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Abstract

The concept of a basic pseudoring is introduced. It is shown that
every orthomodular lattice can be converted into a basic pseudoring by
using of the term operation called Sasaki projection. It is given a mutual
relationship between basic algebras and basic pseudorings. There are
characterized basic pseudorings which can be converted into othomodular
lattices.
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It is well-known that every Boolean algebra can be converted into a Boolean
ring by using of the symmetrical difference, see e.g. [2]. Also conversely, every
Boolean ring can be converted into a Boolean algebra. For orthomodular lattices
(instead of Boolean algebras) a similar construction giving a ring-like structure
called Boolean quasiring was settled in [6], [7] and generalized for bounded
lattices with an antitone involution in [8] and [9]. The natural question is for
which algebras used in non-classical logics a similar conversion into a ring-like
structure is possible. Of course, Boolean algebras serve as axiomatization of the
classical propositional logic and orthomodular lattices play a similar role in the
logic of quantum mechanics, see e.g. [1], [7], [8], [9].

In this study we are concentrated in an algebraic counterpart of many-valued
logics. This is usually considered to be an MV-algebra for many-valued �Lukasie-
wicz logic. However, it was generalized for more wide class as the concept of
basic algebra, see e.g. [3], [4] as sources.
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Let us note that a certain ring-like structures corresponding to MV-algebras
were investigated by the first author and H. Länger in [5] and analogously, it
was done for pseudo MV-algebras by Y. Shang in [10]. We will involve a similar
approach which, however, can be used both for MV-algebras and orthomodular
lattices.

The concept of basic algebra was introduced in [3] as a common generaliza-
tion of an MV-algebra and an orthomodular lattice. Recall that a basic algebra
(see e.g. [3], [4]) is an algebra A = (A;⊕,¬, 0) of type (2, 1, 0) satisfying the
following identities

(BA1) x ⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x (�Lukasiewicz axiom);

(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1 (where 1 := ¬0).

Let us note that every basic algebra satisfies also the identities 1 ⊕ x = 1 =
x ⊕ 1, 0 ⊕ x = x, x ⊕ ¬x = ¬x ⊕ x = 1 (see e.g. [3]). In every basic algebra
A = (A;⊕,¬, 0), the partial order can be defined by x ≤ y if and only if ¬x⊕y =
1. The ordered set (A;≤) is a bounded lattice where x ∨ y = ¬(¬x ⊕ y) ⊕ y,
x∧y = ¬(¬x∨¬y) and 1 = ¬0. Moreover, it satisfies y ≤ x⊕y and the mapping
x �→ ¬x is antitone for every x, y ∈ A.

A basic algebra A = (A;⊕,¬, 0) is called commutative if it satisfies the
identity x ⊕ y = y ⊕ x.

The concept of symmetrical difference can be introduced for basic algebras
in a way similar to that of [6] for orthomodular lattices, however, an operation
⊕ is considered instead of ∨ in orthomodular lattice because ⊕ expresses the
logical connective disjunction in the corresponding logic.

Searching for an appropriate ring-like structure, we choose the following one
from a number of possible ways.

Definition 1 By a basic pseudoring we mean an algebra R = (R; +, ·, 0, 1) of
type (2, 2, 0, 0) satisfying the identities

(R1) 1 + 0 = 1;

(R2) x · 1 = x;

(R3) 1 + (1 + x) = x;

(R4) (1 + x · (1 + y)) · (1 + y) = (1 + y · (1 + x)) · (1 + x);

(R5) 1+(1+(1+(1+((1+x)·(1+y)))·(1+y))·(1+z))·((1+x)·(1+z)) = 1.

One can immediately mention that this concept differs from the concept of
a Boolean quasiring or a generalized Boolean quasiring as defined in [7], [8], [9].
From this point it can be of interest that this ring-like structure can be also
reached from every orthomodular structure. Of course, this conversion differs
due to the fact that instead of a symmetrical difference (see [6]) the Sasaki
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operation (alias Sasaki projection, see [1]) is used. Let us recall that by a Sasaki
operation of an orthomodular lattice is meant a term operation

(x ∨ y′) ∧ y.

We are ready to state our first result.

Theorem 1 Let L = (L;∨,∧,′ , 0, 1) be an orthomodular lattice. Define

x · y = (x ∨ y′) ∧ y and x + y = ((x′ · y)′ · (x · y′)′)′.

