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COMPUTATIONAL ASPECTS OF ROBUST HOLT-WINTERS
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Abstract. To obtain a robust version of exponential and Holt-Winters smoothing the idea
of M -estimation can be used. The difficulty is the formulation of an easy-to-use recursive
formula for its computation. A first attempt was made by Cipra (Robust exponential
smoothing, J. Forecast. 11 (1992), 57–69). The recursive formulation presented there,
however, is unstable. In this paper, a new recursive computing scheme is proposed. A
simulation study illustrates that the new recursions result in smaller forecast errors on
average. The forecast performance is further improved upon by using auxiliary robust
starting values and robust scale estimates.
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1. Introduction

Exponential smoothing is a well known method for smoothing and predicting

univariate time series. It is often used because of its easy recursive computation and

good forecast performance in practice. In a business environment, for instance, it can

be used for predicting sales. Thanks to the decaying weights of far-away observations,

the underlying process of the time series is allowed to gradually change over time. In

a period of expansion, e.g. when sales go up, the exponential smoothing method can

easily be adopted to incorporate trends. This method is called the Holt method. A

further extension, the Holt-Winters method, also allows for seasonality. This article

focusses on situations where there is only a trend, but the findings can easily be

extended to account for seasonality as well. For a recent reference illustrating the

practical use of the Holt-Winters method, see e.g. Kotsialos et at. [9].

*This research has been supported by the Research Fund K.U. Leuven and the Fonds voor
Wetenschappelijk Onderzoek (Contract number G.0594.05).
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The easy-to-use recursive scheme and the good forecast performance for many

different processes, see e.g. Chatfield et al. [1], make Holt-Winters smoothing an

attractive method. A major drawback of this classical method is that it can be

strongly influenced by the presence of outliers in the time series. Due to the recursive

formulation, one outlier results in biased smoothing values and predictions for a

longer time period. This can be overcome by incorporating ideas from the robustness

literature into the smoothing techniques, as discussed in Cipra [2]. He reformulates

the optimization problem underlying the classical Holt-Winters method to the M -

estimation approach. The difficulty then is to translate the optimization problem into

easy recursive formulae, as for the classical smoothing methods. This article studies

robust Holt-Winters smoothing based on M -estimation, its formulation in different

recursive schemes and their computational aspects. More specifically, we first discuss

why the existing method described in Cipra [2] is computationally unstable and

propose a new recursive scheme. Secondly, we look at the robustness properties of

the methods. Special attention is paid to the starting values and the scale estimation

which are needed for the implementation of the recursive computing schemes.

The remainder of this article is organized as follows. In Section 2, we describe

the classical simple exponential and Holt-Winters smoothing methods and their for-

mulation as an optimization problem. Section 3 introduces the robust optimization

problem in terms ofM -estimation and its recursive computation scheme as presented

in Cipra [2]. The instability of this method is explained and demonstrated in Sec-

tion 4. We formulate an alternative recursive scheme for the M -estimation problem

and compare both schemes in an example. Section 5 looks at further robustifications

of the starting values and the scale estimation in the new recursive scheme. The sim-

ulation study in Section 6 compares the forecast performance of various Holt-Winters

recursions for both contaminated and uncontaminated data.

2. Exponential and Holt-Winters smoothing

Suppose we observe a univariate time series yt where t runs from one to T . The

classical exponential smoothing method defines the value of the smoothed series at

time point t, ỹt, as the solution of the optimization problem

(2.1) ỹt = argmin
θ

t
∑

i=1

(1 − λ)t−i(yi − θ)2,

where λ is a fixed number between zero and one, the smoothing parameter. At every

moment t, the smoothed series ỹt equals the solution of equation (2.1). It can be
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shown that if ỹt−1 is given, the solution of (2.1) is given by

(2.2) ỹt = λyt + (1 − λ)ỹt−1.

As a result, solving problem (2.1) at every time point boils down to a recursive

computing scheme. The update equation requires a starting value, which is usually

obtained from a startup period consisting of the first m observations, e.g. the mean

of the first m observations

ỹm =
1

m

m
∑

i=1

yi.

