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2-NORMALIZATION OF LATTICES

I. Chajda, Olomouc, W. Cheng, Lethbridge, S. L. Wismath, Lethbridge

(Received February 27, 2006)

Abstract. Let τ be a type of algebras. A valuation of terms of type τ is a function v

assigning to each term t of type τ a value v(t) > 0. For k > 1, an identity s ≈ t of
type τ is said to be k-normal (with respect to valuation v) if either s = t or both s and
t have value > k. Taking k = 1 with respect to the usual depth valuation of terms gives
the well-known property of normality of identities. A variety is called k-normal (with
respect to the valuation v) if all its identities are k-normal. For any variety V , there
is a least k-normal variety Nk(V ) containing V , namely the variety determined by the
set of all k-normal identities of V . The concept of k-normalization was introduced by
K. Denecke and S. L. Wismath in their paper (Algebra Univers., 50, 2003, pp.107-128) and
an algebraic characterization of the elements of Nk(V ) in terms of the algebras in V was
given in (Algebra Univers., 51, 2004, pp. 395–409). In this paper we study the algebras of
the variety N2(V ) where V is the type (2, 2) variety L of lattices and our valuation is the
usual depth valuation of terms. We introduce a construction called the 3-level inflation of
a lattice, and use the order-theoretic properties of lattices to show that the variety N2(L)
is precisely the class of all 3-level inflations of lattices. We also produce a finite equational
basis for the variety N2(L).
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1. Introduction

Let τ = (ni)i∈I be any type of algebras, with an operation symbol fi of arity ni

for each i ∈ I. Let X = {x1, x2, x3, . . .} be a set of variable symbols, and let Wτ (X)

be the set of all terms of type τ formed using variables from X . We will use the well-

known Galois connection Id-Mod between classes of algebras and sets of identities.

This research was supported by Research Project MSM6198959214 of the Czech Govern-
ment and by NSERC of Canada.
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For any class K of algebras of type τ and any set Σ of identities of type τ , we have

Mod Σ = {algebras A of type τ : A satisfies all identities in Σ}, and

IdK = {identities s ≈ t of type τ : all algebras in K satisfy s ≈ t}.

For each t ∈Wτ (X), we denote by v(t) the depth of t, defined inductively by

(i) v(t) = 0, if t is a variable;

(ii) v(t) = 1 + max{v(tj) : 1 6 j 6 ni}, if t is a composite term t = fi(t1, . . . , tni
).

(When a term is portrayed by a tree diagram, with the nodes corresponding to

operation symbols in the term and the leaves to variable symbols, the depth of the

term t corresponds to the length of the longest path from the root to leaves in the

tree diagram for t.) This defines a valuation function v on the set of all terms of

type τ (see [6]). Let k > 0 be any natural number. An identity s ≈ t of type τ is

called k-normal (with respect to the depth valuation) if either s and t are identical,

or v(t), v(s) > k.

We denote by Nk(τ) the set of all k-normal identities of type τ . It was proved

in [6] that k-normality with respect to the depth of terms is a hereditary property

of identities, in the sense that the set Nk(τ) is closed under the usual five rules of

deduction for identities; equivalently, this means that Nk(τ) is an equational theory.

For a variety V of type τ , let IdV denote the set of all identities of V . Since IdV is

an equational theory, so is IdNk V = Nk(τ) ∩ IdV , the set of all k-normal identities

satisfied by V . The variety determined by this set, Nk(V ) = Mod IdNk V , is called

the k-normalization of V . In the special case that Nk(V ) = V , we say that V is

a k-normal variety; this occurs when every identity of V is a k-normal identity.

Otherwise, V is a proper subvariety of Nk(V ), and Nk(V ) is the least k-normal

variety containing V .

The variety Nk(V ) is defined equationally, by means of the set of all k-normal

identities of V . An algebraic characterization of the algebras in Nk(V ) was given by

Denecke and Wismath in [5], using the concept of a k-choice algebra. They showed

that any algebra in Nk(V ) is a homomorphic image of a k-choice algebra constructed

from an algebra in V .

In this paper we characterize the algebras in the variety Nk(V ) in one special

case, when k = 2 and V is the type (2,2) variety L of lattices. It is well-known that

lattices are two-sided objects: as well as being algebras of type (2,2) with operations ∨

and ∧, they are sets with a partial order relation 6 in which any two elements have

a (unique) least upper bound and a (unique) greatest lower bound. We shall refer to

any algebra in N2(L) as a 2-normalized lattice. After some background on N2(L) in

Section 2, we introduce in Section 3 a construction called the 3-level inflation of a

lattice and show that any 3-level inflation of a lattice is in N2(L). Then in Section 4
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we use the order-theoretic nature of lattices to show conversely that any algebra in

N2(L) is a 3-level inflation of some lattice. Our 3-level inflation construction is a

slightly simpler version of the k-choice construction of [5], and we obtain a stronger

result: that the variety N2(L) is precisely the class of all 3-level inflations of lattices.

Finally, in Section 5 we give a finite equational basis for the variety N2(L).

2. The variety N2(L)

The varietyN2(L) is a type (2,2) variety, with two binary operations which we shall

denote by ∧ and ∨. By definition, N2(L) is the equational class determined by the set

of all 2-normal identities satisfied by the variety L of lattices. The variety N2(L) is

closely related to two other type (2,2) varieties constructed from L. The variety E(L)

is called the externalization of L, and it is the variety determined by all externally

compatible identities of L. An identity s ≈ t (of any type τ) is said to be externally

compatible, if either s and t are the same variable, or s = fj(s1, . . . , snj
) and t =

fj(t1, . . . , tnj
) for some terms s1, . . . , snj

, t1, . . . , tnj
and some index j ∈ I. Externally

compatible identities were defined by J. P lonka [9] and studied by Chromik in [3]

and Graczyńska in [8]. A characterization of the algebras in E(L) was given in [1].