Then R(L) = (R; +, ·, 0, 1) is a basic pseudoring satisfying the conditions
(a) x · x = x

(b) x·(1+y) = 0 ⇒ 1+(1+((1+(1+y)·(1+x))·(1+x))·(1+x))·(1+x) = y.

Proof It is an immediate reflexion that

x · x = (x ∨ x′) ∧ x = 1 ∧ x = x

proving (a).
Further, 1 · x = (1 ∨ x′) ∧ x = x and 0 · x = (0 ∨ x′) ∧ x = 0. Hence,

1 + x = ((1′ · x)′ · (1 · x′)′)′ = (0′ · x′′)′ = (1 · x)′ = x′.

This yields 1 + 0 = 0′ = 1 proving (R1). Evidently,

x · 1 = (x ∨ 1′) ∧ 1 = x

proving (R2) and 1 + (1 + x) = x′′ = x proving (R3). For (R4) we compute

(1 + x · (1 + y)) · (1 + y) = (x · y′)′ · y′ = ((x ∨ y) ∧ y′)′ · y′

= (((x ∨ y) ∧ y′)′ ∨ y) ∧ y′ = ((x ∨ y)′ ∨ y) ∧ y′ = (x ∨ y)′

due to the orthomodular law since (x∨ y)′ ≤ y′. By symmetry we obtain (R4).
Since

1 + (1 + ((1 + x) · (1 + y))) · (1 + y) = 1 + ((x′ ∨ y) ∧ y′)′ · y′

= (((x ∧ y′) ∨ y) ∧ y′)′ = ((x′ ∨ y) ∧ y′) ∨ y = x′ ∨ y

by the orthomodular law, for (R5) we have

1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (x′ ∨ y) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (x′ ∨ y) · z′) · ((x′ ∨ z) ∧ z′)
= ((((x′ ∨ y) · z′)′) · ((x′ ∨ z) ∧ z′))′

= (((((x′ ∨ y) ∨ z)′ ∨ z) ∨ ((x′ ∨ z) ∧ z′)′) ∧ ((x′ ∨ z) ∧ z′))′

= ((((x′ ∨ y) ∨ z) ∧ z′) ∧ ((x′ ∨ z) ∧ z′)) ∨ ((x′ ∨ z) ∧ z′)′

= ((x′ ∨ z) ∧ z′) ∨ ((x′ ∨ z) ∧ z′)′ = 1.
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It remains to prove (b). Assume x · (1+y) = 0. Then 0 = x ·y′ = (x∨y)∧y′

thus x ∨ y = y whence x ≤ y. Thus

1 + (1 + ((1 + (1 + y) · (1 + x)) · (1 + x)) · (1 + x)) · (1 + x)
= 1 + (1 + (y ∧ x′) · (1 + x)) · (1 + x) = (y ∧ x′) ∨ x = y

by the orthomodular law. �

Now, we are going to describe a mutual relationship between basic pseudor-
ings and basic algebras.

Theorem 2 Let R = (R; +, ·, 0, 1) be a basic pseudoring. Define

x ⊕ y = 1 + (1 + x) · (1 + y) and ¬x = 1 + x.

Then A(R) = (R;⊕,¬, 0) is a basic algebra.

Proof We will check the axioms of a basic algebra.

(BA1): x ⊕ 0 = 1 + (1 + x) · (1 + 0) = 1 + (1 + x) · 1 = 1 + (1 + x) = x;

(BA2): ¬¬x = 1 + (1 + x) = x;

(BA3): ¬(¬x ⊕ y) ⊕ y =
= 1 + (1 + (1 + (¬x ⊕ y))) · (1 + y) = 1 + (¬x ⊕ y) · (1 + y)
= 1 + (1 + (1 + (1 + x)) · (1 + y)) · (1 + y) = 1 + (1 + x · (1 + y)) · (1 + y)
= 1 + (1 + y · (1 + x)) · (1 + x) = 1 + (¬y ⊕ x) · (1 + x)
= ¬(¬y ⊕ x) ⊕ x;

(BA4): ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) =
= ¬(¬((1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) ⊕ z) ⊕ (1 + (1 + x) · (1 + z))
= (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z) ⊕ (1 + (1 + x) · (1 + z))
= 1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1. �

We can prove the converse.

