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I. Introduction and notation

Heinrich introduced his “density condition” in the context of ultraproducts of

locally convex spaces and gave some basic facts, see [11]. In [3] Bierstedt and Bonet

studied the density condition in the setting of Fréchet spaces. This restriction is

natural since each (DF )-space has the density condition. One of their main results is

that a Fréchet space satisfies the density condition if and only if each bounded subset

of its strong dual is metrizable. Many proofs in [3] are based on a dual reformulation

of the density condition. This started the research on “dual density conditions”

in the setting of (DF )-spaces. With duality methods and polarity Bierstedt and

Bonet formulated two slightly different dual versions of the density condition, the

“dual density condition” and the “strong dual density condition” (see [4]). In many

cases they are equivalent, but there are also examples of (DF )-spaces for which

this is not true. By [4] we know that a (DF )-space has the dual density condition

if and only if its bounded subsets are metrizable. These concepts were used by

several authors in various contexts, see e.g. [2] [5], [16], [17], [18]. Countable locally

convex inductive limits of spaces of holomorphic functions arise in linear partial
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differential equations, convolution equations, distribution theory and representation

of distributions as boundary values of holomorphic functions, complex analysis in

one and several variables and spectral theory and the holomorphic calculus. In this

article we show that the characterization of the dual density condition we obtained

in [17] also holds in the setting of condition (LOG) of Bonet, Engliš and Taskinen

(see [10]).

Our notation for locally convex (l.c.) spaces is standard; see for example Jarchow

[12], Köthe [13], Meise, Vogt [14] and Pérez Carreras, Bonet [15]. For a locally convex

space E, U (E) denotes the family of all absolutely convex 0-neighborhoods in E.

A locally convex (DF )-space E with a fundamental sequence (Bn)n∈N of bounded

sets is said to satisfy the dual density condition (DDC) (resp. the strong dual density

condition (SDDC)) if the following holds: for every sequence (λk)k∈N of strictly

positive numbers and for every n ∈ N there are m > n and U ∈ U (E) such that

Bn ∩ U ⊂ Γ

( m
⋃

k=1

λkBk

)

(resp. Γ

( m
⋃

k=1

λkBk

)

),

where Γ (resp. Γ) denotes the absolutely convex hull (resp. the closed absolutely

convex hull).

In the sequel D denotes the open unit disk of the complex plane. The space

H(D) of all holomorphic functions on D will usually be endowed with the topology

co of uniform convergence on the compact subsets of D. For a decreasing sequence

V = (vn)n∈N of strictly positive continuous functions (weights) on D we define

Hvn(D) := {f ∈ H(D) ; ‖f‖n := sup
z∈D

vn(z)|f(z)| < ∞},

H(vn)0(D) := {f ∈ H(D) ; lim
|z|→1−

vn(z)|f(z)| = 0},

V H(D) := indnHvn(D) and V0H(D) := indnH(vn)0(D).

Bn (resp. Bn,0) denotes the closed unit ball of Hvn(D) (resp. H(vn)0(D)). By Bn

and Bn,0 we denote the co-closures of the corresponding sets. Note that Bn = Bn.

If we put now Cn := Bn ∩ V H(D) resp. Cn,0 := Cn,0 ∩ V H(D), n ∈ N, by (Cn)n∈N

resp. (Cn,0)n∈N we obtain a fundamental sequence of the bounded subsets of V H(D)

resp. V H0(D). The system V of weights was introduced in [9] as

V := {v : D →]0,∞[v continuous, ∀k ∃rk > 0: v 6 inf
k

rkvk on D}.

The corresponding weighted spaces for V are called projective hulls and are given by

HV (D) := {f ∈ H(D) ; ‖f‖v := sup
z∈D

v(z)|f(z)| < ∞ ∀v ∈ V },

HV 0(D) := {f ∈ H(D) ; v|f | vanishes at the boundary of D ∀v ∈ V }.
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The system (Cv)v∈V (resp. (Cv,0)v∈V ) , where

Cv := {f ∈ HV (D) ; ‖f‖v 6 1} and Cv,0 := {f ∈ HV 0(D) ; ‖f‖v 6 1},

gives a 0-neighborhood base of HV (D) (resp. HV 0(D)). We write Cv and Cv,0 to

refer to the co-closure. A fundamental sequence of the bounded sets of HV (D) resp.

HV 0(D) is given by C′
n = Bn ∩ HV (D) and C′

n,0 := Bn,0 ∩ HV 0(D), n ∈ N.

An important tool to handle weighted spaces of holomorphic functions are the so

called associated growth conditions mentioned by Andersen and Duncan in [1] and

studied thoroughly by Bierstedt, Bonet and Taskinen in [8]. Let v be a weight on D.

