−1y

n−1 + · · · + b
(2)
1 + b

(2)
0

belong to one class if b
(1)
n−1 = b

(2)
n−1, . . . , b

(1)
n−r = b

(2)
n−r , where 0 < r < n is the fixed

integer defined in [16, p. 483], r = [θ] − 1, where [θ] is the integer part of θ and
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θ = n+1−(q1+2r1+m1+(k2 +2l2+m2)/T ) with k1, k2,m1,m2, r1, l2, T belonging

to N
⋃{0} and characterizing the differences between the roots |α(n)

i − α
(n)
j | and

|β(n)
i − β

(n)
j |p (1 ≤ i, j ≤ n), and the number T = T (ε) is sufficiently large, the

number ε > 0 is sufficiently small.
There exists a class which has at least � N0,9ε polynomials according to

Dirichlet’s principle. Denote the polynomials of this class by P
(d)
n1 , . . . , P

(d)
nt and

construct (t− 1) new polynomials R
(d)
nj (y) = P

(d)
n(j+1) − P

(d)
nj (1 ≤ j ≤ t− 1). Thus,

starting from polynomials of degree n we reduce the problem to polynomials of
degree k not greater than (q1 + 2r1 +m1 + (k2 + 2l2 +m2)/T )−1 ≤ n−1. Then we

make the new reduction to a polynomial P
(D)
k (y) as in the section 3 of the paper.

Further we use the arguments as case 2 [16, p. 483-484] or [3, p. 46-49]. Thus, the
proof is complete.
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