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Abstract. To reconstruct an even Borel measure on the unit sphere from finitely many
values of its sine transform a least square estimator is proposed. Applying results by Gard-
ner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency.
We close this paper by giving an estimator for the directional distribution of certain three-
dimensional stationary Poisson processes of convex cylinders which have applications in
material science.
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1. Introduction

It is a well-known fact in stochastic geometry and spatial statistics that the di-

rectional distribution of a stationary line or fiber processes can be estimated from

intersections of the particles of the process with hyperplanes. The main tool in this

procedure is the estimation of an even measure on the unit sphere from finitely many

values of its cosine transform. Furthermore, the optimization problem to which the

latter reduces to can be discretized in a loss-free way (see [6] and [7] for details).

In modern material science porous fiber materials have a wide range of appli-

cations, e.g. in light polymer-based non-woven materials, fiber-reinforced textiles,

filters or fuel cells. It is a popular approach to model the microscopic structure of

*When writing this paper the author was funded by the Marie-Curie Research Training
Network “Phenomena in High-Dimensions” (MRTN-CT-2004-511953).
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the latter as stationary Poisson processes of convex cylinders or their Boolean mod-

els. For concrete examples, see [8] or the references given in the introduction of [12].

Usually, this means that each fiber F is described as a Minkowski (vector) sum of

a one-dimensional linear subspace L ⊆ R
3 and a randomly scaled disc B ⊆ L⊥

perpendicular to L, i.e.

F = rB + L = {rb + l : b ∈ B, l ∈ L}.

The parameters of such a model are the intensity of the Poisson process, the distri-

bution of the scaling factor and the directional distribution of the linear subspaces.

We will see in Section 3 that the sine transform of the direction distribution is closely

connected to intersections of the process or the Boolean models with line segments.

Therefore, we need an estimator of an even Borel measure on the unit sphere which

is based on finitely many values of its sine transform. After introducing some basic

notation, we propose such an estimator in Section 2, prove its strong consistency and

estimate its rate of convergence. Furthermore, we will show that it can be discretized

in such a way that a solution of the discretized problem is close to a solution of the

original problem.

All proofs have been moved to Appendix to make this paper more readable.

2. Least square estimator

2.1. Preliminaries and notation

For d > 2, let Rd denote the d-dimensional Euclidean space, ‖·‖ being its canonical

norm, Bd its unit ball, Sd−1 its unit sphere, B(Rd) the Borel σ-algebra on R
d, and

B(Sd−1) the Borel σ-algebra on Sd−1. Additionally, let ‖ · ‖1 denote the 1-norm

on R
d, and for x = (x(1), . . . , x(d)) ∈ R

d, let

x > 0 :⇐⇒ x(1) > 0, . . . , x(d) > 0.

For u ∈ Sd−1, let δu be the Dirac measure concentrated at u. For fixed α > 0, let

Mα
e (Sd−1) denote the space of all even Borel measures on the unit sphere with total

mass less than or equal to α equipped with the Prohorov metric

dP (µ1, µ2) := inf{ε > 0: µ1(A) 6 µ2(A + εBd) + ε, F closed, F ⊆ Sd−1},

µ1, µ2 ∈ M
(α)
e (Sd−1). (M

(α)
e (Sd−1), dp) is compact, complete, and separable (see

Theorem A2.3 in [5]). For µ1, µ2 ∈ M
(α)
e (Sd−1), let |µ1 − µ2| denote the variation

of the possibly signed measure µ1 − µ2.

For t > 0, let N(t) denote the t-covering number of (M
(α)
e (Sd−1), dP ), i.e. the least

number of balls of radius t needed to coverM
(α)
e (Sd−1), and H(t) the t-entropy (or
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metric entropy) of (M
(α)
e (Sd−1), dP ), i.e. H(t) := log N(t). More generally, for any

set S with pseudometric d, let N(t, (S, d)) and H(t, (S, d)) denote the t-covering

number and the t-entropy of S with respect to d, respectively.

Let C(Sd−1) denote the set of all continuous functions on the unit sphere. The

sine transform S of µ ∈ M
(α)
e (Sd−1) is defined as the mapping

S : M(α)
e (Sd−1) → C(Sd−1)

µ 7→

(

u 7→

∫

Sd−1

√

1 − 〈u, v〉2µ(dv)

)

.

