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Abstract. We propose a theoretical framework for solving a class of worst scenario prob-
lems. The existence of the worst scenario is proved through the convergence of a sequence
of approximate worst scenarios. The main convergence theorem modifies and corrects the
relevant results already published in literature. The theoretical framework is applied to
a particular problem with an uncertain boundary value problem for a nonlinear ordinary
differential equation with an uncertain coefficient.

Keywords: worst scenario problem, nonlinear differential equation, uncertain input pa-
rameters, Galerkin approximation

MSC 2010 : 34B15, 47H05, 47J05, 65L60

1. Introduction

This paper

(a) deals with the worst scenario method for a class of problems with uncertain

input data,

(b) presents and correctly proves a modified fundamental convergence result, and

(c) applies this result to a particular worst scenario problem.

In brief, the worst scenario problem is characterized by a state operator equation

Aau = f dependent on an input parameter a belonging to an admissible set Uad that

is related to the amount of uncertainty in a. The a-dependent state solution u(a)

is then evaluated by a criterion functional. The goal is to maximize the criterion

functional over Uad.

*This research was supported in part by the project MSM4781305904 from the Ministry
of Education, Youth and Sports of the Czech Republic.
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The general abstract framework of the worst scenario method can be found in [4,

Chapter II]. One of the goals of the worst scenario analysis is to show the convergence

of the state solutions u(an) if an → a and, analogously, to show the convergence

of approximate state solutions uh(aM ) if h → 0 and M → ∞, where aM is the

approximate input parameter and h as well asM are the parameters that control the

finite-dimensional space of uh and the approximate admissible set U
M
ad , respectively.

To show that uh(aM ) → u, a relationship between h and M mediated through a

function µ is introduced in [4, Chapter II]. However, it has turned out that the

convergence is not that straightforward unless additional, stronger assumptions are

made. In this paper, the µ-based concept has been abandoned and a reshaped

convergence theorem as well as its correct proof are presented.

Quasilinear elliptic boundary value problems with uncertain coefficients were stud-

ied in [2], [3], [6], [7], see also [4, Chapter III]. In these works the coefficient of the

state equation is a u-dependent function. The state problem that has motivated this

paper is different: the coefficient is a function of the squared derivative of the state

solution u. Equations of this kind describe some electromagnetic phenomena, fluid

flow phenomena, and the elastoplastic deformation of a body, see [8, p. 212].

Although the existence of the state solution to the above problems can be proved

rather easily, see this paper, the existence of the worst scenario solution is a more

challenging problem. Indeed, one of the corner-stones of the convergence analysis

(see [1, p. 290], [4, Section 4], [5, p. 178]) is the following convergence result: if an → a

uniformly, then u(an) → u(a) strongly or at least weakly in a relevant Sobolev space,

where u(a) is the state solution related to the limit parameter a ∈ Uad. If a is

u-dependent, then the Rellich theorem can be used to prove the above convergence,

see the above-mentioned references. For the problem analyzed in this paper, however,

the Rellich theorem is useless and, consequently, the standard technique for proving

the existence of the worst scenario fails.

This is why the u(an) → u(a) convergence is avoided in this paper and the exis-

tence of the worst scenario is proved via the convergence of the approximate worst

scenarios. In this respect, this approach also differs from that used in [4].

The paper is organized as follows: Section 2 introduces the abstract framework of

the worst scenario method, the main convergence result and its proof are presented

in Section 3, and Section 4 deals with a relevant application.

2. Worst scenario problem

Let V be a real, separable, and reflexive Banach space and let V ∗ denote its dual

space. We deal with the nonlinear operator state equation

(2.1) A(a)u = b, u ∈ V,
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where A(a) : V → V ∗, b ∈ V ∗. We assume that the operator A(a) depends on a

parameter a that belongs to a set of admissible input parameters Uad ⊂ U , where

U is a Banach space. We assume that

(i) the set Uad is compact in U ;

(ii) a unique state solution u(a) of equation (2.1) exists for any parameter a ∈ Uad;

(iii) a criterion-functional Φ: Uad × V → R is given such that:

if an ∈ Uad, an → a in U and vn → v in V as n → ∞, then

Φ(an, vn) → Φ(a, v).