Its associated growth condition is defined by

ṽ(z) := sup{|g(z)| ; g ∈ H(D), |g| 6 v}, z ∈ D.

A weight v on D, is said to be radial if v(z) = v(λz) holds for every λ ∈ C such

that |λ| = 1.

II. Main result

All the weights in this section are defined on the unit disc D of the complex plane.

For every n ∈ N we denote rn := 1−2−2n

, r0 = 0, and In := [rn, rn+1]. The following

definition is inspired by a condition introduced by Bonet, Engliš and Taskinen [10,

Section 4].

Definition 1. A sequence W = (wn)n∈N of weights on D satisfies the condition

(LOG) if each weight in the sequence is radial and approaches monotonically 0 as

r → 1− and there exist constants 0 < a < 1 < A such that

(a) Awk(rn+1) > wk(rn) and

(b) wk(rn+1) 6 awk(rn).

for every k and n.

For examples of systems of weights with (LOG) we refer the reader to [10, Exam-

ples 5 and 6].

First we need an auxiliary result.
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Lemma 2. Let E be a l.c. space with the fundamental sequence (Bn)n∈N of

bounded subsets. E has (DDC) (resp. (SDDC)) if and only if for every sequence

(λj)j∈N of strictly positive numbers and for every n ∈ N there are m > n and

U ∈ U (E) such that

(1) Bn ∩ U ⊂
m

∑

j=1

λjBj (resp. Bn ∩ U ⊂
m

∑

j=1

λjBj)

P r o o f. If E has (DDC), for every sequence (λj)j∈N of strictly positive num-

bers and for every n ∈ N there are m > n and U ∈ U (E) such that Bn ∩ U ⊂

Γ
( m

⋃

j=1

λjBj

)

⊂
m
∑

j=1

λjBj .

Conversely, we fix a sequence (µj)j∈N of strictly positive numbers and n ∈ N. Put

λj := µj2
−j for every j ∈ N and apply (1). Then there are m > n and U ∈ U (E)

with

Bn ∩ U ⊂
m

∑

j=1

λjBj =

m
∑

j=1

µj

2j
Bj ⊂ Γ

( m
⋃

j=1

µjBj

)

.

Hence, E has the dual density condition.

For the strong dual density condition the proof is analogous. �

Theorem 3. Let V = (vn)n∈N be a decreasing sequence of strictly positive contin-

uous radial functions on the unit disc D such that each vn approaches monotonically

0 as r → 1− and such that (LOG) is satisfied. The following are equivalent:

(a) V0H(D) has the dual density condition.

(b) V H(D) has the dual density condition.

(c) For every sequence (λk)k∈N of strictly positive numbers and every n ∈ N there

are m > n and w ∈ V such that

Cn,0 ∩ Cw,0 ⊂
m

∑

k=1

λkCk,0.

(d) For every sequence (λk)k∈N of strictly positive numbers and every n ∈ N there

are m > n and v ∈ V such that

(

min
( 1

vn

,
1

v

))∼

6

m
∑

k=1

λk

vk

on D.

P r o o f. First, we show the equivalence of (a) and (b). By [6] Proposition 4 we

have V H(D) = (V0H(D)′b)
′
i.
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(a) =⇒ (b): Let V0H(D) have the dual density condition. Then each bounded

subset of V0H(D) is metrizable by [4] Theorem 1.5.(a). [3] Theorem 1.4 yields

that V0H(D)′b has the density condition and is distinguished. Thus, V H(D) =

(V0H(D)′b)
′
i = V H(D)′′bb , and V H(D) has the dual density condition.

(b) =⇒ (a): Let V H(D) have the dual density condition. Since V H(D) =

(V0H(D)′b)
′
i holds, by [16, Corollary 2], V0H(D)′b has the density condition. An

application of [3, Theorem 1.4 and 1.5] implies that V0H(D) enjoys the dual density

condition.

Next we want to show that (a) implies (d). By [10, Theorem 5] V0H(D) is a dense

topological subspace of HV 0(D). In particular HV 0(D) is a (DF )-space (see [12,

Theorem 12.4.8.(d)]. Using [4, Theorem 1.10.(a)]. By Lemma 2 we know that then

for a sequence (λj)j∈N of strictly positive numbers and every n ∈ N there are m > n

and v ∈ V such that

(2) C′
n,0 ∩ Cv,0 ⊂

m
∑

j=1

λjC
′
j,0

So we have to show that (2) implies (d). We fix f ∈ H(G) such that |f | 6

(min(1/vn, 1/v))∼ on G; hence |f | 6 1/vn and |f | 6 1/v on G. W.l.o.g. we can

choose v ∈ V strictly positive, continuous and radial (see [7]).