Note that µ is uniquely determined by its sine transform (for example, see Section 5

in [4]).

Lemma 1. Let ε > 0 and µ1, µ2 ∈ M
(α)
e (Sd−1) with dP (µ1, µ2) 6 ε. Then

|S(µ1)(u) − S(µ2)(u)| 6 ε

for all u ∈ Sd−1.

Let {u1, . . . , um} ⊆ Sd−1 be a finite sequence of unit vectors. It is called ε-dense

if

max
u∈Sd−1

min
16i6m

‖u − ui‖ 6 ε.

It is well known (for example, see Proposition 3.1 in [2]) that for each d > 2 there is

a constant c(d) depending only on d such that for all ε > 0 there exists an ε-dense

set on Sd−1 of at most c(d)ε−(d−1) points. For i = 1, . . . , m we define the spherical

Voronoi cell Ci containing ui as

Ci := {u ∈ Sd−1 : ‖u − ui‖ 6 ‖u − uj‖ for all j ∈ {1, . . . , m}}.

Let k ∈ N, X1, X2, . . . be a sequence of independent uniformly sub-Gaussian random

variables, i.e. there exist constants A and τ such that

(2.1) A2(Ee|Xi|
2/A2

− 1) 6 τ2, i = 1, 2, . . . ,

µ0 ∈ M
(α)
e (Sd−1), v1, v2, . . . ∈ Sd−1 and

(2.2) yi = S(µ0)(vi) + Xi, i = 1, 2, . . . .

Any measure µ̂k ∈ M
(α)
e (Sd−1) that is a solution of

(2.3) min
µ∈M

(α)
e (Sd−1)

k
∑

i=1

(yi − S(µ)(vi))
2
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is called a least square estimator for µ0 with respect toM
(α)
e (Sd−1) based on mea-

surements at v1, . . . , vk. Note that by Lemma 1 and compactness of (M
(α)
e (Sd−1),

dP ) such an estimator µ̂k always exists. Also, any sequence of independent identically

distributed Gaussian random variables with mean zero and variance σ satisfies (2.1)

with A = τ = 2σ. In this case (2.3) coincides with the maximum likelihood estimator.

2.2. Rate of convergence

Convergence of such least square estimators has been studied extensively in [2].

To apply those results we have to introduce a pseudometric dk on S(M
(α)
e (Sd−1))

by

dk(S(µ1),S(µ2)) :=

Ã

1

k

k
∑

i=1

(S(µ1)(vi) − S(µ2)(vi))2,

µ1, µ2 ∈ M
(α)
e (Sd−1). The following holds:

Corollary 1. Let µ̂k be a least square estimator for µ0 with respect to

M
(α)
e (Sd−1) based on measurements at v1, . . . , vk. Then, almost surely, there

exist constants C(A, τ, d, α) and N(A, τ, d, α) depending only on A, τ , d, and α such

that

dk(µ0, µ̂k) 6 C(A, τ, d, α)k−(2(d+1))−1

for all k > N(A, τ, d, α).

Before we prove this result we have to introduce some more notation: For µ0 ∈

M
(α)
e (Sd−1), let

Gk(ε, µ0) := {S(µ) : µ ∈ M(α)
e (Sd−1), |S(µ) − S(µ0)|k 6 ε}.

It was shown in [2] that estimates for the rate of convergence of µ̂k can be derived by

bounding the t-entropy of (Gk(ε, µ0), dk) from above. By Lemma 1 any t-covering of

(M
(α)
e (Sd−1), dP ) can be used to construct a t-covering of (Gk(ε, µ0), dk), and thus,

(2.4) H(t, (Gk(ε, µ0), dk)) 6 H(t).

Therefore, the following lemma combined with (2.4) and Corollary 4.2 in [2] imme-

diately yields Corollary 1.
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Lemma 2. There exists a constant M(d) depending only on d such that

H(t) 6 M(d)t−(d+1)

for all 0 < t 6 1.