Theorem 3 Let A = (A;⊕,¬, 0) be a basic algebra. Define

x + y = ¬(x ⊕ ¬y) ⊕ ¬(¬x ⊕ y) and x · y = ¬(¬x ⊕ ¬y) and 1 = ¬0.

Then R(A) = (A; +, ·, 0, 1) is a basic pseudoring satisfying the correspondence
identity

1 + (1 + (1 + x) · y) · (1 + x · (1 + y)) = x + y. (CI)

Proof First we mention that

1 + x = ¬(1 ⊕ ¬x) ⊕ ¬(0 ⊕ x) = ¬1 ⊕ ¬x = 0 ⊕ ¬x = ¬x.

Now we check the axioms of a basic pseudoring.

(R1): 1 + 0 = ¬(1 ⊕ ¬0) ⊕ ¬(¬1 ⊕ 0) = ¬1 ⊕ ¬0 = 1;

(R2): x · 1 = ¬(¬x ⊕ ¬1) = ¬(¬x ⊕ 0) = ¬¬x = x;
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(R3): 1 + (1 + x) = ¬¬x = x;

(R4): (1 + x · (1 + y)) · (1 + y)
= (¬(x · ¬y)) · ¬y = (¬x ⊕ y) · ¬y = ¬(¬(¬x ⊕ y) ⊕ y) = ¬(¬(¬y ⊕ x) ⊕ x)
= (1 + y · (1 + x)) · (1 + x);

(R5): 1 + (1 + (1 + (1 + ((1 + x) · (1 + y))) · (1 + y)) · (1 + z)) · ((1 + x) · (1 + z))
= 1 + (1 + (1 + (x ⊕ y) · ¬y) · ¬z) · (¬x · ¬z)
= 1 + (1 + (¬((x ⊕ y) · ¬y)) · ¬z) · ¬(x ⊕ z)
= 1 + (1 + (¬(x ⊕ y) ⊕ y) · ¬z) · ¬(x ⊕ z)
= 1 + (¬(¬(x ⊕ y) ⊕ y) ⊕ z) · ¬(x ⊕ z)
= 1 + ¬(¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z))
= ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z)
= 1.
Hence, R(A) = (A; +, ·, 0, 1) is a basic pseudoring. It remains to prove (CI).

For this, we compute

1 + (1 + (1 + x) · y) · (1 + x · (1 + y))
= ¬(¬(¬x · y) · ¬(x · ¬y)) = ¬(x ⊕ ¬y) ⊕ ¬(¬x ⊕ y) = x + y �

In what follows we show that this relationship is in fact a one-to-one corre-
spondence if R satisfies the correspondence identity.

Theorem 4 (a) Let A = (A;⊕,¬, 0) be a basic algebra and R(A) the induced
basic pseudoring and A(R(A)) the induced basic algebra. Then A(R(A)) = A.
(b) Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying the correspondence

identity (CI), let A(R) be the induced basic algebra and R(A(R)) the induced
basic pseudoring. Then R(A(R)) = R.
Proof Denote by ̂⊕ and ¬̂ the binary and the unary operation of A(R(A)).
Then clearly,

¬̂x = 1 + x = ¬(1 ⊕ ¬x) ⊕ ¬(¬1 ⊕ x) = 0 ⊕ ¬x = ¬x

and

x̂⊕y = 1 + (1 + x) · (1 + y) = ¬(¬x · ¬y) = ¬(¬(x ⊕ y)) = x ⊕ y

thus A(R(A)) = A.
Denote by ̂+ and ·̂ the binary operations of R(A(R)). Then, due to (CI) we

compute

x̂+y = ¬(x ⊕ ¬y) ⊕ ¬(¬x ⊕ y) = (1 + x) · y ⊕ x · (1 + y)
= 1 + (1 + (1 + x) · y) · (1 + x · (1 + y)) = x + y

and

x ·̂ y = ¬(¬x ⊕ ¬y) = 1 + ((1 + x) ⊕ (1 + y))
= 1 + (1 + (1 + (1 + x)) · (1 + (1 + y))) = 1 + (1 + x · y) = x · y

thus also R(A(R)) = R. �
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Several interesting properties of basic pseudorings are described by the fol-
lowing theorem and its corollary.

Theorem 5 Let R = (R; +, ·, 0, 1) be a basic pseudoring and a, b ∈ R. Then

a + b = 0 if and only if a = b.

