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Abstract

We generalize the correspondence between basic algebras and lattices
with section antitone involutions to a more general case where no lattice
properties are assumed. These algebras are called conjugated if this cor-
respondence is one-to-one. We get conditions for the conjugary of such
algebras and introduce the induced relation. Necessary and sufficient con-
ditions are given to indicated when the induced relation is a quasiorder
which has “nice properties”, e.g. the unary operations are antitone invo-
lutions on the corresponding intervals.
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Correspondence between MV-algebras and bounded distributive lattices with
section antitone involutions is well-known, see e.g. [3] and [5]. This was gen-
eralized for basic algebras and general bounded lattices with section antitone
involutions, see [2] and [3] for details. Semilattices and lattices with section an-
titone involutions were treated separately in [1]. If a bounded lattice is replaced
by the so-called λ-lattice, the corresponding algebra is called an NMV-algebra,
an non-associative generalization of an MV-algebra, see [4]. If a little less is
assumed, we get the correspondence between weak basic algebras and direc-
toids with section antitone involutions, see [6]. These attempts motivate us to
find a general correspondence between algebras of two sorts. One of them are
“MV-like algebras”, the other are “semilattice-like algebras” with a set of unary
operations. Since in all the aforementioned cases the “semilattice-like algebras”
were ordered, we add an assumption that our algebras of the second sort will
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be at least quasiordered. If there is a one-to-one correspondence between these
algebras, we will say that they are conjugated.
At first, we get precise meaning to mentioned concepts.
We consider two kinds of algebras. The first are algebras A = (A;⊕,¬, 0)

of type (2, 1, 0). For the sake of brevity, we will denote 1 := ¬0 the algebraic
constant of A.
The second are algebras L = (A;�, (b)b∈A, 0) where � is a binary operation,

0 is a nullary operation and for each b ∈ A, b is a unary operation on A, i.e. it
is a mapping A → A assigning to x ∈ A an element xb. Denote by 1 := 00. To
every A = (A;⊕,¬, 0) there can be assigned an algebra L(A) = (A;�, (b)b∈A, 0),
where

x � y = ¬(¬x ⊕ y) ⊕ y and xy = ¬x ⊕ y.

To every L= (L;�,(b)b∈L, 0) there can be assigned an algebraA(L) = (L;⊕,¬,0),
where

x ⊕ y = (x0 � y)y and ¬x = x0.

We call algebras A = (A;⊕,¬, 0) and L = (L;�, (b)b∈A, 0) conjugated if

L = L(A) and A = A(L).

This yields A(L(A)) = A and L(A(L)) = L, i.e. if they share the same base-set
and the aforementioned assignments are one-to-one correspondences.
At first, we can describe the following properties of conjugated algebras.

Theorem 1 Let A = (A;⊕,¬, 0) satisfy the conditions

(A1) ¬¬x = x;

(A2) x ⊕ 0 = x;

(A3) ¬(¬(x ⊕ y) ⊕ y) ⊕ y = x ⊕ y.

Then A(L(A)) = A and L(A) satisfies the conditions

(L1) (x � y)yy = x � y;

(L2) xy = (x � y)y;

(L3) x � 0 = x.

Proof Assume that A satisfies (A1), (A2) and (A3) and denote by �,∼ the
operations of A(L(A)). Of course, the nullary operation 0 is the same both in
A and A(L(A)). We have by (A2)

∼ x = x0 = ¬x ⊕ 0 = ¬x.

Further, we compute by (A1) and (A3)

x � y = (x0 � y)y = (¬x � y)y = (¬(¬¬x ⊕ y) ⊕ y)y

= ¬(¬(x ⊕ y) ⊕ y) ⊕ y = x ⊕ y

thus A(L(A)) = A.
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Further, applying (A3), we conclude

xy = ¬x ⊕ y = ¬(¬(¬x ⊕ y) ⊕ y) ⊕ y = ¬(x � y) ⊕ y = (x � y)y

proving (L2). Using this we obtain

(x � y)yy = xyy = ¬(¬x ⊕ y) ⊕ y = x � y

which is (L1). Using (A1) and (A2) we prove also (L3):

x � 0 = ¬(¬x ⊕ 0) ⊕ 0 = ¬¬x = x. �

Theorem 2 Let L = (L;�, (b)b∈L, 0) satisfy (L1), (L2) and (L3). Then
L(A(L)) = L and A(L) satisfies (A1), (A2) and (A3).