The exponential smoothing method easily allows to make predictions. At every

moment t, the h-step-ahead prediction based on all previous observations 1, . . . , t is

denoted by ŷt+h|t and simply equals the most recent smoothed value

(2.3) ŷt+h|t = ỹt.

If the time series yt contains a trend, however, the exponential smoothing method

can be improved upon. The Holt-Winters method explicitly allows for local linear

trends in the data. The method was proposed in Holt [8] and Winters [13]. At every

time point t, we have a local level at and a local linear trend Ft. The local level and

trend are the solution of the optimization problem

(2.4) (at, Ft) = argmin
a,F

t
∑

i=1

(1 − λ)t−i(yi − (a+ Fi))2.

Again, λ is the smoothing parameter taking values between zero and one. The

smoothed value at time t, ỹt, then equals the local level at:

ỹt = at.

Equivalently as in the simple exponential smoothing case, the solution of prob-

lem (2.4) can easily be obtained recursively. There is an update equation both

for the level and the trend component:

ỹt = λ1yt + (1 − λ1)(ỹt−1 + Ft−1),(2.5)

Ft = λ2(ỹt − ỹt−1) + (1 − λ2)Ft−1.

Corresponding to the optimization in equation (2.4), we have λ1 = λ2 = λ. In

practice, however, it is common to allow for different smoothing parameters in the

level and the trend equation. To be able to start the recursive calculations, we need
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starting values. Using the first m observations as the startup period, one usually

applies a linear regression fit

(2.6) ŷt = α̂0 + β̂0t, for t = 1, . . . ,m.

The parameter estimates for the intercept α0 and slope β0 can e.g. be obtained by

ordinary least squares. The smoothed series at time m is then given by the fitted

value at m, and the trend by the fitted slope parameter:

ỹm = α̂0 + β̂0m and Fm = β̂0.

Forecasts for yt+h can be obtained by linear extrapolation:

ŷt+h|t = ỹt + Fth

for t = m, . . . , T .

3. A smoothing algorithm based on M -estimation

Following the general idea of M -estimation, Cipra [2] proposed to make both

equations (2.1) and (2.4) robust by replacing the square by a suitable loss-function,

denoted by ̺. A suitable loss-function ̺(x) is assumed to be non-decreasing in |x|,

to be bounded and to satisfy ̺(0) = 0. For the exponential smoothing problem, we

thus get the optimization problem

(3.1) ỹt = argmin
θ

t
∑

i=1

(1 − λ)t−i̺
(yi − θ

σt

)

,

and equivalently for the Holt-Winters method

(3.2) (at, Ft) = argmin
a,F

t
∑

i=1

(1 − λ)t−i̺
(yi − (a+ iF )

σt

)

.

Here, σt is the scale of yt − ỹt. The role of the auxiliary scale σt is important, and

more details follow below.

Both optimization problems (3.1) and (3.2) resemble the definition of a weighted

M -estimator in linear regression. A well known computational method for solving

M -estimation in a regression problem is the iteratively reweighted least squares.

Starting from initial parameter estimates, the observations are reweighted and the

parameters re-estimated in every iteration step until some convergence criterion is
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met. For problem (3.2), we obtain the first order condition as a weighted least

squares problem:

(3.3)
t

∑

i=1

(1 − λ)t−iwi,t(a, F )
(yi − a− iF

σt

)

zi = 0

with

zi =

[

1

i

]

and with wi,t(a, F ) the weight given to observation i at time point t,

(3.4) wi,t(a, F ) = ψ
(yi − a− iF

σt

)/(yi − a− iF

σt

)

.

Here, ψ(x) is the first order derivative of ̺(x). Note that wi,t(a, F ) in equation (3.4)

still depends on t. For a new observation yt for which we want to obtain a smoothed

value, all the weights wi,t need to be re-computed. Recomputing the weights can

be time consuming and computationally intensive when t gets large. This can be

avoided, though, by making the following approximation of the weights:

(3.5) wi,t(a, F ) ≈ wi := ψ
(yi − ŷi|i−1

σ̂i−1

)/(yi − ŷi|i−1

σ̂i−1

)

.