The goal is to solve the following worst scenario maximization problem: Find a0 ∈

Uad such that

(2.2) a0 = arg max
a∈Uad

Φ(a, u(a)).

Due to the difficulties mentioned in the introduction, we will prove the existence of a

solution to problem (2.2) by means of a sequence of solutions to approximate worst

scenario problems, see (2.3) below.

We resort to a discretization of both the set Uad and the space V . Let UM
ad ⊂

Uad ⊂ U be a finite-dimensional approximation of the set Uad and let Vh be a finite-

dimensional subspace of V . Let us consider the Galerkin approximation uh(a) ∈ Vh

of the state solution u(a). We set the following approximate worst scenario problem:

Find aM0
h ∈ UM

ad such that

(2.3) aM0
h = arg max

aM∈UM

ad

Φ(aM , uh(aM )).

Next, we assume that

(iv) the set UM
ad is compact in U ;

(v) for any a ∈ Uad, there exists a unique Galerkin approximation uh(a) of the state

solution u(a);

(vi) if an ∈ Uad and an → a in U as n → ∞, then uh(an) → uh(a) in Vh;

(vii) if an ∈ Uad, an → a in U as n → ∞, and if hn → 0 as n → ∞, then

uhn
(an) → u(a) in V , where {uhn

(an)} is an n-controlled sequence of the

Galerkin approximations;

(viii) for any a ∈ Uad, there exists a sequence {a
M}, aM ∈ UM

ad , M → ∞, such that

aM → a in U as M → ∞.

Except for (vii), the above assumptions appear in [4, Chapter II], too. To show

that the approximate worst scenario problem (2.3) has at least one solution, we can

proceed analogously to the proof of [4, Theorem 3.3].
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3. Main result

The goal of this section is to prove the existence and convergence theorem for the

worst scenario. Let us formulate an analogue to [4, Theorem 3.4].

Theorem 3.1. Let {Vh}, h → 0, be a sequence of finite-dimensional subspaces

of the space V . For any fixed h > 0, let {aM0
h }, where aM0

h ∈ UM
ad and M → ∞,

be a sequence of solutions to the approximate worst scenario problem (2.3). Let the

assumptions (i)–(viii) be fulfilled. Then there exists a sequence {aMn0
hn

}, aMn0
hn

∈ UMn

ad

such that hn → 0 and Mn → ∞ as n → ∞, and

aMn0
hn

→ a0 in U,(3.1)

uhn
(aMn0

hn
) → u(a0) in V,(3.2)

Φ
(

aMn0
hn

, uhn
(aMn0

hn
)
)

→ Φ(a0, u(a0))(3.3)

as n → ∞, where a0 ∈ Uad solves problem (2.2) and u(a0) is the corresponding state

solution mentioned in (ii).

P r o o f. We fix a subspace Vh for a while and consider a sequence {aM0
h },

aM0
h ∈ UM

ad , M → ∞, i.e., a sequence of solutions of the approximate worst scenario

problem (2.3). Since {aM0
h } ⊂ Uad and Uad ⊂ U is compact, there exists a convergent

subsequence {a
Mh

k
0

h } ⊂ {aM0
h } such that

(3.4) a
Mh

k
0

h → a0
h in U as k → ∞,

where a0
h ∈ Uad. The subsequence {M

h
k } may depend on h, which is now fixed. By

virtue of assumption (vi) of the previous section, we obtain

(3.5) uh

(

a
Mh

k
0

h

)

→ uh(a0
h) in Vh as k → ∞.