2.3. Strong consistency

Under some mild assumptions on the sequence v1, v2, . . . we can use Corollary 1

to prove consistency of the estimator µ̂k. As in [6] we call v1, v2, . . . asymptotically

smooth if there exists a strictly positive function h : Sd−1 → (0,∞) such that

dP

(

1

k

k
∑

i=1

δvi
,

1

dκd

∫

(·)

h(v)ωd−1(dv)

)

→ 0 for k → ∞

where κd denotes the volume of the d-dimensional unit ball and ωd−1 denotes the

spherical Lebesgue measure on Sd−1. The following holds:

Corollary 2. Let v1, v2, . . . be asymptotically smooth and let µ̂k be a least square

estimator for µ0 with respect to M
(α)
e (Sd−1) based on measurements at v1, . . . , vk.

Then, almost surely,

dP (µ0, µ̂k) → 0 for k → ∞,

i.e. µ̂k is a strongly consistent estimator of µ.

2.4. Discretization

In general, we cannot expect to be able to solve (2.3) analytically or even numeri-

cally, but in applications it is usually sufficient to find a good enough approximation

of µ̂k. This can be achieved by discretizing the problem as follows: Let 0 < ε 6 1 and

{−u1, . . . ,−um, u1, . . . , um} be an ε-dense set on Sd−1 (recall that we can assume

m 6 c(d)εd−1). Furthermore, let S+ := {p ∈ R
m : p > 0, ‖p‖1 6 α}. Each vector

p = (p(1), . . . , p(m)) ∈ S+ can be identified with the measure µp on Sd−1 by defining

µp :=

m
∑

i=1

p(i)

2
(δui

+ δ−ui
).

Therefore, we introduce the set

M(m,α)
e (Sd−1) := {µp : p ∈ S+},
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and denote by µ̂k,m the least square estimator for µ0 with respect toM
(m,α)
e (Sd−1)

based on measurements at v1, . . . , vk. It is a short calculation to see that µ̂k,m can

be determined by solving the quadratic program

min

k
∑

i=1

(

yi −
m

∑

j=1

√

1 − 〈vi, uj〉2p
(j)

)2

s.t. p(1) + . . . + p(m)
6 α,

p(1), . . . , p(m) ∈ [0,∞).

The following holds:

Lemma 3. Let 0 < ε 6 1 and let {−u1, . . . ,−um, u1, . . . , um} be an ε-dense

set on Sd−1. Furthermore, let µ̂k,m and µ̂k be least square estimators for µ0 with

respect toM
(m,α)
e (Sd−1) andM

(α)
e (Sd−1), respectively, based on measurements at

v1, . . . , vk. Then

|dk(µ0, µ̂k) − dk(µ0, µ̂k,m)| 6 ε.

2.5. Probability measures

In applications the previous results mainly concern the situation when the total

mass of the measure to be estimated can only be bounded from above. In case we

have a good estimate for the latter we can slightly modify our problem and thus

improve the upper bound for the rate of convergence.

Let Pe(S
d−1) be the set of all even probability measures on Sd−1. (Pe(S

d−1), dP ) is

also compact, complete, and separable (cf. [1]). Furthermore, let k ∈ N, µ0 ∈

Pe(S
d−1), X1, X2, . . ., v1, v2, . . . and y1, y2, . . . as before. Again, we call any measure

µ̂k ∈ Pe(S
d−1) which is a solution of

min
µ∈Pe(Sd−1)

k
∑

i=1

(yi − S(µ)(vi))
2

a least square estimator for µ0 with respect to Pe(S
d−1) based on measurements

at v1, . . . , vk. It follows from the proof of Lemma 2 that H(t, (Pe(S
d−1), dP )) 6

M(d)t−d for some constant M(d) depending only on d. As before, Corollary 4.2

in [2] yields:
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Corollary 3. Let µ̂k be a least square estimator for µ0 with respect to Pe(S
d−1)

based on measurements at v1, . . . , vk. Then, almost surely, there exist constants

C(A, τ, d) and N(A, τ, d) depending only on A, τ and d such that

dk(µ0, µ̂k) 6

{

C(A, τ, d)k−1/4 log k if d = 2,

C(A, τ, d)k−1/(2d) if d > 3

for all k > N(A, τ, d).