The variety N(L) is the usual normalization of L, the variety determined by the set

of all normal identities of L. An identity s ≈ t (of any type τ) is said to be normal,

if either s and t are identical, or v(t), v(s) > 1.

The collection of all varieties of type (2,2) forms a lattice under the inclusion

ordering. We observe from the definitions that in this ordering L 6 N(L) 6 N2(L).

However, L 6= N(L), since L satisfies the non-normal idempotent identity x∨x ≈ x.

Also N(L) 6= N2(L) since N(L) satisfies x ∨ x ≈ x ∧ x, but N2(L) does not. All

external identities are normal identities, implying N(L) 6 E(L) but N(L) 6= E(L)

since N(L) satisfies x∨x ≈ x∧x but E(L) does not. We know also that N2(L) is not

a subvariety of E(L), since E(L) satisfies x∨x ≈ (x∨x)∨(x∨x), but N2(L) does not.

Finally, E(L) is not a subvariety of N2(L) either, since N2(L) satisfies (x∨ (x∨x))∧

(x∨(x∨x)) ≈ x∨(x∨x), but E(L) does not. Fig. 1 shows the inclusion relationships

N(L)

E(L) N2(L)

L

Figure 1.

of the varieties L, N(L), E(L) and N2(L). The variety N(L) covers L (see [7]), but
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N2(L) does not cover N(L) since the variety N2(L) ∩ Comm, where Comm is the

commutative variety of type (2,2), is strictly in between N(L) and N2(L).

3. The 3-level inflation construction

Let L be the type (2,2) variety of lattices, with N2(L) its 2-normalization. In

this section we introduce a construction called the 3-level inflation construction,

which we use to produce an algebra in N2(L) from any lattice in L. Since we will

be talking about algebras of type (2,2) from three different varieties, we shall use

different operation symbols for the two binary operations to distinguish them, with

the symbols ∨ and ∧ now used for lattices.

Our 3-level inflation construction is a generalization of the usual inflation construc-

tion which is well-known in universal algebra. Given a base algebra A , an inflation

of A is formed by adding disjoint sets of new elements to the base set A, one set Ca

(containing a) for each element a of A. The union of these new sets then forms

the base set of a new algebra, in which operations are performed by the rule that

any element in the set Ca always acts like a. For more information on the inflation

construction, see [4].

Now let A = (A;∨,∧) be a lattice. As in the usual inflation process, we inflate

the set A by adding to each a ∈ A a set Ca containing a, such that for a 6= b ∈ A

the sets Ca and Cb are disjoint. Let A∗ =
⋃

{Ca : a ∈ A}. For each element a1 ∈ A∗

there is a unique element ā1 ∈ A such that a1 ∈ Cā1
. For each a ∈ A we will

refer to Ca as the class of a. These classes form a partition of A∗ which induces an

equivalence relation θ on A∗. A mapping ψ : p(A∗) → A∗ satisfying ψ(Ca) ∈ Ca

for all a ∈ A will be called a θ-choice function. Unlike the usual inflation, for each

a ∈ A we partition Ca into three subclasses or levels, Cj
a, for j = 0, 1, 2, such that

|C2
a | > 1, but C0

a and C1
a are possibly empty. Thus, Ca =

⋃

{Cj
a : j = 0, 1, 2}.

Our new algebra A ∗ will have the inflated set A∗ as its universe, with binary

operations ∨θ,∧θ defined as follows:

Definition 3.1. Let A = (A;∨,∧) be a lattice with A∗ and θ as above. Let

ϕ be a θ-choice function such that ϕ(Cā) ∈ C2
ā for any a ∈ A∗. We define two

operations ∨θ and ∧θ on A∗ by setting, for any a1, a2 ∈ A∗,

a1 ∨θ a2 =

{

any element of C1
ā1∨ā2

∪ C2
ā1∨ā2

if a1 ∈ C0
ā1

and a2 ∈ C0
ā2
,

ϕ(Cā1∨ā2
) otherwise;

a1 ∧θ a2 =

{

any element of C1
ā1∧ā2

∪ C2
ā1∧ā2

if a1 ∈ C0
ā1

and a2 ∈ C0
ā2
,

ϕ(Cā1∧ā2
) otherwise.

The algebra A ∗ = (A∗;∨θ,∧θ) = Inf3(A , θ) will be called a 3-level inflation of A .
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The key observation about our new algebra A ∗ is the following fact. Any element

of A∗ that is an output of ∨θ or ∧θ will be at level 1 or level 2. Hence, any element

that is the output of a term of depth 2 or more had to be determined by ϕ and so

must be at level 2.

We let L∗ be the class of all algebras A ∗ = Inf3(A , θ) formed from some lattice

A ∈ L. Our goal now is to show that L∗ ⊆ N2(L), that is, that any algebra

constructed in this way from a lattice is in N2(L). Our proof will use the following

lemma.

Lemma 3.2. Let A ∗ = (A∗;∨θ,∧θ) be a 3-level inflation of a lattice A . For

any term t of arity n and any a1, . . . , an ∈ A∗, tA
∗

(a1, . . . , an) is in the θ-class of

tA (ā1, . . . , ān), which is in A.

P r o o f. Let t be any term of arity n and let a1, . . . , an be any elements of A∗.

We will give a proof by induction on the complexity of t. First, if t = xj for some

j > 1, then

tA
∗

(a1, . . . , an) = aj and tA ∗(a1, . . . , an) = āj = tA (ā1, . . . , ān).

Therefore, both aj , āj are in the same θ-class, Cāj
. We note also that for terms of

depth 1, the definition of ∨θ guarantees that x ∨θ y and x̄ ∨ y are both in Cx̄∨y and

hence in the same θ-class, and similarly for ∧θ.