Now, we consider the sequence (Skf)k∈N of the Cesàro means (of the partial sums)

of the Taylor series about 0. We obtain |Skf | 6 1/vn and |Skf | 6 1/v on G (see [7]

Proposition 1.2.(c)). Moreover, each polynomial Skf is an element of HV 0(G) and

hence of C′
n,0 ∩Cv,0. (2) yields Skf ∈

m
∑

j=1

λjC′
j,0 =

m
∑

j=1

λjC
′
j,0 for every k ∈ N. Thus,

each Skf can be written as Skf =
m
∑

j=1

λjgj where gj ∈ Cj,0 for every j ∈ {1, . . . , m}.

We get

|Skf | 6

m
∑

j=1

λj

vj

on G for every k ∈ N.

Since Skf → f pointwise, we obtain |f | 6
m
∑

j=1

λj/vj on G. Taking the supremum

over all f , condition (d) follows.

By [17, Lemma 1] (a) and (c) are equivalent. It remains to prove that (d) yields

(c). Our proof was inspired by [10, Theorem 5].

Let M > 0 denote a constant such that M >
∑

k∈N

ak, 0 < a < 1 as in (b) of

Definition 1, and M > 2At2n−t2−2n−1

if n > t, 1 < A as in (a) of Definition 1.
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We fix (λk)k∈N and n ∈ N. Moreover we select m > n and v ∈ V . Now we fix

f ∈ Cn,0 ∩ Cv,0 ∩ V0H(D). Hence f ∈ V0H(D) and

|f | 6

(

min
( 1

vn

,
1

v

))∼

6

m
∑

k=1

λk

vk

6 max
(mλ1

v1
, . . . ,

mλm

vm

)

.

Put u := min(v1/mλ1, . . . , vm/mλm). Hence

f ∈ Du,0 :=
{

f ∈ V0H(D) ; sup
z∈D

u(z)|f(z)| 6 1
}

.

We write u = min(a1u1, . . . , amum) where ai = 1/mλi and ui = vi for every 1 6

i 6 m. u is a radial, continuous and non-increasing function. It is known that each

g ∈ V0H(D) can be approximated in V0H(D) by the functions grn
(z) = g(rnz) for

large n. (Taking a k such that g ∈ H(vk)0(D) we have lim
|z|→1−

|g(z)|vk(z) = 0. This

implies grn
→ g in H(vk)0(D) as n → ∞. The topology of the inductive limit is

coarser, hence, grn
→ g also there.) Since the weight u is non-increasing, we get

(3) inf
|z|∈In

u(z) = u(rn+1) > u(rn+2) = inf
|z|∈In+1

u(z) > A−2u(rn).

For every n ∈ N we can thus pick a k(n) ∈ {1, . . . , m} such that

(4) u(rn) = ak(n)uk(n)(rn) = ak(n) sup
|z|∈In

uk(n)(z).

For ν ∈ N let Nl = {n 6 ν ; k(n) = l} for each 1 6 l 6 m. Let us define, for all n,

the function gn(z) := f(rn+1z) − f(rnz) and g0(z) := f(0), and, for i ∈ {1, . . . , m},

(5) hi :=
∑

n∈Ni

gn,

and hi := 0 if Ni = ∅. Clearly frν
= h1 + . . . + hm + g0. The constant function

g0 belongs to H(u1)0(D) and |f(0)| 6 a−1
1 u−1

1 (0), hence g0 ∈ a−1
1 Ck,0. Let us fix

i ∈ {1, . . . , m}. We pick n ∈ Ni, and estimate |gn(z)| for different z.

1. Assume first |z| > rn−1. Then

|rnz| > (1 − 2−2n

)(1 − 2−2n−1

) > (1 − 2 · 2−2n−1

) ∈ In−2

and similarly for |rn+1z|; hence

(6) rn−2 6 |rnz| 6 |rn+1z| 6 rn+1.
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Since f ∈ Du,0 we have for these z, by (3)

(7) |gn(z)| 6 |f(rnz)| + |f(rn+1z)| 6 2 sup
rn−26r6rn+1

u(r)−1 = 2u(rn+1)
−1.

Now (7) can still be estimated using (4) by

(8) 2A2u(rn)−1 = 2A2a−1
i ui(rn)−1.

2. Assume 2 6 t 6 n and |z| ∈ In−t. We have

|gn(z)| = |f(rnz) − f(rn+1z)| 6 sup
ξ∈In−t∪In−t−1

|f ′(ξ)||rn+1 − rn|(9)

6 sup
ξ∈In−t∪In−t−1

|f ′(ξ)|2−2n

.

We estimate |f ′(ξ)| using the Cauchy formula

(10) |f ′(ξ)| 6

∫

|η|=rn

|f(η)|

|η − ξ|2
dη 6 u(rn)−122n−t+1

,

since |η − ξ| > 2−2n−t+1

− 2−2n

> 2−1 · 2−2n−t+1

. We use 2n − 2n−t+1 > 2n−1 and

from (9) and (10) we obtain

(11) |gn(z)| 6 2−2n−1

· u(rn)−1
6 2−2n−1

· a−1
k(n)uk(n)(rn)−1.