This approximation avoids reweighting in every step and allows the WLS problem

to be written recursively. Let zt denote the vector (1, t)′ and st = (at, Ft)
′. Using

this notation, the following recursive scheme is derived in Cipra [2]:

(3.6)

(i) rt = yt − z′tât−1,

(ii) wt−1 =
σ̂t−1

rt
ψ

( rt
σ̂t−1

)

,

(iii) Mt =
1

1 − λ

(

Mt−1 −
Mt−1z

′
tztM

′
t−1

(1 − λ)/wt−1 + z′tMt−1zt

)

,

(iv) st = st−1 +
Mt−1zt

(1 − λ)/wt−1 + z′tMt−1zt

rt,

(v) ỹt = z′tst,

for t = 1, . . . , T . The first equation defines the one-step-ahead forecast error rt. The

second equation calculates the weight wt−1 of observation t − 1. Since we made

approximation (3.5), the weights of all previous observations remain unchanged and

the weights do not need to be recalculated in every step. The third equation defines

an auxiliary quantityMt which is a (2×2) matrix. Equation (iv) defines st, a vector

of length two needed to obtain the smoothed value in the last equation (v).
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The set of update equations in (3.6) makes use of a scale estimate σ̂t that is

obtained by

(3.7) σ̂t = γ|rt| + (1 − γ)σ̂t−1

for t > m. This equation estimates the scale σ̂t using the one-step-ahead forecast

errors. The scale estimate is recursively obtained and the smoothing parameter γ

should be taken close to zero. The starting value for the scale estimator is given by

(3.8) σ̂2
m =

1

m− 2

m
∑

i=1

(yi − α̂0 − β̂0i)
2,

where α̂0 and β̂0 are respectively the intercept and the slope of a linear OLS regression

in the startup period, as in equation (2.6). That is, the first scale estimate is the

standard deviation of the OLS residuals in the startup period.

To be able to start the recursions in (3.6), Cipra [2] defined the following starting

values based on a startup period with m observations:

Mm =

( m
∑

t=1

ztz
′
t

)−1

and sm = Mm

m
∑

t=1

ztyt.

Equation (3.2) defines the robust smoothing based on M -estimation, and makes

use of a ̺-function. However, in the recursive solution (3.6), only a ψ-function

appears, with ̺′ = ψ. In the remainder of this paper, we work with the Huber

ψ-function

ψ(x) =

{

x if |x| < k,

sign(x)k otherwise,

where it is, based on the standard normal distribution, common to choose k = 2.

The Huber ψ-function is also used in Cipra [2].

4. Computational stability and the new proposal

The recursive scheme of Cipra [2], presented in equations (3.6), is obtained by

making use of the matrix inversion lemma. This allows to write the matrix Mt as

in (3.6) (iii):

Mt =

( t
∑

i=1

βt−iwiziz
′
i

)−1

=
1

1 − λ

(

Mt−1 −
Mt−1z

′
tztM

′
t−1

(1 − λ)/wt−1 + z′tMt−1zt

)

.
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The denominator of the latter expression can become very small. So due to the use

of the matrix inversion lemma, small errors might occur. In a recursive computation

scheme, these small errors are accumulated and may result in serious biases. This

is illustrated in Fig. 1. In the left panel, we see an artificial time series and its

smoothed values as computed by (3.6). A large peak in the smoothed series all

of a sudden occurs. This is the result of accumulating rounding errors. For the

robust exponential smoothing based onM -estimation and using the recursive scheme

in (3.6), this problem does not occur. The reason is that for exponential smoothing,

Mt reduces to a scalar.
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Figure 1. Illustration of the instability of the recursive method proposed by Cipra [2], using
artificial data. The dots represent the data and the line the smoothed series
according to the update equations (3.6) in the left panel, and according to (4.1)
in the right panel. A startup period of m = 10 is taken.

To overcome the computational instability of the recursive equations in (3.6) for

robust Holt-Winters smoothing, we present another way to compute a solution of

the first order condition (3.3). We use weights w̃i,t defined as

w̃i,t = (1 − λ)i
ψ

(

yi − a− iF/σ̂i−1

)

(

yi − a− iF/σ̂i−1

)

to rewrite the first order condition as

t
∑

i=1

w̃i,t

(yi − a− iF

σ̂i−1

)

zi = 0.