Inductively, let t = f(t1, t2) be a compound term, and suppose without loss of

generality that f = ∨. So t = t1 ∨ t2 =
∨

(t1, t2). Hence,

tA
∗

(a1, . . . , an) =
∨

θ

(tA
∗

1 (a1, . . . , an), tA
∗

2 (a1, . . . , an)).

By definition of ∨θ, we have

∨

θ

(tA
∗

1 (a1, . . . , an), tA
∗

2 (a1, . . . , an)) ∈ C
tA∗

1
(a1,...,an)∨tA∗

2
(a1,...,an)

.

By induction,

tA
∗

1 (a1, . . . , an) = tA1 (ā1, . . . , ān) and tA
∗

2 (a1, . . . , an) = tA2 (ā1, . . . , ān).

Therefore, tA
∗

(a1, . . . , an) ∈ CtA
1

(ā1,...,ān)∨tA
2

(ā1,...,ān). Now,

∨

(tA1 (ā1, . . . , ān), tA2 (ā1, . . . , ān)) = tA (ā1, . . . , ān).

Therefore, tA
∗

(a1, . . . , an) ∈ CtA (ā1,...,ān) and thus tA
∗

(a1, . . . , an) is in the θ-class

of tA (ā1, . . . , ān), which is in A. �
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Theorem 3.3. Any algebra A ∗ constructed as a 3-level inflation of a lattice A

is in N2(L). Consequently, L∗ ⊆ N2(L).

P r o o f. Let A ∗ = Inf3(A , θ) for some lattice A . We will show that A ∗ ∈

N2(L) by showing that it satisfies any 2-normal identity s ≈ t of L. By Lemma 3.2

we have that sA
∗

(a1, . . . , an) θ sA (ā1, . . . , ān) and tA
∗

(a1, . . . , an) θ tA (ā1, . . . , ān).

Since L satisfies s ≈ t and all the elements ā1, . . . , ān are in A, and A ∈ L, we

have sA (ā1, . . . , ān) = tA (ā1, . . . , ān). Therefore, sA
∗

(a1, . . . , an) θ tA
∗

(a1, . . . , an).

That is, sA
∗

(a1, . . . , an) and tA
∗

(a1, . . . , an) are in the same θ-class; specifically,

sA
∗

(a1, . . . , an) and tA
∗

(a1, . . . , an) are both in CsA (ā1,...,ān).

Moreover, we know that v(s), v(t) > 2, so by the comment following Definition 3.1,

sA
∗

(a1, . . . , an) = ϕ(CsA (ā1,...,ān)) = tA
∗

(a1, . . . , an). Thus sA
∗

(a1, . . . , an) =

tA
∗

(a1, . . . , an). This shows that A ∗ satisfies s ≈ t, as required. �

For any A ∈ L, if no new elements are added in the 3-level inflation of A to A ∗,

then A ∗ is just A again. This means that we have L ⊆ L∗ ⊆ N2(L). If sufficiently

many new elements are added in an inflation of A , then it is possible for the new

algebra A ∗ to break the non-normal identities of L but keep the normal identities

of L, and to put A ∗ in the variety N(L) determined by all normal identities of L. If

enough new elements are added in the 3-level inflation, then it is possible to break

the non-2-normal identities of L, but keep all the 2-normal identities of L, and so

have A ∗ ∈ N2(L)−N(L). In the following example, sufficiently many elements were

added to the original lattice A to form a new algebra A ∗ which is in N2(L) but not

in N(L).

Example 3.4. Let A = ({1, 0},∨,∧) be a two-element lattice. Let C0
0 = {w},

C1
0 = {z}, C2

0 = {0, r}, C0
1 = {t}, C1

1 = ∅ and C2
1 = {1, p, q}. Let C0 = C0

0 ∪C
1
0 ∪C

2
0

and C1 = C0
1 ∪ C1

1 ∪ C2
1 . Let A ∗ = (C0 ∪ C1;∨θ,∧θ) be the algebra constructed

as in Definition 3.1. Let ϕ(C0) = r and ϕ(C1) = p. Since p ∈ C2
1 and z ∈ C1

0 , we

have p ∨θ z = ϕ(Cp̄∨z) = ϕ(C1) = p. Since t ∈ C0
1 and w ∈ C0

0 , we can select any

element of C1
t̄∨w

∪ C2
t̄∨w

(= C1
1 ∪ C2

1 ) for t ∨θ w. In this example we set t ∨θ w = 1.

We also set w ∨θ t = p, t ∧θ w = r and w ∧θ t = z. Note that having w ∨θ t 6= t ∨θ w

and w ∧θ t 6= t ∧θ w breaks commutativity and hence normality, so our constructed

algebra A is in N2(L) but not in N(L). Fig. 2 shows the algebras A and A ∗, along

with the Cayley tables for the operations ∨θ and ∧θ on A ∗.
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0

1

A

−→

w z 0 r

t 1 p q

C0
0 C1

0 C2
0

C0
1 C1

1 C2
1

A ∗

∨θ t 1 p q w z 0 r
t 1 p p p 1 p p p
1 p p p p p p p p
p p p p p p p p p
q p p p p p p p p
w p p p p 0 r r r
z p p p p r r r r
0 p p p p r r r r
r p p p p r r r r

∧θ t 1 p q w z 0 r
t 1 p p p r r r r
1 p p p p r r r r
p p p p p r r r r
q p p p p r r r r
w z r r r z r r r
z r r r r r r r r
0 r r r r r r r r
r r r r r r r r r

Figure 2.

4. From N2(L) to 3-level inflations

In this section we show that any 2-normalized lattice B is the 3-level inflation of

some lattice. This lattice will be called the skeleton of the algebra B, and we produce

it from a quasiorder onB. This will show that the classN2(L) of 2-normalized lattices

is precisely the class of 3-level inflations of lattices.