Let a ∈ Uad be arbitrary and chosen independently of h. It follows from assump-

tion (viii) that there exists a sequence {aM}, aM ∈ UM
ad , such that

(3.6) aM → a in U as M → ∞.

By virtue of assumption (vi), we infer

(3.7) uh(aM ) → uh(a) in Vh as M → ∞.

For any k, we have

(3.8) Φ
(

a
Mh

k
0

h , uh

(

a
Mh

k
0

h

))

> Φ(aMh

k , uh(aMh

k )).
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By virtue of (3.4)–(3.7) and assumption (iii), we obtain

(3.9) Φ(a0
h, uh(a0

h)) > Φ(a, uh(a)).

Inequality (3.9) is valid for any h > 0.

Let us release h and consider the sequences {a0
h}, {uh(a0

h)}, and {uh(a)}, where

h → 0. Since {a0
h} ⊂ Uad and Uad ⊂ U is compact, there exists a convergent

subsequence {a0
hl
} ⊂ {a0

h}, hl → 0 as l → ∞, such that

(3.10) a0
hl

→ a0 in U as l → ∞,

where a0 ∈ Uad. By virtue of assumption (vii), we get for the corresponding sequence

of the Galerkin approximations

(3.11) uhl
(a0

hl
) → u(a0) in V as l → ∞.

If we set an := a ∈ Uad for n = 1, 2, . . ., then it follows from assumption (vii) that

(3.12) uhl
(a) → u(a) in V as l → ∞.

By virtue of (3.9)–(3.12) and assumption (iii), we obtain

(3.13) Φ(a0, u(a0)) > Φ(a, u(a)).

Inequalities (3.8), (3.9), and (3.13) hold for any a ∈ Uad, so that a0 is a solution of

problem (2.2).

The existence of the sequence
{

aMn0
hn

}

appearing in (3.1) is a direct consequence

of the existence of the solution a0. Indeed, let us introduce a sequence {εn}, n → ∞,

where

εn =
1

n
.

By (3.10), for each n we can find an element a0
hn

∈ Uad such that

‖a0
hn

− a0‖U <
εn

2
.

If we fix n and the related hn, then it follows from (3.4) that there exists a sequence
{

a
Mhn

k
0

hn

}

, k → ∞, such that

a
Mhn

k
0

hn
→ a0

hn
in U as k → ∞.

Therefore, there exists an element aMn0
hn

∈ UMn

ad such that

‖aMn0
hn

− a0
hn

‖U <
εn

2
,
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so that

‖aMn0
hn

− a0‖U < εn.

The sequence {aMn0
hn

}, n → ∞, is convergent to a0 in U . By virtue of assump-

tion (vii), we infer (3.2), and by assumption (iii), we obtain (3.3). �

R em a r k 3.1. We can replace the strong convergence vn → v in (iii) and

uhn
(an) → u(a) in (vii) by the weak convergence. Then, the assertion of Theorem 3.1

is valid if we replace the strong convergence in (3.2) by the weak convergence.

4. Application

In this section, we apply the proposed theoretical framework to a concrete state

problem motivated by the following boundary value problem: Find a function u ∈

C1(Ω) ∩ C2(Ω) such that

−(a(u′2)u′)′ = f in Ω,(4.1)

u = 0 on Γ,(4.2)

where Ω = (0, 1), Γ = {0, 1}, a is a Lipschitz continuous function on R+
0 (nonnegative

real numbers), and f ∈ C(Ω). The prime stands for du/dx.