A result analogous to Corollary 2 holds in this case as well. Again, let 0 < ε 6 1,

let {−u1, . . . ,−um, u1, . . . , um} be an ε-dense set on Sd−1 and

P(m)
e (Sd−1) := {µp : p ∈ R

m, p > 0, ‖p‖1 = 1}.

Furthermore, let µ̂k,m be a least square estimator for µ0 with respect to P
(m)
e (Sd−1)

based on measurements at v1, . . . , vk. As before µ̂k,m can be determined by solving

a quadratic program which in this case is given by

min

k
∑

i=1

(

yi −
m

∑

j=1

√

1 − 〈vi, uj〉2 p(j)

)2

s.t. p(1) + . . . + p(m) = 1,

p(1), . . . , p(m) ∈ [0,∞)

and Lemma 3 holds in a similar manner.

3. Parameter estimation for processes of convex cylinders

In this section we will show how the least square estimator considered before can

be used as an estimator for the directional distribution of certain Poisson processes

of convex cylinders. We refer readers unfamiliar with stochastic geometry to [11] or

[13]. We will also use basic notions from convex and integral geometry details of

which can be found in [9] and [10], respectively.

3.1. Preliminaries and notation

For finite unions of convex sets, let Vj , j = 0, . . . , 3, denote the additive extension

of the jth intrinsic volume. Furthermore, let F ′ denote the set of all non-empty

closed subsets of R3 equipped with the Fell topology and let B(F ′) be the respective

σ-algebra. For u ∈ Sd−1, let L(u) := {αu : α ∈ R} and B(u) ⊆ L⊥ be the unit ball

in L(u)⊥. Additionally, let X be a Poisson process on F ′ with intensity measure Θ

given by

Θ(A) = γ

∫

S2

∫

R+

∫

L(u)⊥
1A(rB(u)+L(u)+x)λL(u)⊥ (dx)P (dr)µ (du), A ∈ B(F ′),
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where γ ∈ R+ := (0,∞), λL⊥ denotes the Lebesgue measure on L⊥, and P and µ are

probability measures on R+ and S2, respectively. Finally, let R(1), R(2) ∈ R+ denote

the first and second moments of P, respectively, and let

Z :=
⋃

F∈X

F

be the Boolean model induced by X . In this case, the parameters are the intensity γ

of the Poisson process, the distribution P of r and the direction distribution µ of the

linear subspaces.

It was mentioned in the introduction that it is not uncommon to use either X or

Z as a model for a porous fiber medium. If single fibers can still be distinguished

in digital images of the structure it is more convenient to use X ; otherwise, Z is a

more natural choice.

3.2. Parameter estimation

We can use the following results to estimate some of the parameters of the model:

Theorem 1. Let K0 ⊆ R
3 be a compact and convex set with non-empty interior.

Then

EV3(Z ∩ K0) = (1 − e−πγR(2)

)V3(K0),(3.1)

EV2(Z ∩ K0) = (1 − e−πγR(2)

)V2(K0) + πγR(1)e−πγR(2)

V3(K0).

For u ∈ S2 and l ∈ R+,

(3.2) EV0(Z ∩ l[0, u]) = 1 − e−γπR(2)

+ 4lγR(1)e−γπR2

∫

S2

√

1 − 〈u, v〉2µ(dv)

where [0, u] denotes the line segment between the origin and u. Furthermore,

E

∑

C∈X

V3(C ∩ K0) = πγR(2)V3(K0),(3.3)

E

∑

C∈X

V2(C ∩ K0) = πγR(2)V2(K0) + πγR(1)V3(K0),

and for u ∈ S2 and l ∈ R+,

(3.4) E

∑

C∈X

V0(C ∩ l[0, u]) = γπR(2) + 4lγR(1)

∫

S2

√

1 − 〈u, v〉2µ(dv).

Note that V3(Z ∩ K0) is the volume of the set Z ∩ K0, V2(Z ∩ K0) is half the

surface area of the set Z ∩ K0, and V0(Z ∩ l[0, u]) is the number of line segments Z
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cuts out of l[0, u]. Analogously, V3(C ∩ K0), V2(C ∩ K0) are given by the volume

and half the surface area of the respective sets. V0(C ∩ l[0, u]) is one if C ∩ l[0, u] 6= ∅

and zero otherwise. Therefore, the left-hand sides of the equations (3.1), (3.2), (3.3)

and (3.4) can all be estimated from digital images of the microstructure by standard

procedures from digital image analysis.