As in the previous section, we use different symbols for the two binary operations as

they occur in different algebras. We begin with any algebra B = (B;⊔,⊓) in N2(L).

We want to find a lattice A such that B = A ∗ for some 3-level inflation of lattice A .

In order to produce such a lattice from B, we will use the concept of a quasiorder.

We define a relation Q on B by the rule that, for any x, y ∈ B,

(∗) (x, y) ∈ Q if and only if x ⊔ x ⊔ y = y ⊔ y ⊔ y.

Lemma 4.1. Let B be any algebra in N2(L), and let Q be the relation induced

on B by (∗). Then

(i) Q is a quasiorder on B;

(ii) (x, y) ∈ Q if and only if x ⊓ y ⊓ y = x ⊓ x ⊓ x for all x, y ∈ B;

(iii) (x, x ⊔ y) ∈ Q, (y, x ⊔ y) ∈ Q, (x ⊓ y, x) ∈ Q and (x ⊓ y, y) ∈ Q for all x, y ∈ B.

583



P r o o f. We note first that since B ∈ N2(L), it satisfies all 2-normal conse-

quences of the usual commutativity, idempotence, and absorption laws for lattices.

(i) Reflexivity of the relation Q is immediate from the definition. For transitivity,

let (x, y) ∈ Q and (y, z) ∈ Q. From (∗) we obtain x ⊔ x ⊔ y = y ⊔ y ⊔ y and

y ⊔ y ⊔ z = z ⊔ z ⊔ z. Thus, using these equations and 2-normal consequences of

idempotence, we obtain x ⊔ x ⊔ z = x ⊔ z ⊔ z = x ⊔ z ⊔ z ⊔ z = x ⊔ y ⊔ y ⊔ z =

x⊔ x⊔ y ⊔ z = y ⊔ y ⊔ y ⊔ z = y ⊔ y ⊔ z ⊔ z = z ⊔ z ⊔ z ⊔ z = z ⊔ z ⊔ z. It follows that

(x, z) ∈ Q, as required. Hence, Q is a quasiorder on B.

(ii) Suppose that (x, y) ∈ Q, so x ⊔ x ⊔ y = y ⊔ y ⊔ y. Using this equation

and 2-normal consequences of idempotence and absorption, we have x ⊓ y ⊓ y =

x⊓ y⊓ y⊓ y = x⊓ (y⊔ y⊔ y) = x⊓ (x⊔x⊔ y) = x⊓ (x⊔ y⊔ y) = x⊓x⊓x. Similarly,

we can prove the converse. Thus, (x, y) ∈ Q if and only if x ⊓ y ⊓ y = x ⊓ x ⊓ x.

(iii) By applying 2-normal consequences of idempotence and commutativity, we

obtain x⊔ x⊔ (x⊔ y) = x⊔ x⊔ x⊔ y ⊔ y ⊔ y = (x⊔ y)⊔ (x⊔ y)⊔ (x⊔ y). Therefore,

(x, x⊔y) ∈ Q. Analogously we can show (y, x⊔y) ∈ Q and dually also (x⊓y, x) ∈ Q

and (x ⊓ y, y) ∈ Q. �

Let B = (B;⊔,⊓) be any algebra in N2(L). The quasiorder Q defined by (∗) will

be called the induced quasiorder of B.

We now turn to some general information on quasiordered sets. Let (B;Q) be

any quasiordered set. We denote by EQ the relation Q ∩Q−1, so that (a, b) ∈ EQ if

and only if both (a, b) and (b, a) are in Q. This relation EQ is clearly an equivalence

relation on B. We use the notation [b]EQ
for the equivalence class of an element b in

this relation, and B/EQ for the set of equivalence classes of B under EQ.

Now let a, b ∈ B. In a lattice, a and b have exactly one least upper bound and

exactly one greatest lower bound, but in an arbitrary quasiorder this is no longer

necessarily true. An element s of B is called a Q-upper bound of a and b if (a, s) ∈ Q

and (b, s) ∈ Q. We call s a minimal Q-upper bound for a and b if we also have

(s, v) ∈ Q for all Q-upper bounds v of a and b. Q-lower bounds and maximal Q-lower

bounds are then defined dually. We shall denote by J(a, b) the set of all minimal

Q-upper bounds of elements a and b, and dually by M(a, b) the set of all maximal

Q-lower bounds of a and b. It is easy to see that M(b, b) = J(b, b) = [b]EQ
, and that

both J(a, b) and M(a, b) are equivalence classes of EQ if they are non-empty.

We can think of the sets J(a, b) and M(a, b) as the sets of possible joins and meets

respectively for the elements a and b. The next lemma shows that in our special

case of the quasiorder Q induced on an algebra B in N2(L) these sets are always

non-empty. This will allow us to construct a lattice to use for our 3-level inflation.
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Lemma 4.2. Let B = (B;⊔,⊓) be any algebra in N2(L), with Q its induced

quasiorder. Let a, b ∈ B. Then a ⊔ b ∈ J(a, b) and a ⊓ b ∈M(a, b).

P r o o f. From Lemma 4.1 we know that (a, a⊔ b) ∈ Q and (b, a⊔ b) ∈ Q. Thus,

a ⊔ b is a Q-upper bound for a and b. Now let v be any Q-upper bound of a and b,

so that a ⊔ a ⊔ v = v ⊔ v ⊔ v and b ⊔ b ⊔ v = v ⊔ v ⊔ v. Then

(a ⊔ b) ⊔ (a ⊔ b) ⊔ v = (a ⊔ b) ⊔ (a ⊔ b) ⊔ v ⊔ v = a ⊔ a ⊔ v ⊔ b ⊔ b ⊔ v

= v ⊔ v ⊔ v ⊔ v ⊔ v ⊔ v = v ⊔ v ⊔ v,

showing that (a ⊔ b, v) ∈ Q. This proves that a ⊔ b is a minimal Q-upper bound

for a and b, and hence is in J(a, b). It can be shown dually that a ⊓ b ∈M(a, b). In

particular, this shows that the sets M(a, b) and J(a, b) are non-empty, so that J(a, b)

and M(a, b) are equivalence classes of EQ. �

In the general case of a quasiorder Q on a set B, a relation 6Q can be defined on

the set B/EQ of equivalence classes by the rule that

[a]EQ
6Q [b]EQ

iff (a, b) ∈ Q.