Proof Assume that L satisfies (L1), (L2) and (L3) and denote by ∨ the binary
operation and by (fb)b∈L the set of unary operations of L(A(L)). Of course,
the nullary operation 0 is the same in both the algebras. Then, by (L1),

x ∨ y = ¬(¬x ⊕ y) ⊕ y = (¬x ⊕ y)y = (x � y)yy = x � y.

Further, ¬¬x = x00 = (x � 0)00 = x � 0 = x by (L1), (L2) and (L3). Next, by
(L2),

fy(x) = ¬x ⊕ y = ((¬x)0 � y)y = (x00 � y)y = (x � y)y = xy

thus L(A(L)) = L and A(L) satisfies (A1). Analogously,

x ⊕ 0 = (x0 � 0)0 = x00 = (x � 0)00 = x � 0 = x

thus A(L) satisfies (A2). Since A(L) already satisfies (A1), we can easily com-
pute

¬(¬(x ⊕ y) ⊕ y) ⊕ y = (¬x � y)y = (¬x)y = ¬¬x ⊕ y = x ⊕ y

proving (A3). �

Corollary 1 Let A satisfy (A1), (A2) and (A3). Then A and L(A) are con-
jugated. Let L satisfy (L1), (L2) and (L3). Then L and A(L) are conjugated.

Corollary 2 Let A,L be conjugated algebras. Then A satisfies (A1), (A2),
(A3) if and only if L satisfies (L1), (L2), (L3).

Remark 1 As mentioned in the introduction, the correspondence between A =
(A;⊕,¬, 0) and L = (A;�, (b)b∈A, 0) was studied for several cases. The results
are as follows:

(1) If A is a basic algebra then L = L(A) is a bounded semilattice with section
antitone involutions (SAI for short);
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(2) If A is an MV-algebra then L = L(A) is a bounded semilattice with SAI
satisfying the Exchange Property;

(3) If A is an NMV-algebra then L = L(A) is a commutative directoid with
SAI;

(4) If A is a weak basic algebra then L = L(A) is a directoid with SAI (not
necessarily commutative).

In all the cases, A and L are conjugated and there exists an induced order
such that 0 (or 1) is the least (or the greatest) element and y ≤ x � y. We
are going to study this question concerning some “order-like” relation also on
conjugated algebras in general.
Define a binary relation ≤ on an algebra A = (A;⊕,¬, 0) as follows

x ≤ y if and only if ¬x ⊕ y = 1.

Call ≤ the induced relation on A.
Let us note that 1 = ¬0. If A satisfies (A1), then also ¬1 = ¬¬0 = 0.

Lemma 1 The induced relation ≤ on A is reflexive if and only if A satisfies
the identity

(P) ¬x ⊕ x = 1.

Let A satisfy (A1). Then 0 ≤ x ≤ 1 for each x ∈ A if and only if A satisfies
the identity

(A4) 1 ⊕ x = 1 = x ⊕ 1.

Proof The first assertion is trivial. For the second one, 0 ≤ x is equivalent to
1 ⊕ x = ¬0 ⊕ x = 1 and x ≤ 1 is equivalent to ¬x ⊕ 1 = 1 for each x ∈ A, i.e.
due to (A1), A satisfies also the identity x ⊕ 1 = 1. �

Lemma 2 Let A,L be conjugated algebras and ≤ be the induced relation on A.
Let A satisfy (A1) and (A4) and L satisfy (L1). Then the following conditions
are equivalent

(a) 1x = x and xx = 1;

(b) x ≤ y if and only if x � y = y.

Proof (a)⇒(b): Let x ≤ y. Then

(x � y)y = ¬x ⊕ y = 1

thus, by (L1),
x � y = (x � y)yy = 1y = y.

Conversely, if x � y = y then

¬x ⊕ y = (x � y)y = yy = 1,

i.e. x ≤ y.
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(b)⇒(a): Applying Lemma 1, (A4) yields 0 ≤ x and, by the assumption (b),
0 � x = x. By (A4) and (L1) we have

1x = (1 ⊕ x)x = (¬1 � x)xx = (0 � x)xx = 0 � x = x.

Similarly,
xx = (0 � x)x = 00 ⊕ x = 1 ⊕ x = 1. �

Lemma 3 Let A and L be conjugated algebras. Then x ≤ x � y if and only if
A satisfies
(A5) ¬x ⊕ (¬(¬x ⊕ y) ⊕ y) = 1.