Since V3(K0) and V2(K0) are usually known (3.1) or (3.3) can be used to esti-

mate γ, R(1) and R(2). Furthermore, inserting these estimates into (3.2) or (3.4),

respectively, yields an estimator for S(µ)(u).

More precisely, let k ∈ N, v1, . . . , vk ∈ S2, and for i = 1, . . . , k, let ξ̂1, ξ̂2 and ξ̂vi

be estimators of EV3(Z ∩ K0), EV2(Z ∩ K0) and EV0(Z ∩ [0, vi]), respectively. Let

α = 4lγR(1)e−πγR(2)

. Then

ŷi := ξ̂vi
−

ξ̂1

V3(K0)

is an estimator for S(αµ)(vi) for i = 1, . . . , k and the total mass of αµ can be

estimated by α̂ := 4lξ̂2/V3(K0) − ξ̂1V2(K0)/V3(K0).

Let ε > 0 and −u1, . . . ,−um, u1, . . . , um ∈ S2. An estimator µ̂k,m for αµ can be

obtained as a solution of the following quadratic program:

min
k

∑

i=1

(

ŷi −
m

∑

j=1

√

1 − 〈vi, uj〉2 p(j)

)2

s.t. p(1) + . . . + p(m) = α̂,

p(1), . . . , p(m) ∈ [0,∞).

If a large enough number images of the structure are available to obtain good and

independent estimators for ξ̂1, ξ̂2 and ξ̂vi
, i = 1, . . . , k, we can assume that ŷi,

i = 1, . . . , k, satisfy (2.2), and thus, all results from the last section hold. The

formulas for X in Theorem 1 can be used in an analogous way to construct an

estimator for αµ.

Acknowledgement. The author would like to thank Keith Ball and Markus

Kiderlen for fruitful discussions on this subject.

Appendix. Proofs

P r o o f of Lemma 1.

|S(µ1)(u) − S(µ2)(u)| =

∣

∣

∣

∣

∫

Sd−1

√

1 − 〈u, v〉2(µ1 − µ2)(dv)

∣

∣

∣

∣

6

∫

Sd−1

√

1 − 〈u, v〉2|µ1 − µ2|(dv) 6 |µ1 − µ2|(S
d−1) 6 ε.

�
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P r o o f of Lemma 2. Let 0 < ε 6 1 and let {−u1, . . . ,−um, u1, . . . , um} be an

ε-dense set on Sd−1; remember thatm 6 c(d)ε−(d−1). Furthermore, for i = 1, . . . , m,

let Ci denote the spherical Voronoi cell of ui with respect to the above net, and for

any µ ∈ M
(α)
e (Sd−1), let

µε :=

m
∑

i=1

µ(Ci)(δui
+ δ−ui

).

Obviously, dP (µ, µε) 6 ε. Additionally, let p1, . . . , pk ∈ R
m be such that ‖pj‖1 6 α,

pj > 0 for j = 1, . . . , k, and let

S+ := {p ∈ R
m : p > 0, ‖p‖1 6 α} ⊆

k
⋃

j=1

(pj + εBd
1 )

where Bd
1 denotes the unit ball with respect to ‖ · ‖1. Note that k 6 αmε−m. Each

vector p = (p(1), . . . , p(m)) ∈ S+ can be identified with a measure µp on Sd−1 by

defining

µp :=

m
∑

i=1

p(i)

2
(δui

+ δ−ui
).

For p, p′ ∈ S+, ‖p − p′‖1 6 ε implies that dP (µp, µp′) 6 ε. Hence, for all µ ∈

M
(α)
e (Sd−1), there exists a j ∈ {1, . . . , k} such that

dP (µ, µpj
) 6 dP (µ, µε) + d(µε, µpj

) 6 2ε.