Instead of (4.1)–(4.2), we will deal with the following weakly formulated problem:

Find u ∈ H1
0 (Ω) such that

(4.3)

∫ 1

0

a(u′2)u′v′ dx =

∫ 1

0

fv dx ∀ v ∈ H1
0 (Ω),

where H1
0 (Ω) is the Sobolev space of absolutely continuous functions on Ω with zero

boundary conditions and with a square-integrable generalized derivative on Ω, and

f ∈ L2(Ω). We assume that the function a belongs to the admissible set

Uad := {a ∈ U0
ad : 0 < amin 6 a(x) 6 amax ∀x ∈ R

+
0

}

which models the uncertainty in a and where

U0
ad :=

{

a ∈ C(0),1(R+
0 ) : 0 6

da

dx
6 CL a.e., a(x) = a(xC) for x > xC

}

,

CL, amin, amax, xC are positive constants, and C(0),1(R+
0 ) stands for the Lipschitz

continuous functions defined on R
+
0 .

We observe that Uad ⊂ U , where U is the Banach space of functions continuous

on R
+
0 and constant for x > xC, with the norm ‖w‖U := max

x∈[0,xC]
|w(x)| for w ∈ U .
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The operator equation (2.1) stems from (4.3) if we set V := H1
0 (Ω) and define

A(a) : V → V ∗ and b ∈ V ∗ by

〈A(a)u, v〉 :=

∫ 1

0

a(u′2)u′v′ dx,(4.4)

〈b, v〉 :=

∫ 1

0

fv dx(4.5)

where u, v ∈ V . For simplicity we will denote A(a) by A.

The functionals Au and b are obviously linear. Since

|〈b, v〉| =

∣

∣

∣

∣

∫ 1

0

fv dx

∣

∣

∣

∣

6 ‖f‖L2(Ω)‖v‖H1(Ω),

the functional b is bounded. The functional Au is also bounded:

|〈Au, v〉| =

∣

∣

∣

∣

∫ 1

0

a(u′2)u′v′ dx

∣

∣

∣

∣

6

∫ 1

0

|a(u′2)u′v′| dx =

∫ 1

0

a(u′2)|u′||v′| dx

6 amax

∫ 1

0

|u′||v′| dx 6 amax‖u
′‖L2(Ω)‖v

′‖L2(Ω) 6 K‖v‖H1(Ω),

where K > 0.

Lemma 4.1. The operator A defined by (4.4) is continuous on V .

P r o o f. The function q : Ω × R → R defined as

q(x, ξ) = a(ξ2)ξ

satisfies the Carathéodory conditions [1, p. 288]. Moreover, q satisfies the growth

condition

|q(x, ξ)| 6 g(x) + c|ξ|p/r,

where g ∈ Lr(Ω), c > 0, and p, r ∈ [1,∞) if we set g(x) = 0, c = amax, p = 2 and

r = 2. Then the operator

H : L2(Ω) → L2(Ω),

v 7→ a(v2)v,

the Nemyckii operator associated with q, is continuous, see [1, p. 288].

Let {un} be a sequence in V such that un → u, where u ∈ V . Then u′
n → u′

in L2(Ω). Since the operator H is continuous, we have

(4.6) a(u′2
n )u′

n → a(u′2)u′ in L2(Ω).
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Now, we show that ‖Au − Aun‖V ′ → 0. Indeed,

‖Au − Aun‖V ′ = sup
‖v‖V =1

|〈Au − Aun, v〉|

= sup
‖v‖V =1

∣

∣

∣

∣

∫ 1

0

[

a(u′2)u′ − a(u′2
n )u′

n

]

v′ dx

∣

∣

∣

∣

.

By virtue of ‖v′‖L2(Ω) 6 ‖v‖H1(Ω) = 1 and the Schwarz inequality

∣

∣

∣

∣

∫ 1

0

[

a(u′2)u′ − a(u′2
n )u′

n

]

v′ dx

∣

∣

∣

∣

6
∥

∥a(u′2)u′ − a(u′2
n )u′

n

∥

∥

L2(Ω)
‖v′‖L2(Ω)

6
∥

∥a(u′2)u′ − a(u′2
n )u′

n

∥

∥

L2(Ω)
.