It is well-known that this relation 6Q is a partial order (reflexive, antisymmetric and

transitive) on B/EQ. The following result is a special case of the well-known fact

that this partial order determines a lattice (see for instance [1]).

Lemma 4.3. Let B = (B;⊔,⊓) be any algebra in N2(L), with Q its induced

quasiorder. Then the partially ordered set (B/EQ,6Q) is a lattice, with

[a]EQ
⊔Q [b]EQ

= J(a, b) and [a]EQ
⊓Q [b]EQ

= M(a, b)

for any a, b ∈ B. Consequently, the algebra B/EQ = (B/EQ;⊔Q,⊓Q) is a lattice.

We have shown so far that for any B in N2(L), the quotient algebra B/EQ =

(B/EQ;⊔Q,⊓Q) is a lattice. Now we pick one element from each EQ-class in B/EQ,

and use these elements to form a new set A ⊆ B. This selection can be made by

a choice function α on B. We can define operations ∨ and ∧ on this set A by

p ∨ q = α([p]EQ
⊔Q [q]EQ

) and p ∧ q = α([p]EQ
⊓Q [q]EQ

) for all p, q ∈ A. Clearly,

these definitions make A = (A;∨,∧) into a lattice which is isomorphic to B/EQ.

The new lattice A will be called the lattice skeleton of the original algebra B.

Now we want to inflate the lattice skeleton A to a new algebra A ∗ = Inf3(A , θ) =

(A∗;∨θ,∧θ) using the construction from Section 3. We do this by adding to each

a ∈ A the set Ca = [a]EQ
, so that the base set A∗ of A ∗ is the same as the base
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set B of the original algebra B. As required by our construction, we must divide Ca

into three sets, for each a ∈ A. To do this we use the following concept introduced

in [2].

Let D be any algebra of type τ and let d ∈ D. The element d is always the output

of some term operations tD on D , in particular, of variable terms. If the maximum

depth of any term t for which d is obtainable as an output of tD is 0 or 1, then we

assign d a level of 0 or 1, respectively. Otherwise, we assign d a level of 2. It is clear

from the definition of levels of elements in an algebra that applying any operations to

elements of given levels increases the level of the output by at least 1 (to a maximum

level of 2).

Now, using B to determine the levels of the elements in A∗, we set Cj
a = {b ∈

Ca : b has level j in B} for j = 0, 1, 2. Hence, we have Ca =
⋃

{Cj
a : j = 0, 1, 2}.

Lemma 4.4. LetB ∈ N2(L), with Q its induced quasiorder. Let A be the lattice

skeleton of B and let A ∗ = Inf3(A , θ). Then for all a ∈ A∗ the set C2
a has size 1.

P r o o f. Let B ∈ N2(L), with Q its induced quasiorder. Let A be the lattice

skeleton of B and let A ∗ = Inf3(A , θ). Let a ∈ A∗. Suppose that we have elements

p, q ∈ C2
a . Since p, q ∈ Ca = [a]EQ

, we have both (p, q) ∈ Q and (q, p) ∈ Q.

Using (∗) and the 2-normal consequences of idempotence and commutativity, we

have q⊓ q⊓ q = q⊔ q⊔ q = p⊔p⊔ q = q⊔ q⊔p = p⊔p⊔p = p⊓p⊓p. Since p, q ∈ C2
a ,

we can write p = fA
∗

(a1, a2) and q = gA
∗

(a3, a4) for some fA
∗

, gA
∗

∈ {⊓,⊔} and

some a1, a2, a3, a4 ∈ A∗, where a1 or a2 has level 1 and a3 or a4 has level 1.

There are four cases to consider. If a1 and a3 have level 1, then we can express a1 =

hA
∗

(b1, b2) and a3 = lA
∗

(b3, b4) for some hA
∗

, lA
∗

∈ {⊓,⊔} and some b1, b2, b3, b4 ∈

A∗. Then, using the above equations, associativity, and 2-normal consequences of

commutativity and idempotence,

p = fA
∗

(a1, a2) = fA
∗

(hA
∗

(b1, b2), a2)

= fA
∗

(fA
∗

(hA
∗

(b1, b2), h
A

∗

(b1, b2)), a2)

= fA
∗

(fA
∗

(a1, a1), a2)

= fA
∗

(fA
∗

(fA
∗

(a1, a2), f
A

∗

(a1, a2)), f
A

∗

(a1, a2))

= fA
∗

(fA
∗

(p, p), p) = gA
∗

(gA
∗

(q, q), q)

= gA
∗

(gA
∗

(gA
∗

(a3, a4), g
A

∗

(a3, a4)), g
A

∗

(a3, a4))

= gA
∗

(gA
∗

(a3, a3), a4)

= gA
∗

(gA
∗

(lA
∗

(b3, b4), l
A

∗

(b3, b4)), a4)

= gA
∗

(lA
∗

(b3, b4), a4) = gA
∗

(a3, a4) = q.