Since k 6 αmε−m and m 6 c(d)ε−(d−1), the latter implies that there exists a con-

stant M(d, α) depending only on d and α such that

log N(t) = H(t) 6 M(d, α)t−d log
1

t
6 M(d, α)t−(d+1)

for all 0 < t 6 1. �

P r o o f of Corollary 2. By Corollary 1 we have that, almost surely, dk(µ0, µ̂k) →

0 for k → ∞. Let µ̃ be an accumulation point of the sequence (µ̂k)k∈N which by

compactness of (M
(α)
e (Sd−1), dP ) always exists. Obviously, almost surely,

dk(µ0, µ̃) → 0 for k → ∞.

Because both S(µ0) and S(µ̃) are continuous functions the assumption on v1, v2, . . .

yields that, almost surely,

dk(µ0, µ̃) →

(

1

dκd

∫

Sd−1

(S(µ0)(v) − S(µ̃)(v))2h(v)ωd−1(dv)

)1/2

.
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Since h is strictly positive we obtain that, almost surely,

S(µ0) = S(µ̃).

Hence, almost surely, each accumulation point of (µ̂k)k∈N is equal to µ0. This yields

the assertion. �

P r o o f of Lemma 3.

dk(µ0, µ̂k,m) 6 dk(µ0, µ̂k) + min
µ∈P

(m)
e (Sd−1)

dP (µ̂k, µ) 6 dk(µ0, µ̂k) + ε,

and since dk(µ0, µ̂k) 6 dk(µ0, µ̂k,m) this implies the assertion. �

P r o o f of Theorem 1. By Theorems 1, 2, and 5 as well as Corollary 1 in [3] we

have for j ∈ {0, . . . , 3} and any non-empty compact and convex set K0 and l ∈ R+:

EVj(Z ∩ lK0) =

∞
∑

k=1

(−1)k−1

k!
γk

∫

S2

∫

R+

. . .

∫

S2

∫

R+

∫

L(u1)⊥
. . .

∫

L(uk)⊥

Vj

(

lK0 ∩ (r1B(u1) + L(u1) + x1) ∩ . . . ∩ (rkB(uk) + L(uk) + xk)
)

× λL(u1)⊥(dx1) . . . λL(uk)⊥(dxk)P(dr1)µ(du1) . . .P(drk)µ(duk)

=

∞
∑

k=1

(−1)k−1

k!
γk

∫

S2

∫

R+

. . .

∫

S2

∫

R+

3
∑

m0,...,mk=j
m0+...+mk=3k+j

lm0rm1
1 . . . rmk

k

× Φ
(j)
m0,{0};m1,Lu1 ;...,mk;Luk

(K0, B(u1), . . . , B(uk);R3 × . . . × R
3)

× P(dr1)µ(du1) . . .P(drk)µ(duk).

Let l = 1 and let K0 have non-empty interior. For j = 3, the above calculation

together with Theorem 2 in [3] yields

EV3(Z ∩ K0) =

∞
∑

k=1

(−1)k−1

k!
γk

(
∫

R+

r2
P (dr)

)k(
∫

S2

V2(K(u))µ (du)

)k

V3(K0)

= (1 − eπγR(2)

)V3(K0).

Analogously, we obtain

EV2(Z ∩ K0) = (1 − eπγR(2)

)V2(K0) + πγR(1)eπγR(2)

V3(K0)

and

EV0(Z ∩ l[0, u]) = (1 − eπγR(2)

)

+ lγR(1)eπγR(2)

∫

S2

∫

S2∩L(v)⊥
|〈u, w〉|ωL(v)⊥(dw)µ(dv).
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Here, ωL(v)⊥ denotes the spherical Lebesgue measure on S2 ∩L(v)⊥. Let ũ(v) de-

note the orthogonal projection of u on L(v)⊥. Then ‖ũ(v)‖ =
√

1 − 〈u, v〉2, and

since
∫

S2∩L(v)⊥
|〈u0, w〉|ωL(v)⊥(dw) = 4

for all u0 ∈ S2 ∩ L(v)⊥ (see (7.37) in [11]) this yields

EV0(Z ∩ l[0, u]) = (1 − eπγR(2)

) + 4lγR(1)eπγR(2)

∫

S2

√

1 − 〈u, v〉2µ(dv).

The rest of the theorem can be proved in a similar manner. �
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