Then it follows from this and from (4.6) that

‖Au − Aun‖V ′ = sup
‖v‖V =1

∣

∣

∣

∣

∫ 1

0

[

a(u′2)u′ − a(u′2
n )u′

n

]

v′ dx

∣

∣

∣

∣

6
∥

∥a(u′2)u′ − a(u′2
n )u′

n

∥

∥

L2(Ω)
→ 0 as n → ∞.

�

Lemma 4.2. The operator A defined by (4.4) is strongly monotone, that is,

(4.7) 〈Au1 − Au2, u1 − u2〉 > C‖u1 − u2‖
2
V for all u1, u2 ∈ V,

where C > 0.

P r o o f. Let us write the left-hand side of (4.7) as

(4.8)

∫ 1

0

[

a(u′2
1 )u′

1 − a(u′2
2 )u′

2

]

(u′
1 − u′

2) dx

and define g(y) := a(y2)y. Then (4.8) takes the form

∫ 1

0

[g(u′
1) − g(u′

2)](u
′
1 − u′

2) dx.

Since a′ is a non-negative function (see U0
ad), we obtain

g′(y) = 2a′(y2)y2 + a(y2) > amin > 0,

so that g is an increasing function. Hence

∫ 1

0

[g(u′
1) − g(u′

2)](u
′
1 − u′

2) dx > amin

∫ 1

0

(u′
1 − u′

2)
2 dx > C‖u1 − u2‖

2
H1(Ω),

where C > 0. �
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Theorem 4.1. Let a ∈ Uad be arbitrary. Then problem (4.3) has a unique

solution.

P r o o f. The existence of a solution is guaranteed by [10, Theorem 2.K]. There-

fore, it is sufficient to verify its assumptions:

(α) The operator A : V → V ∗ is monotone on the real, separable, reflexive Banach

space V , that is,

〈Au1 − Au2, u1 − u2〉 > 0 for all u1, u2 ∈ V.

(β) The operator A is continuous on each finite-dimensional subspace of the Banach

space V .

(γ) The operator A is coercive on V , that is,

lim
‖u‖V →∞

〈Au, u〉

‖u‖V
= +∞.

By Lemma 4.2, the operator A is strongly monotone on V . Consequently, (α) is

fulfilled.

By Lemma 4.1, assumption (β) is also fulfilled.

We will show that A is coercive. Since a(ξ2)ξ2 > aminξ
2, we have

〈Au, u〉 =

∫ 1

0

a(u′2)u′2 dx > amin

∫ 1

0

u′2 dx > C‖u‖2
H1(Ω),

where C is positive constant. Consequently, (γ) holds.

Since the operator A is strongly monotone, the uniqueness of the state solution

follows from [10, p. 93, Corollary 1]. �

Let us pay attention to the approximation of equation (4.3) and to the corre-

sponding problem (2.3). To this end, we will define the set UM
ad ⊂ Uad and a finite-

dimensional space Vh. Let Ti, i = 1, . . . , M , be equally spaced points in [0, xC ],

T1 = 0 and TM = xC . We define

UM
ad := {a ∈ Uad : a|[Ti,Ti+1] ∈ P1([Ti, Ti+1]), i = 1, . . . , M − 1},

where P1([Ti, Ti+1]) denotes the linear polynomials on the interval [Ti, Ti+1].

To approximate the space V , we introduce points x0, x1, . . . , xN+1 in the inter-

val [0, 1], x0 = 0, xN+1 = 1. We define the discretization parameter h as

h := max
i=1,...,N+1

(xi − xi−1).
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The space Vh is defined as

(4.9) Vh := {vh ∈ V : vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . , N}.

Now, we define the Galerkin approximation uh(a) ∈ Vh of the solution to prob-

lem (4.3) by the identity

∫ 1

0

a(u′2
h )u′

hv′ dx =

∫ 1

0

fv dx ∀ v ∈ Vh.

Theorem 4.2. Let a ∈ Uad be arbitrary. Then there exists a unique Galerkin

approximation uh(a) of the solution to problem (4.3).