Thus, we obtain p = q. The other three cases are handled similarly. �
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Now we can use Lemma 4.4 to complete our construction of our original algebra

B ∈ N2(L) as a 3-level inflation of its lattice skeleton A . For any a ∈ A∗, let

ϕ(Cā) = b, where b is the only element of C2
ā . We define two operations ∨θ and ∧θ

on A∗ by setting, for any a1, a2 ∈ A∗,

a1 ∨θ a2 =

{

a1 ⊔ a2 if a1 ∈ C0
ā1

and a2 ∈ C0
ā2
,

ϕ(Cā1∨ā2
) otherwise;

a1 ∧θ a2 =

{

a1 ⊓ a2 if a1 ∈ C0
ā1

and a2 ∈ C0
ā2
,

ϕ(Cā1∧ā2
) otherwise.

We need to verify that the above definition satisfies the conditions of our 3-level

inflation construction given in Section 3. To do this, we must show that if a1 and a2

both have level 0, then a1 ⊔ a2 must be an element of C1
ā1∨ā2

∪ C2
ā1∨ā2

and a1 ⊓ a2

must be an element of C1
ā1∧ā2

∪ C2
ā1∧ā2

. First, we require the following lemma:

Lemma 4.5. For any a1, a2 ∈ A∗, a1 ⊔ a2 ∈ Cā1∨ā2
and a1 ⊓ a2 ∈ Cā1∧ā2

.

P r o o f. Let a1, a2 be any elements of A∗. We will show a1 ⊔ a2 ∈ Cā1∨ā2
; the

proof for a1 ⊓ a2 is similar. By Lemma 4.2, a1 ⊔ a2 ∈ J(a1, a2), and by Lemma 4.3,

J(a1, a2) = [a1]EQ
⊔Q [a2]EQ

. Since a1 ∈ A∗, a1 ∈ Cā1
= [ā1]EQ

. Hence, [a1]EQ
=

[ā1]EQ
. Similarly, [a2]EQ

= [ā2]EQ
and so [a1]EQ

⊔Q [a2]EQ
= [ā1]EQ

⊔Q [ā2]EQ
.

By our construction of A we have ā1 ∨ ā2 ∈ [ā1]EQ
⊔Q [ā2]EQ

and thus, [ā1]EQ
⊔Q

[ā2]EQ
= [ā1 ∨ ā2]EQ

. Now, [ā1 ∨ ā2]EQ
= Cā1∨ā2

. Hence, J(a1, a2) = Cā1∨ā2
, and so

a1 ⊔ a2 ∈ Cā1∨ā2
. �

So we have that a1 ⊔ a2 ∈ Cā1∨ā2
and a1 ⊓ a2 ∈ Cā1∧ā2

for any a1, a2 ∈ A∗. Now

if both a1 and a2 have level 0, then a1 ⊔ a2 has at least level 1. Hence, a1 ⊔ a2 ∈

C1
ā1∨ā2

∪ C2
ā1∨ā2

and a1 ⊓ a2 ∈ C1
ā1∧ā2

∪ C2
ā1∧ā2

, as required by our construction in

Section 3.

Theorem 4.6. Any algebra B = (B;⊔,⊓) in N2(L) is a 3-level inflation of its

skeleton lattice.

P r o o f. Let B = (B;⊔,⊓) be any algebra in N2(L), with Q its induced qua-

siorder. Let A be the lattice skeleton of B and let A ∗ = Inf3(A , θ) = (A∗;∨θ,∧θ),

with operations defined as above. It follows from our construction that A∗ and

B are equal as sets, and we want to show that we have a1 ∨θ a2 = a1 ⊔ a2 and

a1 ∧θ a2 = a1 ⊓ a2 for all a1, a2 ∈ A∗.

If a1 and a2 both have level 0, then by definition, a1∨θ a2 = a1⊔a2 and a1∧θ a2 =

a1 ⊓ a2. If at least one of a1 and a2 does not have level 0, then a1 ∨θ a2 = ϕ(Cā1∨ā2
)

587



is an element of C2
ā1∨ā2

. By Lemma 4.5 we know that a1⊔a2 is an element of Cā1∨ā2
.

Since at least one of a1 and a2 has level at least 1, a1 ⊔ a2 has level 2. Therefore,

a1⊔a2 ∈ C2
ā1∨ā2

. So we have that both a1∨θa2 and a1⊔a2 are elements of C2
ā1∨ā2

, but

by Lemma 4.4, C2
ā1∨ā2

has only one element and thus a1 ⊔ a2 = a1 ∨θ a2. Similarly,

we obtain a1 ⊓ a2 = a1 ∧θ a2. Therefore, B = A ∗. �

Corollary 4.7. The class N2(L) of 2-normalized lattices is precisely the class L∗

of all 3-level inflations of lattices.

Example 4.8. Let B = ({t, 1, p, q, w, 0, z, r},⊔,⊓) be the eight-element algebra

in N2(L) constructed in Example 3.4, with Q its induced quasiorder. Now, we form

the lattice B/EQ = (B/EQ;⊔Q,⊓Q) which will have two elements: [1]EQ
and [0]EQ

.

To form A = (A;∨,∧), we select the element t from [1]EQ
(= [t]EQ

) and the element 0

from [0]EQ
. Finally, we form A ∗ = Inf3(A , θ) = (A∗;∨θ,∧θ) by setting Ct = [t]EQ

and C0 = [0]EQ
. We use the tables for the operations ⊔ and ⊓ of B to assign a

level to each element in B, obtaining C0
t = {t, q}, C1

t = {1}, C2
t = {p}, C0

0 = {w},

C1
0 = {0, z} and C2

0 = {r}. We set ϕ(Ct) = p and ϕ(C0) = r. We define ∨θ and

∧θ as above such that t ∨θ t = 1, t ∨θ w = 1, w ∨θ t = p, w ∨θ w = 0, t ∧θ t = 1,

t∧θ w = r, w∧θ t = z and w∧θ w = z. This ensures that ∨θ has the same table as ⊔

and ∧θ has the same table as ⊓. Fig. 3 gives an overview of this process by showing

the progression of our construction from the quotient algebra B/EQ to the lattice

skeleton A to the 3-level inflation A ∗ of A .