Proof Let R = (R; +, ·, 0, 1) be a basic pseudoring and A(R) = (R;⊕,¬, 0)
the induced basic algebra. In A(R) we have c ≤ d if and only if ¬c ⊕ d = 1.
Since x ≤ x and ¬x ≤ ¬x, we get ¬x ⊕ x = 1 and x ⊕ ¬x = ¬¬x ⊕ ¬x = 1
whence

x + x = ¬(x ⊕ ¬x) ⊕ ¬(¬x ⊕ x) = ¬1 ⊕ ¬1 = 0 ⊕ 0 = 0.

Assume now that c, d ∈ R and c ⊕ d = 0. Since d ≤ c ⊕ d = 0, we conclude
d = 0 and hence c = c ⊕ 0 = c ⊕ d = 0, i.e.

c ⊕ d = 0 ⇒ c = d = 0. (∗∗)

Suppose a, b ∈ R and a + b = 0. Then

¬(a ⊕ ¬b) ⊕ ¬(¬a ⊕ b) = 0

and, by (∗∗), ¬(a ⊕ ¬b) = 0 = ¬(¬a ⊕ b), i.e. a ⊕ ¬b = 1 and ¬a ⊕ b = 1 thus
¬a ≤ ¬b and a ≤ b. However, the first inequality yields b ≤ a thus a = b. �

Corollary 1 (a) Every basic pseudoring satisfies the identity x + x = 0.
(b) If a pseudoring R satisfies the identity x · y = y · x then A(R) is a

commutative basic algebra.
(c) If a basic algebra A is commutative then R(A) satisfies the identities

x · y = y · x and x + y = y + x.

In what follows, we are going to show that not only every basic algebra
induces a basic pseudoring and vice versa as shown by Theorems 2 and 3 but
also Theorem 1 can be inverted, i.e. every orthomodular lattice induces a basic
pseudoring satisfying the conditions (a), (b) but also every such basic pseudoring
induces an orthomodular latttice.

Now, we are ready to prove the following

Theorem 6 Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying the identi-
ties (a) and (b) of Theorem 1. Define a binary relation ≤ on R as follows

x ≤ y if and only if x · (1 + y) = 0.

Then ≤ is an order on R and (R;≤) is an orthomodular lattice where

x ∨ y = 1 + (1 + x · (1 + y)) · (1 + y) and x′ = 1 + x.
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Proof Let R = (R; +, ·, 0, 1) be a basic pseudoring satisfying (a) and (b).
Consider the induced basic algebra A(R) = (R;⊕,¬, 0). Then clearly

x · (1 + y) = 0 iff ¬x ⊕ y = 1 iff x ≤ y

thus ≤ is an order on R and (R;≤) is the lattice induced by the basic algebra
A(R) where x∨ y = ¬(¬x⊕ y)⊕ y = 1+(1+x · (1+ y)) · (1+ y) and ¬x = 1+x
(as already shown by Theorem 2). Hence, for x ∧ y = (x′ ∨ y′)′ we have that
(R;∨,∧,′ , 0, 1) is a bounded lattice with an antitone involution (i.e. x′′ = x and
x ≤ y ⇒ y′ ≤ x′).

Further, by (a) we have x = x · x = ¬(¬x ⊕ ¬x), i.e. ¬x = ¬x ⊕ ¬x
and, due to the double negation law in A(R), also x ⊕ x = x for each x ∈ R.
Thus ¬x ∨ x = ¬(x ⊕ x) ⊕ x = ¬x ⊕ x = 1 and, due to De Morgan law,
also x ∧ ¬x = ¬(¬x ∨ x) = ¬1 = 0 thus x′ = ¬x is a complement of x, i.e.
(R;∨,∧,′ , 0, 1) is an ortholattice.

Finally,

1 + (1 + ((1 + (1 + y) · (1 + x)) · (1 + x)) · (1 + x)) · (1 + x)
= 1 + (1 + (y ∧ x′) · (1 + x)) · (1 + x) = (y ∧ x′) ∨ x,

thus x ≤ y ⇒ x · (1 + y) = 0 and, by (b) and the previous computation,
x ∨ (x′ ∧ y) = y, which is the orthomodular law. Hence, (R;∨,∧,′ , 0, 1) is an
orthomodular lattice. �
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