P r o o f. The space Vh is a real, separable, and reflexive Banach space. The

existence of a unique Galerkin approximation is guaranteed by [10, Theorem 2.K]

and [10, p. 93, Corollary 1] applied to (4.3), where we replace V by Vh. �

To be able to apply Theorem 3.1, we have to verify its assumptions. By the Arzelà-

Ascoli theorem [9, p. 35] the assumptions (i) and (iv) of Section 2 are fulfilled. By

the following theorem, assumption (vi) is fulfilled.

Theorem 4.3. If an ∈ Uad and an → a in U as n → ∞, then uh(an) → uh(a)

in Vh.

P r o o f. The space Vh is fixed. Let us denote the Galerkin approximation

uh(an) ∈ Vh by un. By observing that

|un|
2
H1(Ω) 6

1

amin

∫ 1

0

an(u′2
n )u′2

n dx =
1

amin

∫ 1

0

fun dx 6
‖f‖L2(Ω)

amin
‖un‖H1(Ω)

and by applying the equivalence of the norm ‖ · ‖H1(Ω) and the seminorm | · |H1(Ω)

in H1
0 (Ω), we infer that the sequence {‖un‖H1(Ω)} is bounded independently of n.

As a consequence, since Vh is finite-dimensional, the sequence {un} has a strongly

convergent subsequence {unk
}; we denote its terms by uk. Hence wh ∈ Vh exists

such that

(4.10) uk → wh in H1(Ω) as k → ∞.

Let us note that (4.10) and the dimensionality of Vh imply the convergence of {u
′
k}

in, for instance, the L∞(Ω) space. We will show that wh = uh(a).
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Let v ∈ Vh be arbitrary and let us write the approximate state equation as follows:

∫ 1

0

fv dx =

∫ 1

0

ak(u′2
k )u′

kv′ dx

=

∫ 1

0

ak(u′2
k )(u′

k − w′
h)v′ dx +

∫ 1

0

[

ak(u′2
k ) − a(u′2

k )
]

w′
hv′ dx

+

∫ 1

0

[

a(u′2
k ) − a(w′2

h )
]

w′
hv′ dx +

∫ 1

0

a(w′2
h )w′

hv′ dx

= I1 + I2 + I3 + I4.

If k → ∞, the integrals I1, I2, and I3 tend to zero by virtue of (4.10) and the

uniform convergence of {ak}. Consequently, the left-hand side equals I4 for any

v ∈ Vh, which means that wh = uh(a). It follows from the uniqueness of the Galerkin

approximation that the entire sequence {un} converges to uh(a). �

Lemma 4.3. Let {Vh}, h → 0 be a sequence of the finite-dimensional subspaces

of V defined by (4.9) and such that h1 < h2 implies Vh2
⊂ Vh1

. Then
⋃

h

Vh is dense

in V .

P r o o f. Let u ∈ V be arbitrary and let ε > 0. There exists a function v ∈ C∞
0 (Ω)

such that ‖u−v‖H1(Ω) < ε/2. The theory of interpolation yields that for a sufficiently

small parameter h we can approximate the function v by its interpolant vh ∈ Vh such

that

‖v − vh‖H1(Ω) < ε/2.

Therefore,

‖u − vh‖H1(Ω) 6 ‖u − v‖H1(Ω) + ‖v − vh‖H1(Ω) < ε.

�

The following lemma is a generalization of [10, p. 94, Lemma 3].

Lemma 4.4. Let V be a real Banach space, let A : V → V ∗ be an operator

continuous on V , and let b ∈ V ∗. Further, let the following assumptions be satisfied

for u ∈ V , a sequence {un} ⊂ V , and a sequence of operators {An}, An : V → V ∗,

where An are monotone on V :

(α) 〈Anun, v〉 → 〈b, v〉 as n → ∞ ∀ v ∈ V ,

(β) 〈Anun, un〉 → 〈b, u〉 as n → ∞,

(γ) 〈Anv, un〉 → 〈Av, u〉 as n → ∞ ∀ v ∈ V ,

(δ) 〈Anv, v〉 → 〈Av, v〉 as n → ∞ ∀ v ∈ V .

