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A NOTE ABOUT OPERATIONS LIKE TW

(THE WEAKEST t–NORM) BASED ADDITION

ON FUZZY INTERVALS

Dug Hun Hong

We investigate a relation about subadditivity of functions. Based on subadditivity of
functions, we consider some conditions for continuous t-norms to act as the weakest t-norm
TW -based addition. This work extends some results of Marková-Stupňanová [15], Mesiar
[18].
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1. INTRODUCTION

Fuzzy arithmetic has grown in importance during recent years as a tool of advance in
fuzzy optimization and control theory. The usual arithmetic operations of reals can
be extended to the arithmetical operations on fuzzy intervals by means of Zadeh’s
extension principle [20] based on a triangular norm T . Fuzzy arithmetic based on
the sup-(t-norm) convolution, with the controllability of the increase of fuzziness,
enables us to construct more flexible and adaptable mathematical models in several
intelligent technologies based on approximate reasoning and fuzzy logic. Hence a
lot of effort is needed to find exact and good approximative computational formulas
for fuzzy arithmetic operations. Some results on fuzzy arithmetic operations and
their applications can be found in [1 – 18]. In this note, we are interested in some
conditions of t-norm under which the addition of LR-fuzzy intervals act exactly as the
TW -based addition. Some results on the continuous t-norm based additions of fuzzy
intervals which act exactly as the TW -based addition can be found in [1, 9, 15, 18]. We
investigate a relation of of subadditivity of functions. We consider some extensions
of the result of Marková-Stupňanová [15], Mesiar [18] and Hong [9].

A function T : [0, 1] × [0, 1] → [0, 1] is said to be a t-norm [1] iff T is symmetric,
associative, non-decreasing in each argument, and T (x, 1) = x for all x ∈ [0, 1]. For
arbitrary fuzzy quantities Ai, i = 1, 2, . . . , n, n ∈ N , their T -sum is defined by means
of the generalized extension principle [1].

A1⊕T · · · ⊕T An(z) = sup
P

xi=z

T (A1(x1), . . . , An(xn)), z ∈ R, (1)



542 D.H. HONG

where the usual extension of T to an n-ary operation is used.
If T1 ≤ T2(the usual order of t-norm as two-place function), then for any fuzzy

quantity A and B it is A⊕T1B ≤ A⊕T2B. Let TW denote the weakest t-norm defined
by

TW (x, y) =

{
min(x, y) if max(x, y) = 1,

0 otherwise,

and let TM denote the strongest t-norm defined by TM (x, y) = min(x, y) for all
x, y ∈ [0, 1]. Consequently, for any t-norm T it is

A⊕W B ≤ A⊕T B ≤ A⊕MB.

A fuzzy quantity A is called fuzzy interval if it is continuous and for each α ∈ (0, 1],
the corresponding α-cut Aα = {x ∈ R;A(x) ≥ α} is a non-empty convex closed
subset of R. If the support of A, suppA = ∪Aα, is bounded in R, then the fuzzy
interval A is so-called LR-fuzzy interval. If, for an LR-fuzzy interval A, A1 = [lA, rA]
is a singleton (i. e., lA = rA) , then A is called an LR-fuzzy number.

Let J be the class of all fuzzy quantities defined on [0,∞] which are continuous
non-increasing with the strict maximum 1 in the point 0 and its members be called
shapes. Any fuzzy interval A can be written as a quadruple

A = (lA, γA, A∗, A
∗)

where A∗ and A∗ are defined by A∗(x) = A(x + rA) and A∗(x) = A(lA − x), (if
lA = −∞, then A∗ = φ; similarly if rA = ∞ then A∗ = φ; otherwise A∗, A∗ ∈ J ),

A(x) =





1 if x ∈ [lA, rA],

A∗(x − rA) if x > rA,

A∗(lA − x) if x < lA.

It is known [3] that the T -sum of fuzzy intervals is defined by

A ⊕T B = (lA, rA, A∗, A
∗) ⊕T (lB , rB , B∗, B

∗)

= (lA + lB , rA + rB , A∗ ⊕T B∗, A
∗ ⊕T B∗),

where, by the convention, ∞+x = ∞ and −∞+x = −∞ for all x ∈ R, and for any
element S from J ∪ {φ}, S ⊕T φ = S.

Following that above argument, it suffices to study only about T -sums of shapes
instead of fuzzy intervals.

2. TW BASED ADDITION ON FUZZY INTERVALS

For the weakest of t-norm TW , we have the following result directly from the exten-
sion principle.