Straightforward calculations lead to the solution

(4.1) at =
Ny

t

N c
t

− Ft

Nx
t

N c
t

, Ft =
N c

tN
xy
t −Nx

t N
y
t

N c
tN

xx
t − (Nx

t )2
and ỹt = at.
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The following quantities are needed:

N c
t =

t
∑

i=1

λt−iwi, Ny
t =

t
∑

i=1

λt−iwiyi, Nx
t =

t
∑

i=1

λt−iwii,

Nxx
t =

t
∑

i=1

λt−iwi i
2, and Nxy

t =

t
∑

i=1

λt−iwi(i yi).

As discussed before, one of the nice properties of the classical Holt-Winters is the

recursive representation. The smoothed level at and trend Ft as in the robust Holt-

Winters method in equation (4.1) can be obtained by computing the above quantities

recursively as

(4.2)

(i) N c
t = λN c

t−1 + wt,

(ii) Ny
t = λNy

t−1 + wtyt,

(iii) Nx
t = λNx

t−1 + wtt,

(iv) Nxx
t = λNxx

t−1 + wtt
2,

(v) Nxy
t = λNxy

t−1 + wtt yt.

Equations (4.1) and (4.2) define a new recursive scheme for Holt-Winters smooth-

ing based on M -estimation. The new update equations do not involve any matrix

inversion and are thus expected to be more stable.

As before, we use a startup period of length m to begin the recursive scheme. The

starting values are given by

N c
m = m, Ny

m =

m
∑

i=1

yi, Nx
m =

m
∑

i=1

i,

Nxx
m =

m
∑

i=1

i2 and Nxy
m =

m
∑

i=1

i yi.

The weights used in the recursive equations in (4.2) depend on the scale estimator.

The same scale update recursion as in (3.7) is used here, with the same starting value

given by equation (3.8). Note that this update equation is not really robust in the

sense that one extreme value of rt can still make the estimated scale arbitrarily large.

The same holds for the starting values. This will be further discussed in Section 5.

In theory, both the solutions for the robust smoothing based on M -estimation,

equation (3.6) on the one hand and equations (4.1) and (4.2) on the other hand,

should give exactly the same result for the smoothed values ỹt. This is not the case

in practice, however, as can be seen from Fig. 1. The right panel shows the smoothed
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series as obtained by the new smoothing equations in (4.1) and (4.2). For the new

update equations, no sudden bump occurs as in the right panel where the smoothed

series according to scheme (3.6) is shown. To illustrate the difference between both

methods, we look at a time series where seemingly there is no numerical problem with

the Cipra-approach. The left panel of Fig. 2 shows such a time series, together with

the smoothed series according to the two different schemes. The right panel plots the

difference between these smoothed values, where we see that the difference gradually

increases. Although this increase is only visible starting from observation 80, it

already accumulates from the beginning. To study the forecasting performance of

the two methods in detail, a simulation study is carried out in Section 6.
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Figure 2. Left panel: a simulated time series (dots) with smoothed values according to re-
cursions (3.6) (full line) and (4.1)–(4.2) (dashed line). Right panel: the difference
between the smoothed values according to recursions (3.6) and (4.1)–(4.2).

5. Robustification of starting values and scale

The previous sections describe two recursive formulations for robust smoothing

based on M -estimation. Auxiliary equations are needed for the starting values and

scale estimates. So far, these are not robust. In this section we describe how to obtain

a Holt-Winters smoothing method which is stable and robust for both the update

equations and the starting values. As an alternative to the non-robust scale update

equation in (3.7), we propose to estimate the scale recursively based on a τ2-scale

estimator as proposed in Yohai and Zamar [14]. We then obtain the recursion

(5.1) σ̂2
t = γ ̺

( rt
σ̂t−1

)

