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Reducibility of a special symmetric form

A. Schinzel

Abstract. Irreducibility over C of a special symmetric form in a variables is
proved for n > 3.

During the XVIIth Czech and Slovak International Conference on Number
Theory A. S ladek has proposed the problem for which values k ≥ 2, n ≥ 3 the form

Fk,n =

n
∏

i=1

xk
i +

(

−
n
∑

i=1

xi

)k n
∑

i=1

n
∏

j=1
j 6=i

xk
j

is reducible over C.
The following theorem gives a partial answer.

Theorem. If n > 3, Fk,n is irreducible over C.

In the proof, based on three lemmas we shall denote by τi(x1, . . . , xm) the i-th
elementary symmetric polynomial of x1, . . . , xm and set τi = τi(x1, . . . , xn), τ ′i =
τi(x1, . . . , xn−1).

Lemma 1. For all k ≥ 1 and all n ≥ 3 the form

Ak,n =

n
∑

i=1

n
∏

j=1
j 6=i

xk
j

is irreducible over C.

Proof. We proceed by induction on n. For n = 3 we have

Ak,3 =
(

xk
1 + xk

2

)

xk
3 + xk

1x
k
2 .

Since (xk
1 + xk

2 , x
k
1x

k
2) = 1 reducibility of Ak,3 over C implies that Ak,3 viewed as

a polynomial of x3 is reducible over C(x1, x2), hence by Capelli’s theorem (see [2],
p. 662) xk

1 + xk
2 is in C[x1, x2] a power with exponent e > 1 dividing k, a contra-

diction.
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Assume now that the lemma is true for n− 1 variables (n ≥ 4). We have

Ak,n = Ak,n−1x
k
n +

n−1
∏

j=1

xk
j .

By the inductive assumption Ak,n−1 is irreducible over C, hence it is prime to
n−1
∏

j=1

xk
j and is not a power with exponent greater than 1 in C[x1, . . . , xn−1]. Hence,

by Capelli’s theorem Ak,n is irreducible over C.

Lemma 2. For all positive integers k and n

Ak,n =
∑

(−1)k+λ1+...+λn
(λ1 + . . .+ λn − 1)!k

λ1!λ2!, . . . , λn!
τk−λ1−...−λn

n τλ1
n−1 · . . . · τ

λn−1

1 ,

where non-negative integers λ1, . . . , λn satisfy λ1 + 2λ2 + . . .+ nλn = k.

Proof. We have

Ak,n = τk
n

n
∑

i=1

x−k
i

and it suffices to apply the formula (see [1], p. 155)

n
∑

i=1

x−k
i =

∑

λ1+2λ2+...+nλn=k

(−1)λ1+...+λn
(λ1 + . . .+ λn − 1)!k

λ1! · . . . · λn!

aλ1
n−1 · . . . · a

λn−1

1

aλ1+...+λn
n

,

where ai = (−1)iτi.

Lemma 3. If f ∈ C[x1, . . . , xn] r {0} is a symmetric form of degree equal to the
common degree d with respect to each variable, then

f = aτd
1 +

∑

1
cδ1,...,δn

n
∏

i=1

τδi

i ,

where a ∈ C∗, cδ1,...,δn
∈ C and the sum

∑

1 is taken over all non-negative integers
δ1, . . . , δn with δ1 + δ2 + . . .+ δn < d, δ1 + 2δ2 + . . .+ nδn = d.

Proof. Since f is a symmetric form it equals F (τ1, . . . , τn), where F ∈ K[y1, . . . , yn]\
0 is isobaric with respect to the common weight w of monomials of F and the com-
mon degree d of F (τ1, . . . , τn) with respect to each variable xi equals degree of F .
Let M be a monomial of F of degree d,

M = a
n
∏

i=1

yαi

i .