[0]EQ
w z 0 r

[1]EQ t 1 p q

B/EQ

−→

0

t

A

−→

0 z r

t q 1 p

C0
0 C1

0 C2
0

C0
t C1

t C2
t

A ∗

Figure 3.

5. An equational basis for N2(L)

The variety N2(L) of 2-normalized lattices is defined as the equational class of

algebras determined by the set of all 2-normal identities of the variety L of lattices.

This means that this set, of all 2-normal identities of the variety of lattices, forms

an equational basis for the variety N2(L). This basis is countably infinite in size. In
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this section we present a finite basis for N2(L). We shall return to the convention of

using the symbols ∨ and ∧ for our two binary operations.

Theorem 5.1. The set ΣN2(L) consisting of the identities listed below forms a

finite basis for the identities of the variety N2(L):

(1) Associativity x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z, x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

(2) 2-Normal Commutativity x ∨ y ∨ z ≈ x ∨ z ∨ y, x ∧ y ∧ z ≈ x ∧ z ∧ y

x ∨ y ∨ z ≈ y ∨ x ∨ z, x ∧ y ∧ z ≈ y ∧ x ∧ z

(3) 2-Normal Idempotence x ∨ y ∨ z ∨ z ≈ x ∨ y ∨ z, x ∧ y ∧ z ∧ z ≈ x ∧ y ∧ z

z ∨ (x ∧ y ∧ y) ≈ z ∨ (x ∧ y), z ∧ (x ∨ y ∨ y) ≈ z ∧ (x ∨ y)
(x ∧ y) ∨ z ∨ z ≈ (x ∧ y) ∨ z, (x ∨ y) ∧ z ∧ z ≈ (x ∨ y) ∧ z

(4) 2-Normal Absorption x ∨ (x ∧ y) ≈ x ∨ x ∨ x, x ∧ (x ∨ y) ≈ x ∧ x ∧ x

(5) Equalization x ∨ x ∨ x ≈ x ∧ x ∧ x

It is clear that all the identities in ΣN2(L) do hold in N2(L), since they are 2-normal

consequences of identities in the standard basis for the variety L. To prove Theo-

rem 5.1, we will show that given any lattice identity s ≈ t such that v(s), v(t) > 2,

we can produce a deduction of s ≈ t from ΣN2(L) using the standard five rules of

deduction. First, we need the following definition:

Definition 5.2. For any term u ∈ Wτ (X), let u′ = u ∨ u ∨ u.

Note that u ≈ u′ is a lattice identity. Let Σ be the standard lattice basis and

Σ′ the set of identities u′ ≈ w′ such that u ≈ w ∈ Σ. Our strategy to deduce the

given identity s ≈ t from ΣN2(L) involves the deduction of the three identities s ≈ s′,

s′ ≈ t′, and t′ ≈ t from ΣN2(L). The proof will be broken up into several lemmas.

Lemma 5.3. For any term u of depth > 2, we can deduce u ≈ u′ from ΣN2(L).

P r o o f. Let u be any term such that v(u) > 2. Thus, u has the form

f(g(p, q), w) or f(p, g(q, w)) for some terms p, q and w. We need to show that

f(g(p, q), w) ≈ f(g(p, q), w) ∨ f(g(p, q), w) ∨ f(g(p, q), w) and f(p, g(q, w)) ≈

f(p, g(q, w))∨f(p, g(q, w))∨f(p, g(q, w)) can be deduced from ΣN2(L). These deduc-

tions are long but straightforward and similar to the example given in Lemma 5.4.

�

From Lemma 5.3 we know that we can deduce s ≈ s′ and t′ ≈ t from ΣN2(L). It

suffices for us to prove that s′ ≈ t′ can be deduced from ΣN2(L).

Since s′ ≈ t′ is a lattice identity, there exists a deduction of s ≈ t using the five

rules of deduction and the standard lattice basis Σ. We will call this deduction the

given deduction. We take the given deduction and replace each step uj ≈ wj by

u′j ≈ w′

j . We will call the result the derived list. We need to show that the derived
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list is a deduction of s′ ≈ t′ from ΣN2(L) and its consequences. In particular, we

want to be able to use identities in Σ′ as consequences of ΣN2(L).

Lemma 5.4. The set Σ′ can be deduced from ΣN2(L).

P r o o f. Let u ≈ w be any element of Σ, so u′ ≈ w′ is an element of Σ′.

If u ≈ w is associativity, then clearly u′ ≈ w′ can be deduced from ΣN2(L). If

u ≈ w is commutativity, idempotence or absorption, then the deduction of u′ ≈ w′

from ΣN2(L) is long but straightforward. These deductions make frequent use of the

2-normal commutativity identities (2) and the 2-normal idempotence identities (3).

The equalization identity (5) is frequently used when ∧ is the main operation symbol

of u or w.

We will provide as an example the deduction of the primed version of the idem-

potent identity for ∧.

Deduction of (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) ≈ x ∨ x ∨ x:

Line Identity Justification

1 x ∨ x ∨ x ≈ x ∧ x ∧ x From ΣN2(L).

2 (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) Substitution on line 1, x by x ∧ x.

≈ x ∧ x ∧ x ∧ x ∧ x ∧ x

3 x ∧ y ∧ z ∧ z ≈ x ∧ y ∧ z From ΣN2(L).

4 x ∧ x ∧ z ∧ z ≈ x ∧ x ∧ z Substitution on line 3, replace y by x.

5 x ∧ x ∧ x ∧ x ∧ x ∧ x Substitution on line 4, replace z by x ∧ x.