σ̂2
t−1 + (1 − γ)σ̂2

t−1,

where γ is a smoothing parameter and ̺ is a bounded loss function. We take the

biweight ̺-function given by

(5.2) ̺(x) =

{

ck
(

1 − (1 − (x/k)2)3
)

if |x| 6 k,

ck otherwise,
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where ck is a constant, to achieve consistency of the scale parameter under a normal

error distribution. For the common choice of k = 2 we have ck = 2.52. As a starting

value for the recursion in (5.1) we take the robust τ -scale estimation computed from

the residuals of a robust regression in the startup period. We could choose any

robust regression method but the repeated median, introduced by Siegel [11], shows

good performance in smoothing applications, for references see e.g. Davies et al. [4],

Fried [5], and Gather et al. [6]. For the linear regression fit in equation (2.6) the

repeated median parameter estimates for the intercept α̂0 and slope β̂0 are defined

as

β̂0 = med
i

(

med
j 6=i

yi − yj

i− j

)

and α̂0 = med
i

(yi − β̂0 i).

This regression can also be used to obtain robust starting values for the recursive

scheme in (4.1)–(4.2). Therefore, we replace the values of yt in the startup period

by their fitted values ŷt as obtained from the repeated median regression.

6. Simulation study

To compare the forecast performance of various Holt-Winters smoothing methods,

we carry out a simulation study. We compare the performance of four Holt-Winters

methods described in the previous sections. The first method is the classical Holt-

Winters method, as described by the system of equations (2.5), which will be referred

to as HW. The other three methods are based on M -estimation, but they use dif-

ferent recursive schemes and starting values. We compare the weighted regression

(WR) method as presented in Cipra [2], using the recursive equations in (3.6), with

the new recursive formulae in (4.1)–(4.2). The latter method will be referred to as

the new weighted regression (NWR). The fourth method uses the same recursions

as the NWR method, but uses robust starting values and robust scale estimation as

described in Section 5. We use the abbreviation RNWR for it. For all four methods

we use the same fixed smoothing parameter λ = 0.3. This is an arbitrary choice but

other simulations, not reported here, show that the simulation results following be-

low are similar to those for other values of λ. For the scale update equations in (3.7)

and (5.1) we choose γ = 0.1.

The data we use for comparing the forecast performance of the four methods are

simulated according to the local linear trend model. In this model, the observed time

series yt is composed of a local level αt and a local linear trend βt. More specifically,

(6.1) yt = αt + et, et ∼ N(0, σ2),
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where αt and βt are given by

αt = αt−1 + βt−1 + ηt, ηt ∼ N(0, σ2
η)(6.2)

βt = βt−1 + νt, νt ∼ N(0, σ2
ν).

The noise components et, ηt and νt have zero mean, are independent of one another

and serially uncorrelated. The components ηt and νt in equation (6.2) both follow

an N(0, 0.1) distribution. For the noise component et in equation (6.1) we consider

four different scenario’s. In the first setting, we look at data without contamination,

clean data (CD). The noise component et is N(0, 1) distributed and no outliers are

included. In the second setting, we include symmetric outliers (SO): every observa-

tion is with 95% probability from an N(0, 1) distribution and with 5% probability

from an N(0, 20). The outliers have the same mean as the other observations but a

larger variance. In the third setting, the outliers have the same variance but a differ-

ent mean from the bulk of the data, generating asymmetric outliers (AO). In both

the SO and AO setting, we do not include outliers in the forecast period, i.e. from

observation 201 to 205, as the outlier generating process is unpredictable by defi-

nition. The fourth setting simulates the et from a fat-tailed (FT) distribution, a

Student’s-t3. A summary of the four simulation schemes is presented in Tab. 1

Setting Description

CD Clean data et
iid
∼ N(0, 1)

SO Symmetric outliers et
iid
∼ (1 − ε)N(0, 1) + εN(0, 20), with ε = 0.05

AO Asymmetric outliers et
iid
∼ (1 − ε)N(0, 1) + εN(20, 1), with ε = 0.05

FT Fat tailed data et
iid
∼ t3

Table 1. Simulation schemes.

