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Nonassociativity in VOA theory and finite group theory

Robert L. Griess, Jr.

Abstract. We discuss some examples of nonassociative algebras which occur in
VOA (vertex operator algebra) theory and finite group theory. Methods of VOA
theory and finite group theory provide a lot of nonassociative algebras to study.
Ideas from nonassociative algebra theory could be useful to group theorists and
VOA theorists.
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1. Introduction

This article is motivated by concerns from finite group theory.
The first is that we do not have good axiom systems for all of the finite simple

groups. The second is that we do not really understand how the sporadic simple
groups fit into mathematics.

An answer to the first concern could help us with the second. A good theory
of some relevant nonassociative algebras might be a suitable answer.

We hope that this article will encourage nonassociative theorists to think about
connections with finite simple groups, especially the sporadic groups. Technicali-
ties are kept to a minimum and references are provided.

1.1 A condensed list of the finite simple groups.

The finite simple groups

The alternating groups, Altn, n ≥ 5

Finite groups of Lie type,

An(q), Bn(q), . . . , E8(q),
2An(q), . . . , 2F4(q) (q is a prime power)

(for example, An(q) is PSL(n + 1, q),
determinant 1 matrices mod scalars
over Fq, the finite field of q elements;

2An(q) is PSU(n + 1, q),
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Bn(q) is PSO(2n + 1, q), etc.)

The 26 sporadic groups:

M11 (this is the first Mathieu group; it is the smallest sporadic group, order
7920 = 24325·11)

. . .

F1 = M (the largest, order 246320597611213317·19·23·29·31·41·47·59·71∼8× 1053)

2. Theory for groups of Lie type

Most finite simple groups are groups of Lie type, so we concentrate on them
first. These are, roughly, analogues over finite fields of the simple real and com-
plex Lie groups. The starting point is the definition of a Lie algebra, given by
a few simple axioms. One can quickly derive consequences to make a structure
theory. In a one-term course, it is possible to classify all the simple finite dimen-
sional Lie algebras over the complex numbers and describe significant results in
representation theory.

For groups of Lie type, we have an axiom system derived from Lie theory:

Definition 2.1. A (B, N) pair is a pair of subgroups B and N of a group G such
that the following axioms hold.

G is generated by B and N .
The intersection H := B ∩ N is a normal subgroup of N .
The group W := N/H is generated by a nonempty set S of elements of
order 2 such that:

– if sH is one of the generators of W and n is any element of N , then
sBn ⊆ BsnB ∪ BnB;

– if sH ∈ S then sH contains no element which normalizes B.

Example 2.2. G = GL(m, K), B = invertible upper triangular matrices, N= all
invertible monomial matrices (diagonal times permutation matrix), H= diagonal
matrices in G, W ∼= Symm.

These axioms lead to uniform proofs for structure theory, representation theory,
conjugacy, etc. They predict and explain a lot. For example, there are uniform
arguments for many aspects of GLn, orthogonal, symplectic groups, G2, F4, E6,
etc. which complement or replace theories of these groups as isometry groups
of forms (e.g., orthogonal and symplectic groups), as automorphism groups of
algebras (e.g., groups of type G2 and F4) or otherwise.

3. Theory for sporadic groups

We would like a theory with similar uniform qualities for sporadic groups. None
is known at this time, despite decades of study.

There are reasons for hope that the world of commutative associative algebras
will offer help to finding a theory. The following is generally true. Let G be any
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finite group and Ω a G-set. Let K be a field. Form the permutation module
KΩ. We can define an algebra structure on the permutation module by making
α · β =: δaβ α, for α, β ∈ Ω. The permutation module is then a direct sum of
fields, indexed by Ω, and G permutes the indecomposable summands and acts as
a group of automorphisms.

Notice that there is a G-invariant form based on making Ω an orthonormal
basis.