Then u is a solution of the equation Au = b.
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P r o o f. We can follow the lines of the proof of [10, p. 94, Lemma 3]. Since each

of the operators An is monotone, we have

〈Anun, un〉 − 〈Anv, un〉 − 〈Anun, v〉 + 〈Anv, v〉 = 〈Anun − Anv, un − v〉 > 0

for all v ∈ V and all n. Letting n → ∞, we get from (α)–(δ)

〈b, u〉 − 〈Av, u〉 − 〈b, v〉 + 〈Av, v〉 > 0 ∀ v ∈ V,

and hence

(4.11) 〈b − Av, u − v〉 > 0 ∀ v ∈ V.

Next, let v = u − tw, where t > 0 and w ∈ V . It follows from (4.11) that

〈b − A(u − tw), w〉 > 0

for all t > 0 and all w ∈ V . Since A is continuous, we get for t → 0

(4.12) 〈b − Au, w〉 > 0 ∀w ∈ V.

Since (4.12) is valid for any w ∈ V ,

〈b − Au, w〉 = 0 ∀w ∈ V.

�

Let us pay attention to assumption (vii) of Section 2.

Theorem 4.4. Let {an}, where an ∈ Uad and an → a in U as n → ∞ in U , be a

sequence of parameters. Let {Vhn
}, hn → 0 as n → ∞, be a sequence of the subspaces

from Lemma (4.3), and let {uhn
(an)}, uhn

(an) ∈ Vhn
, be the corresponding sequence

of Galerkin approximations. Then

uhn
(an) → u(a) in V,

where u(a) is the solution of problem (4.3) for the parameter a.

P r o o f. We can prove, analogously to the proof of Theorem 4.3, that the

sequence {uhn
(an)} is bounded in V .

Then, since V is a reflexive Banach space, the sequence {uhn
(an)} has a weakly

convergent subsequence, let us denote it simply by {uk}, such that

(4.13) uk ⇀ w as k → ∞,

where w ∈ V . We will show that w = u(a).
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For any u ∈ V let us define operators A, Ak : V → V ∗ by

〈Au, v〉 :=

∫ 1

0

a(u′2)u′v′ dx ∀ v ∈ V,

〈Aku, v〉 :=

∫ 1

0

ak(u′2)u′v′ dx ∀ v ∈ V.

By virtue of Lemma 4.4, we will get Aw = b.

It is sufficient to verify assumptions (α)–(δ) of Lemma 4.4.

Assumption (δ) is fulfilled. Indeed, let v ∈ V be arbitrary. By the uniform

convergence of {ak}, we get

〈Akv, v〉 =

∫ 1

0

ak(v′2)v′2 dx

=

∫ 1

0

[

ak(v′2) − a(v′2)
]

v′2 dx +

∫ 1

0

a(v′2)v′2 dx

→

∫ 1

0

a(v′2)v′
2
dx = 〈Av, v〉.

Let us focus on assumption (γ). We have

〈Akv, uk〉 =

∫ 1

0

ak(v′2)v′u′
k dx

=

∫ 1

0

[

ak(v′2) − a(v′2)
]

v′u′
k dx +

∫ 1

0

a(v′2)v′u′
k dx.

Since for given ε > 0 there exists k(ε) such that

∣

∣

∣

∣

∫ 1

0

[

ak(v′2) − a(v′2)
]

v′u′
k dx

∣

∣

∣

∣

6 ε‖v′‖L2(Ω)‖u
′
k‖L2(Ω) 6 C1ε

for k > k(ε), where C1 > 0, we infer

∫ 1

0

[

ak(v′2) − a(v′2)
]

v′u′
k dx → 0 as k → ∞.