For each of the four simulation settings in Tab. 1, we simulate N = 1000 time

series of length 205. For each of the N simulated time series, we apply four smoothing

methods up to observation 200, and forecast observations 201 and 205. The forecasts

are then compared with the corresponding realized values. As such we obtain a series

of N forecast errors, both one- and five-steps-ahead, for each of the four methods

considered and for each of the four settings presented in Tab. 1. We compare the

forecast errors according to two criteria. The first criterion is the Mean Squared

Forecast Error (MSFE) which is defined as

MSFE(r1, . . . , rN ) =

N
∑

i=1

r2i ,
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Figure 3. Boxplots of one-step-ahead (h = 1) and five-step-ahead (h = 5) forecast errors
for 1000 replications of a time series of length 200, simulated according to sim-
ulation schemes CD (clean data, top left), SO (symmetric outliers, top right),
AO (asymmetric outliers, bottom left) and FT (Student’s-t error terms, bottom
right). We consider standard Holt-Winters (HW), Weighted Regression (WR),
Weighted Regression according to the new recursive scheme (NWR) and with
robust starting values and scale estimation (RNRW).

where r1, . . . rN denote a series of forecast errors. Large prediction errors have a big

influence on the MSFE, as all errors enter the sum as a square. To have a better

idea about the spread of the bulk of the forecast errors, we also look at the τ2-scale

measure

τ2(r1, . . . , rN ) = s2N
1

N

N
∑

i=1

̺
( ri
sN

)

,

where sN = Medi |ri| and we use the biweight ̺-function as defined in equation (5.2).

In particular, for fat-tailed error distributions, like in simulation scheme FT, the τ2-

scale measure is appropriate to use.

The simulation results are graphically presented in Fig. 3. The upper-left panel

shows one- and five-step-ahead forecast errors for the clean data setting. The

RW method performs bad as compared to the other three methods. This can also

be observed from Tab. 2 which presents the MSFE and τ2 measure of the one-step-

ahead forecast errors. Both the MSFE and τ2 measure are high for the WR method,
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while the other methods yield comparable results. The performance of the NWR

and RNWR methods is almost as good as that of the classical HW method when no

outliers are present.

HW WR NWR RNWR
CD MSFE 1.62 2.47 1.65 1.64

τ2
1.02 1.55 1.02 1.02

SO MSFE 8.65 24.42 2.38 2.08

τ2 1.84 1.65 1.20 1.17

AO MSFE 43.78 106.63 7.95 3.03

τ2 3.86 1.64 1.12 1.08

FT MSFE 3227.58 4543.68 2574.95 2546.67

τ2 10.08 6.09 4.96 4.61

Table 2. The MSFE and τ
2-scale for the one-step-ahead forecast errors in the four simula-

tion settings. The smallest value for each row is in bold.

Not only in the CD setting, but also in the contaminated settings SO and AO as

well as in the fat-tailed setting, the WR method shows large forecast errors. In every

setting, the MSFE of the WR method is larger than that of the HW method. This

shows the need for new robust Holt-Winters methods. The NWR method performs

much better, it has always smaller MSFE and τ2 than the WR method. However,

the boxplots in Fig. 3 indicate that, especially in presence of asymmetric outliers, the

NWR method still shows serious prediction bias. Overall, the RNWR method has

smaller MSFE and τ2 measures than the other methods. This shows the usefulness

of robust starting values and scale estimation in combination with the new update

formulae.

7. Conclusion

This article studies robust Holt-Winters smoothing based on M -estimation. The

existing recursive scheme for Holt-Winters M -estimation, as formulated in [2], in-

herits instabilities due to the use of the matrix inversion lemma. Small errors are

accumulated and result in large biases. We present an alternative recursive scheme

for the same optimization problem. As the Holt-Winters smoothing algorithm is

often used to obtain forecasts, the simulation study compares different recursive

schemes according to forecast-accuracy criteria. It is illustrated that the new recur-

sive scheme performs better, both in presence and absence of outliers. Moreover,

further robustification of the starting values and the scale estimates allow to obtain

even more accurate predictions, in particular in presence of severe outliers. Note

that using the M -estimation approach is not the only possibility for robustifying
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the Holt-Winters method. Other robust Holt-Winters methods have been discussed

e.g. in [3], [10], [12] and [7].
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