Now suppose that S is any algebra and that T is a subspace. Let U complement
T , so that S = T ⊕ U as vector spaces. Let π be the projection to T . We may
define an algebra structure on T as follows. For x, y ∈ T , define x ∗ y = π(xy),
where xy means the product in S. The algebra (T, ∗) is called the contraction of S
to T (more correctly, the contraction with respect to the direct sum decomposition

S = T ⊕ U). Note that if S is commutative, so is the contraction. However, the
contraction of an associative algebra may not be associative.

We now return to the earlier situation with G and KΩ. Take any G-submodule
A of KΩ. Let us assume that A is nonsingular and let π be the orthogonal
projection KΩ → A. As above, we define the contraction (A, ∗) of KΩ. While
the product is usually not associative, it has an associative bilinear form (x, y∗z) =
(x ∗ y, z). Finally, we observe that the action of G preserves the product.

The Monster simple group was first constructed as a group of automorphisms
of a 196883-dimensional algebra [10], [11]. We call this algebra B0. This construc-
tion was achieved by piecing together representations of several finite groups and
choosing a suitable algebra structure. We point out in the next example that B0

can be described as a contraction (given existence of the Monster).

Example 3.1. If G is the Monster simple group, order about 1054, and Ω is
the conjugacy class of involutions called 2A, then |Ω| is about 1020. There is a
G-submodule A0 of the permutation module QΩ so that dim(A0) = 196883 and
that A0 has dimension 196883. The contraction A0 is isomorphic to B0.

After the original construction of B0 and the Monster, a 196884 dimensional
algebra with unit B was proposed (possibly first in [8]). It contains a copy of B0

as a subspace and its full automorphism group is the Monster. The algebra B has
become more widely used than the original B0. One nice feature of B is that it has
a 300-dimensional subalgebra which is the Jordan algebra of degree 24 symmetric
matrices. See consequence (4) below.

There is literature on commutative nonassociative algebras A which are related
to permutation representations of finite groups, including sporadic groups (or
central extension of such). In some cases, there are results on Aut(A). See later
sections in this article; also [26], [28], [21].

Along came the theory of VOAs (vertex operator algebras) in the mid 1980s.

An abbreviated definition of VOA.

(V, Y,1, ω) is a VOA means:
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- V =
⊕

n∈Z
Vn, each Vn is a finite dimensional complex vector space;

- Y : V → End(V )[[z, z−1]] (Y is the “vertex operator”), so for a ∈ V ,
Y (a, z) =

∑

n∈Z
anz−n−1, for an ∈ End(V ).

- 1 is a vacuum element and ω is a Virasoro element .

There are many axioms including a kind of Jacobi identity (involving power series
in several variables).

The axioms imply that 1 ∈ V0 and ω ∈ V2. Therefore, dim(V0) ≥ 1 and
dim(V2) ≥ 1. Any dimension is possible for dim(V1).

See a full treatment and historical remarks in [8]. The survey [9] is useful.

Consequences.

We focus on a few points involving finite dimensional algebras.
(1) For each k, we have a product on V , a, b 7→ ak(b). We call it the kth

product. It takes Vi ×Vj → Vi+j−k−1 . If i = j = k +1, then (Vk+1, k
th) is a finite

dimensional algebra.
(2) If V is CFT type (Vn = 0 for n ≤ −1, V0 = C1), then (V1, 0

th) is a Lie
algebra. (The abbreviation CFT means “conformal field theory”.)

(3) If V is an OZVOA (=CFT type and V1 = 0), then (V2, 1
st) is commutative.

(Here we may get associative algebras, classical Jordan algebras, B and many
others).

(4) If G is any group of automorphism of a VOA V , then the set V G of fixed
points is also a VOA. (By definition, an automorphism of a VOA preserves 1 and
ω and so preserves each Vn. Therefore, V G =

⊕

n V G
n . )

4. Lattice type VOAs and their degree 2 summands

Suppose that L is an even lattice, i.e. a free abelian group in Euclidean space
so that (x, y) ∈ Z and (x, x) ∈ 2Z for all x, y ∈ L.