Since the sequence {uk} weakly converges to w, we obtain

∫ 1

0

a(v′2)v′u′
k dx →

∫ 1

0

a(v′2)v′w′ dx as k → ∞.

Therefore,

〈Akv, uk〉 → 〈Av, w〉 as k → ∞.
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Assumption (β) is fulfilled because, by (4.13),

〈Akuk, uk〉 =

∫ 1

0

ak(u′2
k )u′2

k dx

=

∫ 1

0

fuk dx →

∫ 1

0

fw dx = 〈b, w〉.

We will complete the proof by checking the validity of assumption (α). By using

Lemma 4.3, we infer that for any z ∈ V there exists a sequence {vk} such that

vk ∈ Vk ≡ Vhn
k
and

(4.14) vk → z in V as k → ∞.

By definition, we have

〈Akuk, vk〉 = 〈b, vk〉,

so that

(4.15) 〈Akuk, vk〉 → 〈b, z〉 as k → ∞.

Let ε > 0 be arbitrary. We may write

|〈Akuk, z〉 − 〈b, z〉| 6 |〈Akuk, z − vk〉| + |〈Akuk, vk〉 − 〈b, z〉| = P1k + P2k.

From (4.14) and the boundedness of the sequence {uk}, we obtain for any k > k1(ε)

that

P1k =

∫ 1

0

ak(u′2
k )u′

k(z′ − v′k) dx 6 amax‖uk‖H1(Ω)‖z − vk‖H1(Ω) 6 C2ε,

where C2 > 0. It follows from (4.15) that

P2k 6 ε ∀ k > k2(ε).

Summarizing, we arrive at

P1k + P2k 6 (C2 + 1)ε

for k > max(k1(ε), k2(ε)). As a consequence,

lim
k→∞

〈Akuk, z〉 = 〈b, z〉 ∀ z ∈ V.
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It follows from the uniqueness of the state solution u(a) (Theorem 4.1) that the

entire sequence {uhn
(an)} converges weakly to u(a).

Now, we will prove that

uhn
(an) → u(a) in V.

With respect to Lemma 4.2, it suffices to show that

(4.16) 〈Auhn
(an) − Au(a), uhn

(an) − u(a)〉 → 0.

Let us denote

vn := uhn
(an) − u(a),

un := uhn
(an).

Since vn ⇀ 0, we have 〈Au(a), vn〉 → 0. Further,

〈Aun, vn〉 = 〈Anun, vn〉 + 〈Aun − Anun, vn〉 = Q1n + Q2n.

By (α) and (β)

Q1n = 〈Anun, un − u〉 → 0.

For the second term we get

|Q2n| 6

∫ 1

0

∣

∣a(u′2
n ) − an(u′2

n )
∣

∣|u′
n||v

′
n| dx

6 ‖a − an‖U‖un‖H1(Ω)‖vn‖H1(Ω) → 0.

Summarizing, we infer (4.16). �

By the following lemma, assumption (viii) of Section 2 is fulfilled.

Lemma 4.5. Let a ∈ Uad be arbitrary. Then there exists a sequence {a
M},

aM ∈ UM
ad , such that

aM → a in U as M → ∞.

P r o o f. Let M be arbitrary. Let us consider aM ∈ UM
ad such that

aM (Ti) = a(Ti), i = 1, . . . , M.

The interval [0, xC ] is uniformly subdivided into M − 1 subintervals of length νM .

Since a is Lipschitz continuous, we obtain

‖aM − a‖U 6 CLνM .

If M → ∞, then νM → 0 and aM → a in U . �
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We have shown that the assumptions of Section 2 are fulfilled. Consequently,

it follows from Theorem 3.1 that the worst scenario problem (2.2) with the state

equation (4.3) has a solution a0 ∈ Uad. Furthermore, there exists a sequence of

approximate worst scenarios that converges to a0.
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