Theorem 1. Let Si ∈ J , i = 1, . . . , n, n ∈ N . Then

S1 ⊕W · · · ⊕W Sn = max(S1, . . . , Sn).
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Corollary 1. Let Ai = (li, ri, Si, Ri), i = 1, . . . , n, n ∈ N be fuzzy intervals. Then

A1 ⊕W · · · ⊕W An =
(∑

li,
∑

ri, maxSi, max Ri

)
.

Recall that a continuous t-norm T is Archimedean iff T (x, x) < x for all x ∈
(0, 1). Every Archimedean t-norm T is representable by a continuous and decreasing
function f : [0, 1] → [0, ∞] with f(1) = 0 and T (x, y) = f [−1](f(x) + f(y)), where
f [−1] is the pseudo-inverse of f , defined by

f [−1](y) =:

{
f−1(y) if y ∈ [0, f(0)],

0 if y ∈ [f(0), ∞].

The function f is the additive generator of T . If f is bounded, then it can be chosen
uniquely so that f(0) = 1 and the corresponding t-norm T is called a nilpotent
t-norm. If f is unbounded, the corresponding t-norm T is called a strict t-norm. For
two fuzzy quantities A and B, their T -sum defined by (1) can be written into

A ⊕T B(z) = sup
x+y=z

f [−1](f(A(x)) + f(B(y))). (2)

The following theorem is due to Marková-Stupňanová [15] and Mesiar [18, Theorem 4]
and gives some sufficient conditions for a t-norm T to act as the TW -based addition.

Theorem 2. (Marková-Stupňanová [15], Mesiar [18]) Let T be a continuous
Archimedean t-norm (strict or nilpotent)with additive generator f . Let Si ∈ J ,
i = 1, . . . , n, n ∈ N , be shapes such that all composites f ◦Si are concave functions.
Then

S1 ⊕T · · · ⊕T Sn = max(S1, . . . , Sn).

A function h is subadditive if for all s, t ≥ 0

h(s + t) ≤ h(s) + h(t).

We say that S ∈ J is a ⊕T −idempotent if S ⊕T S = S.

The following result is due to Marková-Stupňanová [15, Theorems 5, 6] and Hong
[9, Theorem 3].

Theorem 3. (Hong [9], Marková-Stupňanová [15]) Let S ∈ J and let T be
a continuous Archimedean t-norm (strict or nilpotent) with additive generator f .
Then f ◦ S is subadditive if and only if S is a ⊕T - idempotent.

The following theorem is due to Hong [9] which generalize Theorems 2, 3 and 4
of Marková-Stupňanová [15] and Theorem 4 and 5 of Mesiar [18].

Theorem 4. (Hong [9]) Let T be a continuous Archimedean t-norm with additive
generator f . Let Si ∈ J , i = 1, . . . , n, n ∈ N , be shapes such that f ◦ max(Si) is
subadditive. Then

S1 ⊕T · · · ⊕T Sn = max(S1, . . . , Sn).
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3. MAIN RESULTS

We first consider the relation between subadditivity of all composites f ◦ Si and
subadditivity of f ◦ max(Si). The condition that f ◦ Si, i = 1, . . . , n, n ∈ N are
concave implies that f ◦ max(Si) is concave. Likewise, can we prove that the con-
dition that f ◦ Si, i = 1, . . . , n, n ∈ N are subadditive implies that f ◦ max(Si)
is subadditive? Indeed, both conditions have nothing to do with each other. The
following example shows the subadditivity of f ◦ Si, i = 1, . . . , n, n ∈ N does not
imply the subadditivity of f ◦ max(Si).

Example 1. ÃLukasiewicz t-norm TL, TL(x, y) = max(x + y − 1, 0) with additive
generator f(x) = 1 − x. Let

1 − S1(x) =





3
2x x ∈ [0, 1/4],

1
2x + 1

4 x ∈ [1/4, 3/4],

3
2x − 1

2 x ∈ [3/4, 1],

1 otherwise,

and let 1−S2(x) = x, x ∈ [0, 1], and 1, otherwise. Then clearly f ◦S2 is subadditive.
For f ◦ S1, there are many cases to check. For example, we consider the case that
s ∈ [0, 1/4], t ∈ [3/4, 1]. Then

f ◦ S1(s) + f ◦ S1(t) − f ◦ S1(s + t)

=
3

2
s +

3

2
t − 1

2
− min

{
3

2
(s + t) − 1

2
, 1

}

≥ 3

2
s +

3

2
t − 1

2
−

(
3

2
(s + t) − 1

2

)

= 0

Similarly we can easily check for all other cases to show that f ◦ S1 is subadditive.
But from the fact that f ◦ max(S1, S2) (1) = 1, f ◦ max(S1, S2) (1/4) = (1/4) and
f ◦ max(S1, S2) (3/4) = (5/8) we see that f ◦ max(S1, S2) is not subadditive.