Proof By the definition of ≤ we have that

x ≤ x � y if and only if ¬x ⊕ (x � y) = 1.

However, A,L are conjugated thus x � y = ¬(¬x ⊕ y) ⊕ y. �

A binary relation is called a quasiorder if it is reflexive and transitive. We are
going to characterize algebras A = (A;⊕,¬, 0) for which the induced relation is
a quasiorder which has a special meaning for the assigned algebra L.

Lemma 4 Let A = (A;⊕,¬, 0) satisfy the identities (A1) and

(A6) 0 ⊕ x = x;

(A7) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1.

Then the induced relation ≤ is transitive.

Proof Assume x ≤ y and y ≤ z, i.e. ¬x ⊕ y = 1 and ¬y ⊕ z = 1. By (A1),
(A7) and (A6) we compute

1 = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ (¬x ⊕ z)
= ¬(¬(¬1 ⊕ y) ⊕ z) ⊕ (¬x ⊕ z) = ¬(¬(0 ⊕ y) ⊕ z) ⊕ (¬x ⊕ z)
= ¬(¬y ⊕ z) ⊕ (¬x ⊕ z) = ¬1 ⊕ (¬x ⊕ z) = 0 ⊕ (¬x ⊕ z) = ¬x ⊕ z

whence x ≤ z. �

Let (A;≤) be a quasiordered set and f : A → A be a mapping. We say that
f is antitone if x ≤ y yields f(y) ≤ f(x) and f is an involution if f(f(x)) = x
for every x ∈ A. If a, b ∈ A and a ≤ b, by an interval [a, b] is meant the subset
of A given by [a, b] = {x ∈ A; a ≤ x ≤ b}.

Theorem 3 Let A,L be conjugated algebras, let ≤ be the induced relation on
A. Let A satisfy (A1), (A2), (A3), (A4) and (A6). The following conditions
are equivalent

(1) A satisfies (A7);
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(2) ≤ is a quasiorder on A such that x ≤ x� y for each x, y ∈ A and for each
z ∈ A the mapping x 
→ xz is an antitone involution on the interval [z, 1].

Proof (1) ⇒ (2): Put y = 0 = z in (A7). We get ¬x ⊕ x = 1 which is (P) of
Lemma 1, i.e. ≤ is reflexive. Since A satisfies (A6) and (A7), ≤ is transitive by
Lemma 4 and hence (A;≤) is a quasiordered set.
Assume x ≤ y. Then ¬x ⊕ y = 1 and, by (A7),

1 = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ (¬x ⊕ z) = ¬(¬y ⊕ z) ⊕ (¬x ⊕ z)

thus
¬y ⊕ z ≤ ¬x ⊕ z. (∗)

For z = 0 we have x ≤ y ⇒ ¬y ≤ ¬x which is equivalent to

¬x ⊕ y = 1 ⇒ y ⊕ ¬x = 1. (∗∗)

Taking z = 0 and replacing x by ¬x in (A7), we obtain

(¬(¬x ⊕ y) ⊕ y) ⊕ ¬x = 1

thus, by (∗∗), we obtain

¬x ⊕ (¬(¬x ⊕ y) ⊕ y) = 1

which yields
x ≤ ¬(¬x ⊕ y) ⊕ y = x � y.

Let x, y ∈ [z, 1] and x ≤ y. By (∗) we have yz = ¬y ⊕ z ≤ ¬x ⊕ z = xz thus
the mapping x 
→ xz is antitone. By (A4) we have xz ≤ 1. Applying (∗) twice
and using (A1), we obtain

x ≤ y ⇒ x ⊕ z ≤ y ⊕ z. (∗∗∗)

Since ¬x ≤ 1 by (A4), (∗) yileds 0 ≤ x thus, by (∗∗∗) and (A6), we obtain

y = 0 ⊕ y ≤ x ⊕ y.

This yields z ≤ ¬x ⊕ z = xz . We have shown that x 
→ xz is really a mapping
of the interval [z, 1] into itself. By (L1) and (L2), it is an involution. We have
shown (1) ⇒ (2).

(2) ⇒ (1): By (2) we have ¬x ≤ ¬x � y where the induced relation ≤ is a
quasiorder on A. By (2),

¬(¬(x ⊕ y) ⊕ y) ⊕ z) = ¬(¬x � y) ⊕ z =

= ((¬x � y) � z)z = (¬x � y)z ≤ (¬x)z = (¬x � z)z = x ⊕ z

thus ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1 which is just (A7). �
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