Here we used (4). Moreover, using (a) of Definition 1 t times, we can continue the

estimate by

(12) 6 2−2n−1

· Ata−1
k(n)uk(n)(z)−1.

Since n > t we have 2−2n−1

At 6 M2−(n−t) (for all n and t), hence (12) is bounded

by

(13) M2−(n−t)a−1
k(n)uk(n)(z)−1 = M2−(n−t)a−1

i ui(z)−1.

So altogether

(14) |gn(z)| 6 M2−(n−t)a−1
i ui(z)−1.

To complete the proof, let now z ∈ D; we want to show that there is a constant

C > 0 such that

(15) |hi(z)| 6 (2MCA2 + M)a−1
i .
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Let t ∈ N be such that |z| ∈ It, then

(16) |hi(z)| 6
∑

n∈Ni,n6t+1

|gn(z)| +
∑

n∈Ni,n>t+1

|gn(z)| =: Gi(z) + Hi(z).

(a) Consider Gi(z). In this case (8) of 1. implies

Gi(z) 6
∑

n∈Ni,n6t+1

2A2a−1
i ui(rn)−1.

By using (b) of Definition 1 (t − n) times, there is a constant C > 0 such that this

is bounded by

(17) C
∑

n6t+1

2A2a−1
i ui(rt)

−1a−t+n 6 2CMA2a−1
i ui(z)−1.

Remember that a < 1 and M >
∑

k∈N

ak.

(b) Consider Hi(z). Then 2. (14) implies

(18) Hi(z) 6
∑

n∈Ni,n>t+1

M2−(n−t)a−1
i ui(z)−1 6 Ma−1

i ui(z)−1.

We obtain

frν
= g0 +

m
∑

l=1

hl ∈ (1 + 2CMA2 + M)a−1
1 C1,0 +

m
∑

k=2

(2CMA2 + M)a−1
k Ck,0

⊂ (1 + 2CMA2 + M)m

m
∑

k=1

λkCk,0.

Put w = v/m(1 + 2CMA2 + M) and obtain the assertion (c). �
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Sci. Liège 57 (1988), 567–589.

748



[6] K.D.Bierstedt and J. Bonet: Biduality in (LF )-spaces. RACSAM Rev. R. Acad. Cienc.
Exactas Fis. Nat. Ser. A Math. 95 (2001), 171–180.

[7] K.D.Bierstedt, J. Bonet and A.Galbis: Weighted spaces of holomorphic functions on
balanced domains. Michigan Math. J. 40 (1993), 271–297.

[8] K.D.Bierstedt, J. Bonet and J. Taskinen: Associated weights and spaces of holomorphic
functions. Studia Math. 127 (1998), 137–168.

[9] K.D.Bierstedt, R.Meise and W.H. Summers: A projective description of weighted in-
ductive limits. Trans. Amer. Math. Soc. 272 (1982), 107–160.

[10] J.Bonet, M.Engliš and J. Taskinen: Weighted L
∞-estimates for Bergman projections.

Studia Math. 171 (2005), 67–92.
[11] S.Heinrich: Ultrapowers of locally convex spaces and applications I. Math. Nachr. 118

(1984), 285–315.
[12] H. Jarchow: Locally Convex Spaces. Math. Leitfäden, B.G. Teubner, Stuttgart, 1981.
[13] G.Köthe: Topological Vector Spaces I. Grundlehren der math. Wiss. 159, Springer-Ver-

lag, New York-Berlin, 1969.
[14] R.Meise and D.Vogt: Introduction to Functional Analysis. Oxford Graduate Texts in

Math. 2, The Clarendon Press, Oxford University Press, New York, 1997.
[15] P.Pérez-Carreras and J. Bonet: Barrelled Locally Convex Spaces. North-Holland Math.

Stud. 131, Amsterdam, 1987.
[16] A.Peris: Some results on Fréchet spaces with the density condition. Arch. Math. (Basel)

59 (1992), 286–293.
[17] E.Wolf: Weighted (LB)-spaces of holomorphic functions and the dual density condi-

tions. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 99 (2005), 149–165.
[18] E.Wolf: The density condition and distinguishedness of weighted Fréchet spaces of holo-

morphic functions. J. Math. Anal. Appl. 327 (2007), 530–546.

Author’s address: E l k e Wo l f, Mathematical Institute, University of Paderborn,
D-33095 Paderborn, Germany, e-mail: lichte@math.uni-paderborn.de.

749


		webmaster@dml.cz
	2020-07-03T17:31:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