Note 1. In general, nondecreasing concave function is subadditive. But the con-
verse is not true. f ◦ S1 in Example 1 is a counter example for this.

The following example shows the subadditivity of f ◦max(Si) does not imply the
subadditivity of f ◦ Si, i = 1, . . . , n, n ∈ N .

Example 2. ÃLukasiewicz t-norm TL, TL(x, y) = max(x + y − 1, 0) with additive
generator f(x) = 1 − x. Let

1 − S1(x) =





x x ∈ [0, 1/4],

3
2x − 1

8 x ∈ [1/4, 3/8],

1
2x + 1

4 x ∈ [3/8, 1/2],

x x ∈ [1/2, 1],

1 otherwise,
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1 − S2(x) =





x x ∈ [0, 1/2],

3
2x − 1

4 x ∈ [1/2, 3/4],
1
2x + 1

2 x ∈ [3/4, 1],

1 otherwise.

Then 1 − Si(x) = f ◦ Si, i = 1, 2, and f ◦ S1(1/4) + f ◦ S1(1/8) = 1/4 + 1/8 <
7/16 = f ◦S1(3/8) and hence f ◦S1 is not subadditive. Similarly, since f ◦S2(1/4)+
f ◦ S1(1/2) = 1/4 + 1/2 < 7/8 = f ◦ S2(3/4), f ◦ S2 is not subadditive. But
f ◦ max(Si) (x) = min(f ◦ Si) (x) = x, x ∈ [0, 1], and 1 otherwise, is subadditive.

We consider another sufficient condition for a t-norm T to act as the TW -based
addition. This result also generalize Theorem 2, 3 and 4 of Marková-Stupňanová
[15] and Theorem 4 and 5 of Mesiar [18].

Theorem 5. Let T be a continuous Archimedean t-norm with additive generator
f . Let Si ∈ J , i = 1, . . . , n, n ∈ N , be shapes such that all composites f ◦ Si are
subadditive. Then

S1 ⊕T · · · ⊕T Sn = max(Si) ⊕T · · · ⊕T max(Si).

P r o o f . We prove for k = 2 and the case for k = n ∈ N is similar. Since
max(S1, S2) ≤ S1 ⊕T S2, and S1 and S2 are ⊕T -idempotent, we have

S1 ⊕T S2 ≤ max(S1, S2) ⊕T max(S1, S2)

≤ (S1 ⊕T S2) ⊕T (S1 ⊕T S2)

= (S1 ⊕T S1) ⊕T (S2 ⊕T S2)

= S1 ⊕T S2,

where the first equality comes from commutative law based on ⊕T addition opera-
tion. This implies S1 ⊕T S2 = max(S1, S2)⊕T max(S1, S2) and completes the proof.

¤

Note 2. In Theorem 2 if f ◦ Si, i = 1, . . . , n, n ∈ N are non-decreasing concave,
then f ◦ max(Si) = min(f ◦ Si) is non-decreasing concave and hence is subadditive.
Then max(Si) is ⊕T -idempotent by Theorem 3. Therefore Theorem 5 generalizes
Theorem 2.

The following theorem gives a relation between subadditivity of all composites
f ◦ Si and subadditivity of f ◦ max(Si).

Corollary 2. Let T be a continuous Archimedean t-norm with additive generator
f . Let Si ∈ J , i = 1, . . . , n, n ∈ N . If f ◦ Si is subadditive for i = 1, . . . , n and
S1 ⊕T · · · ⊕T Sn = max(Si), then f ◦ max(Si) is subadditive.
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P r o o f . Suppose that S1 ⊕T S2 = max(S1, S2). Since S1, S2 are ⊕T - idempotent,

max(S1, S2) = S1 ⊕T S2

= (S1 ⊕T S1) ⊕T (S2 ⊕T S2)

= (S1 ⊕T S2) ⊕T (S1 ⊕T S2)

= max(S1, S2) ⊕T max(S1, S2).

In general, we have max(Si) = max(Si)⊕T max(Si) by the mathematical induction.
Therefore f ◦ max(Si) is subadditive by Theorem 3, which completes the proof. ¤

(Received May 8, 2008.)
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