There is a standard way to make a lattice VOA from L. As a linear space it
looks like VL = S ⊗ C[L], where C[L] is the group algebra of L (basis eα, α ∈ L)
and where S is the symmetric algebra on the vector space (H⊗ t−1)⊕ (H⊗ t−2)⊕
(H⊗ t−3)⊕· · · . For details, see [8]. A lattice type VOA is the fixed point subVOA
V G

L , where VL is a lattice VOA and G is a finite subgroup of Aut(VL).
Grading on V is based on deg(eα) = 1

2
(α, α), deg(H ⊗ t−m) = m.

In particular, if we take an isometry of the lattice L, it can be lifted to an
automorphism of VL (see [8] and the appendix of [20]). The −1 isometry lifts,
and the set of fixed points of the lift is denoted V +

L . Lifts of the −1 isometry are
not unique, but any two are conjugate [20].

Note. Formulas for multiplying the standard basis elements of (VL)2 are given
in several places, including [8] and [16]. Examples: S2(H ⊗ t−1) is isomorphic to
the Jordan algebra of symmetric matrices with product A ◦ B = 1

2
(AB + BA);

also, (eα + e−α) ∗ (eβ + e−β) = ±(eα+β + e−α−β) when α, β are norm 4 vectors
such that (α, β) = −2.
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Some care is needed for the “sign function” (though it may be arranged to be
identically 1 when (L, L) ≤ 2Z, e.g. for the 156-dimensional example described
later).

5. The 196884-dimensional algebra B
The algebra B occurs as the degree 2 piece of V ♮ the Moonshine VOA of

Frenkel-Lepowsky-Meurman. This VOA has graded dimension

1 + 196884q2 + 21493760q3 + 864299970q4 + 20245856256q5 + · · · ,

which is the elliptic modular function + constant, with degrees shifted. See [8].

Theorem 5.1 ([17]). There is no nonzero homogeneous polynomial identity for

B of degree less than or equal to 5.

Question. A nontrivial homogeneous polynomial identity exists, by finite dimen-
sionality, but can it be of practical use if its degree is high?

There is a lot of work on subalgebras of B generated by idempotents [25],
[4], [24], [26]. A striking result is the following, which proved a conjecture of
Meyer-Neutsch [25].

Theorem 5.2 (Miyamoto [24]). A maximal set of pairwise orthogonal idempo-

tents in B has cardinality 48. Therefore, 48 is the maximum dimension of an

associative semisimple subalgebra.

Miyamoto’s theory connects idempotents in B to so-called Virasoro elements in
a VOA (these elements generate a subVOA of very special form, a highest weight
module for the Virasoro Lie algebra). The proof of this finite dimensional result

uses infinite dimensional techniques!

6. A 156-dimensional algebra

This example is based on an 8-dimensional lattice M ∼=
√

2E8 [16]. Define H
to be the ambient complex vector space C ⊗ M .

We take the lattice VOA VM and its subVOA V +

M . This is lattice type and
its degree 1 term is 0. Its degree 2-part looks, as a linear space, like S2(H) ⊕
⊕

{α,−α} C(eα + e−α), where we sum over pairs α,−α of norm 4 vectors in M

(there are 120 such pairs). The dimension of H is 8 and the dimension of S2(H)

is
(

9

2

)

= 36. So (V +

M )2 has dimension 120+36=156. Its automorphism group is
the finite orthogonal group O+(10, 2).

This algebra is a subalgebra of B. In Aut(B), isomorphic to the Monster, the
stabilizer of such a subalgebra is a complicated group of the form 210+16.Ω+(10, 2).
This subgroup induces the group Ω+(10, 2) on the subalgebra, an index 2 subgroup
of its full automorphism group.