We have

w =

n
∑

i=1

iαi, d =

n
∑

i=1

αi

and the equality w = d gives α2 = . . . = αn = 0, M = ayd
1 . Hence

F = ayd
1 +

∑

1
cδ1,...,δn

n
∏

i=1

yδi

i ,

which implies the lemma.
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Proof of Theorem. By Lemma 1 at least one irreducible factor of Fk,n viewed
as a polynomial in xn has the leading coefficient Ak,n−1. Let us call this factor
f1 and the complementary factor, assumed not constant, f2. If for at least one
transposition τ ∈ Sn we have f τ

1 /f1 6∈ C, then since F τ
k,n = Fk,n we obtain

f1f
τ
1 | Fk,n,

hence

2(n− 2)k ≤ 2 deg f1 ≤ degFk,n = kn;

2(n− 2) ≤ n, n ≤ 4, deg f1 = 2k, f1 = Ak,n−1 and

Ak,n−1 | Fk,n (x1, . . . , xn−1, 0) = τ ′
k
1τ

′k
n−1,

which contradicts irreducibility of Ak,n−1. Therefore f τ
1 /f1 ∈ C for all transpo-

sitions τ ∈ Sn. If for a transposition τ = (ij) we have f τ
1 = cf1, c 6= 1, then

τ2 = id, c2 = 1 implies c = −1 and since f τ
1 ≡ f1(mod xi − xj), it follows that

xi − xj | f1, f1 = a(xi − xj), contrary to the choice of f1. Therefore, f τ
1 = f1 for

all transpositions τ ∈ Sn and since Sn is generated by transpositions, fσ
1 = f1 for

all σ ∈ Sn. Since F σ
k,n = Fk,n we have also fσ

2 = f2, thus f2 is a symmetric form,

fν = Fν (τ1, . . . , τn) (ν = 1, 2).

It follows now from Lemma 2 and the algebraic independence of τ1, . . . , τn that

F0 = F1F2,

where

F0 = yk
n + yk

1

∑

2
(−1)λ1+...+λn

(λ1 + . . .+ λn − 1)!k

λ1! . . . λn!
yk−λ1−...−λn

n yλ1
n−1 · . . . · y

λn−1

1

and the sum
∑

2 is taken over all nonnegative integers λ1, . . . , λn with λ1 + 2λ2 +
. . .+ nλn = k.

On the other hand, f2 as a factor of the form Fk,n is itself a form and

deg f2 = degFk,n − degAk,n−1 − degxn
f1 = 2k − degxn

f1 =

degxn
Fk,n − degxn

f1 = degxn
f2,

hence, by Lemma 3

(∗) F2 = ayd
1 +

∑

1
cδ1,...,δn

n
∏

i=1

yδi

i , a ∈ C∗.

We have

F2 (y1, . . . , yn−1, 0) | F0 (y1, . . . , yn−1, 0) = yk
1y

k
n−1,

thus

F2 (y1, . . . , yn−1, 0) = byα
1 y

β
n−1, b ∈ C∗

and, by (∗)

F2 (y1, . . . , yn−1, 0) = ayd
1 .

If F2 depends on yn−1 it follows that its leading coefficient with respect to yn−1

is divisible by yn. However the leading coefficient of F0 with respect to yn−1 is
(−1)kyk

1 , not divisible by yn. Therefore, F2 does not depend on yn−1 and it divides
the leading coefficient of F0 with respect to yn−1, thus we obtain
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F2 | yk
1 , y1 | F2,

y1 | F0, y1 | yk
n.

The obtained contradiction completes the proof.

Remarks.

(1) In the theorem and the proof C can be replaced by any field Kof characteris-

tic not dividing k and the monomial
n
∏

i=1

xk
i by any polynomial F (τ1, . . . , τn),

where F ∈ K[y1, . . . , yn] and
1) F is isobaric of weight kn,
2) degree F < 2k,
3) degyn−1

F < k,

4) F 6≡ 0 mod y1, F ≡ 0 mod yn.
(2) The condition n > 3 cannot be omitted in the theorem, since for k odd

Fk,3 is reducible, divisible by x1 + x2 (this remark has also been made by
A. S ladek).
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