≈ x ∧ x ∧ x ∧ x

6 (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) Transitivity on lines 2 and 5.

≈ x ∧ x ∧ x ∧ x

7 x ∧ x ∧ x ∧ x ≈ x ∧ x ∧ x Substitution on line 4, replace z by x.

8 (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) Transitivity on lines 6 and 7.

≈ x ∧ x ∧ x

9 x ∧ x ∧ x ≈ x ∨ x ∨ x Symmetry on line 1.

10 (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) Transitivity on lines 8 and 9.

≈ x ∨ x ∨ x

�

As a result of Lemma 5.4, it will suffice to show that our derived list is a deduction

of s′ ≈ t′ from ΣN2(L) ∪ Σ′. To show this we need to verify that the justification for

each step j in the derived list is the same as the justification for step j in the given

deduction. We shall use the following two lemmas to handle two of the cases.
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Lemma 5.5. For any terms u, w, p, q, the identity f(u,w)′ ≈ f(p, q)′ can be

deduced from ΣN2(L) ∪ {f(u′, w′) ≈ f(p′, q′)}.

P r o o f. We will first consider the case that f = ∨. We use u∨u∨u∨w∨w∨w ≈

p∨p∨p∨q∨q∨q as the first line in the deduction of u∨w∨u∨w∨u∨w ≈ p∨q∨p∨q∨p∨q.

To obtain several identities, we use the ΣN2(L) identity x∨y∨z ≈ x∨z∨y repeatedly

along with several applications of the substitution rule. Then we use symmetry and

multiple applications of transitivity to obtain f(u,w)′ ≈ f(p, q)′.

For f = ∧, we use the equalization identity (5) at the beginning and end of the

deduction. The middle section of the deduction is similar to the case when f = ∨,

except that we use the identity x ∧ y ∧ z ≈ x ∧ z ∧ y. �

We will denote by Subs(u, x, w) the term obtained by replacing every occurrence

of the variable x in the term w by the term u.

Lemma 5.6. For any terms u and w and any variable x, the term Subs(u, x, w)′

is identical with the term Subs(u, x, w′).

P r o o f. Let u and w be any terms and let x be any variable. First, if w is a

variable x, then clearly Subs(u, x, w)′ is identical with Subs(u, x, w′).

Otherwise, w = f(w1, w2) is a compound term. Suppose without loss of generality

that f = ∨. Then

Subs(u, x, w)′ = Subs(u, x, w1 ∨w2)
′

= (Subs(u, x, w1) ∨ Subs(u, x, w2))
′

= Subs(u, x, w1) ∨ Subs(u, x, w2) ∨ Subs(u, x, w1) ∨ Subs(u, x, w2)

∨ Subs(u, x, w1) ∨ Subs(u, x, w2)

and

Subs(u, x, w′) = Subs(u, x, (w1 ∨ w2)
′)

= Subs(u, x, w1 ∨w2 ∨w1 ∨w2 ∨ w1 ∨ w2)

= Subs(u, x, w1) ∨ Subs(u, x, w2) ∨ Subs(u, x, w1) ∨ Subs(u, x, w2)

∨ Subs(u, x, w1) ∨ Subs(u, x, w2).

Hence, Subs(u, x, w)′ is identical with Subs(u, x, w′). �

Now we will prove that the derived list is a deduction of s′ ≈ t′ from ΣN2(L) ∪Σ′.
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Lemma 5.7. Let s ≈ t be any lattice identity such that v(s), v(t) > 2. Then the

derived list is a deduction of s′ ≈ t′ from ΣN2(L) ∪ Σ′.

P r o o f. We need to verify that the justification for each step j in the derived

list is the same as the justification for step j in the given deduction. Consider the

identity uj ≈ wj at any step j in the given deduction. If step j was an instance of

an identity from Σ, then step j in the derived list is an instance of the corresponding

identity from Σ′. If step j was an instance of the reflexive, symmetric, or transitive

rules of deduction, then clearly step j in the derived list is an instance of the same

rule.

If step j in the given deduction was an instance of the compatibility rule on two

previous steps c and d, then step j was f(uc, ud) ≈ f(wc, wd) deduced from uc ≈ wc

and ud ≈ wd. According to our construction of the derived list, step j in the derived

list is f(uc, ud)
′ ≈ f(wc, wd)

′. This is not what we obtain from the application of

the compatibility rule to steps c and d. Instead, we obtain f(u′c, u
′

d) ≈ f(w′

c, w
′

d).

However, by Lemma 5.5 we can produce a deduction of f(uc, ud)
′ ≈ f(wc, wd)

′ from

ΣN2(L) and the identity f(u′c, u
′

d) ≈ f(w′

c, w
′

d).

If step j in the given deduction was an instance of the substitution rule on a pre-

vious step e, then step j in the given deduction was Subs(z, x, ue) ≈ Subs(z, x, we)

and so step j in the derived list is Subs(z, x, ue)
′ ≈ Subs(z, x, we)

′. When we ap-

ply the substitution rule to step e in the derived list, we obtain Subs(z, x, u′e) ≈

Subs(z, x, w′

e). By Lemma 5.6, the term Subs(z, x, ue)
′ is identical with the term

Subs(z, x, u′e) and the term Subs(z, x, we)
′ is identical with the term Subs(z, x, w′

e);

hence step j in the derived list is an instance of the substitution rule applied to step e

in the derived list.

Thus, the derived list is a deduction of s′ ≈ t′ from ΣN2(L) ∪ Σ′. �

Since by Lemma 5.4 we can deduce Σ′ from ΣN2(L), Lemma 5.7 shows that s′ ≈ t′

can be deduced from ΣN2(L). From Lemma 5.3, we have that s ≈ s′ and t′ ≈ t can

also be deduced from ΣN2(L). This completes the proof of Theorem 5.1.
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