The VOA V +

M may also be realized as a subVOA of VL, the lattice VOA based
on the E8 lattice. It is isomorphic to the fixed points of an elementary abelian
group of order 32 in the automorphism group of VL, isomorphic to E8(C). More
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specifically, there are two conjugacy classes of involutions in the Lie group E8(C),
called 2A and 2B. There exists an elementary abelian group of order 2r which is
2B-pure (i.e., all involutions are in the class 2B) if and only if r ≤ 5, and for each
such r, there is a single conjugacy class of such groups. See [1], [18], [19].

7. A 27-dimensional algebra

Here is an example coming from fixed points of a group of odd order [21].
Take the root lattice L = E6 and form VL. There is a group of automorphism,

E, of order 33 so that (V E
L )1 = 0 and (V E

L )2 has dimension 27 and is commutative.
It has 33: SL(3, 3) in its automorphism group. It fixes 1 and has an irreducible
26-dimensional complement.

At first, one may guess that the algebra (V E
L )2 is the famous exceptional Jordan

algebra. The automorphism group of the exceptional Jordan algebra is the group
F4(C), which does in fact contain a subgroup isomorphic to 33: SL(3, 3).

The automorphism group of any finite dimensional algebra is a (possibly dis-
connected) algebraic group. In particular, such an automorphism group could
be finite. A search shows that there are several finite groups with an irreducible
degree 26 representation and which contain 33: SL(3, 3) as a subgroup. Some of
these groups leave invariant a commutative algebra structure on a 26-dimensional
representation. For example, one is the finite group PGL(4, 3).

The analysis in [21] shows that the algebra (V E
L )2 does not satisfy the Jordan

identity, so is not the exceptional 27-dimensional Jordan algebra. Finally, it
turns out that its automorphism group is the finite group 33: GL(3, 3) of affine
transformations on F3

3. We are not aware of other occurrences of the algebra
(V E

L )2. It would be interesting to know about the other 27-dimensional algebras
mentioned above.

8. Possible directions

(1) Study some VOAs V with small dimensional degree 2 term to determine
identities, connections between the algebra product on V2 and automorphisms
(e.g., idempotents and involutions).

(2) Assume that we are in characteristic 0. An algebra of dimension 196883
which supports the monster as a group of automorphisms is unique up to isomor-
phism. An algebra of dimension 196884 which as a unit is not uniquely deter-
mined by the property of having the monster as a group of automorphisms, but is
uniquely determined if a naturally defined 300-dimensional subalgebra is isomor-
phic to the Jordan algebra of symmetric degree 24 matrices (such a subalgebra is
the set of fixed points of the extraspecial group O2(C) of order 225, where C is
the centralizer of a 2B-involution).

If the algebra B has a uniqueness result, purely as an algebra, (without the
assumption that it has the monster as automorphism group), there could be im-
portant applications to VOA theory, in particular to the open uniqueness problem
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for the moonshine VOA. One could try to approach this by proving uniqueness
results for subalgebras of B.

(3) A context for many commutative (not necessarily associative) algebras is
in VOA theory, as the degree 2 piece of some VOA [2], [22], [23]. Can one take
a commutative algebra, A, and create a VOA V so that (V2, 1st) ∼= A? This is
open, and hard. A partial answer is announced in [27]. It may help to assume
that there is an associative form (i.e., (x ∗ y, z) = (x, y ∗ z) for all x, y, z).

(4) Is the study of identities on a finite dimensional commutative algebra the
right way to go for developing a theory of finite simple groups? Is there a good
alternative?

(5) Take a root lattice, L. The automorphism group of the VOA VL is the
adjoint group of type L extended by graph automorphisms [5]. If S is a subgroup
of G := Aut(VL), then V S (the subVOA of fixed points) inherits an action of the
quotient group NG(S)/S as automorphisms.

More studies of such VOAs V S
L would be fascinating. In this article, we have

mentioned examples at rank 6 (for the E6 lattice) and rank 8 (for the E8 lattice).
Examples of this in rank 1 are already quite interesting and nontrivial [6], [7]. For
the case where S is a finite group, there is an enormous amount of information
available (see the survey [18], [19] to get started on examples). In case V S

1 = 0, the
finite dimensional algebra (V S

2 , 1st) is commutative and typically nonassociative,
so falls into the general category we considered earlier.

(6) The author has done some work on loops and their relations to structure
theory of finite groups, nonassociative algebras and group cohomology [12], [14],
[13], [15].

References

[1] Cohen A.M., Griess R.L., Jr., On finite simple subgroups of the complex Lie group of type

E8, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986),
367–405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987.

[2] Ashihara T., Miyamoto M., Deformation of central charges, vertex operator algebras whose

Griess algebras are Jordan algebras, J. Algebra 321 (2009), no. 6, 1593–1599.
[3] Cohen A.M., Wales D.B., Finite subgroups of F4(C) and E6(C), Proc. London Math. Soc.

(3) 74 (1997), no. 1, 105–150.
[4] Conway J.H., A simple construction for the Fischer-Griess monster group, Invent. Math.

79 (1985), no. 3, 513–540.
[5] Dong C., Nagatomo K., Automorphism groups and twisted modules for lattice vertex op-

erator algebras, in Recent Developments in Quantum Affine Algebras and Related Topics,
Contemp. Math., 248, pp. 117–133, Amer. Math. Soc., Providence, RI, 1999.

[6] Dong C., Griess R.L., Jr., Rank one lattice type vertex operator algebras and their auto-

morphism groups, J. Algebra 208 (1998), 262–275. q-alg/9710017
[7] Dong C., Griess, R.L., Jr., Ryba A.J.E., Rank one lattice type vertex operator algebras and

their automorphism groups, II: E-series, J. Algebra 217 (1999), 701–710.

[8] Frenkel I., Lepowsky J., Meurman, A., Vertex Operator Algebras and the Monster , Pure
and Applied Math., 134, Academic Press, Boston, 1988.

[9] Gebert R.W., Introduction to vertex algebras, Borcherds algebras and the Monster Lie

algebra, Internat. J. Modern Phys. A 8 (1993), no. 31, 5441–5503.



244 R.L.Griess, Jr.

[10] Griess R.L., Jr., A construction of F1 as automorphisms of a 196, 883-dimensional algebra,
Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 686–691.

[11] Griess R.L., Jr., The friendly giant , Invent. Math. 69 (1982), 1–102.
[12] Griess R.L., Jr., Sporadic groups, code loops and nonvanishing cohomology , J. Pure Appl.

Algebra 44 (1987), 191–214.
[13] Griess R.L., Jr., Code loops and a large finite group containing triality for D4, Proc. Atti

del Convegno Internazionale di Teoria Dei Gruppi e Geometria Combinatoria (Firenze,
October 1986), Serie II, 19, 1988, pp. 79–98.

[14] Griess R.L., Jr., A Moufang loop, the exceptional Jordan algebra and a cubic form in 27
variables, J. Algebra 131 (1990), no. 1, 281–293.

[15] Griess R.L., Jr., Codes, Loops and p-Locals, Groups, Difference Sets and the Monster
(Columbus, OH, 1993), pp. 369–375, de Gruyter, Berlin, 1996.

[16] Griess R.L., Jr., A vertex operator algebra related to E8 with automorphism group

O+(10, 2), The Monster and Lie Algebras (Columbus, OH 1996), ed. J. Ferrar, K. Harada,
de Gruyter, Berlin, 1998.

[17] Griess R.L., Jr., The monster and its nonassociative algebra, in Proceedings of the Montreal
Conference on Finite Groups, Contemporary Mathematics, 45, 121-157, 1985, American
Mathematical Society, Providence, RI.

[18] Griess R.L., Jr., Ryba A.J.E., Finite simple groups which projectively embed in an excep-

tional Lie group are classified! , Bull. Amer. Math. Soc. 36 (1999), no. 1, 75–93.
[19] Griess R.L., Jr., Ryba A.J.E., Quasisimple finite subgroups of exceptional algebraic groups,

Journal of Group Theory, 2002, 1–39.
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