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Abstract. Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach
space and properties of generated σ-ideals are studied. These σ-ideals naturally appear in
the differentiation theory and in the abstract approximation theory. Using these properties,
we improve an unpublished result of M.Heisler which gives an alternative proof of a result
of D.Preiss on singular points of convex functions.
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1. Introduction

Let X be a real separable Banach space. A number of σ-ideals of subsets of X

have been considered in literature. Besides the most classical system of first category

sets let us mention the σ-ideals of Haar null sets, Aronszajn (equivalently Gaussian)

null sets (see [2]), Γ-null sets (see [12], [11]) and σ-(lower or upper) porous sets

(see e.g. [21]). In some questions of the differentiability theory and of the abstract

approximation theory, the σ-ideals L1(X) and DC1(X) generated by Lipschitz and

d.c. Lipschitz hypersurfaces (i.e., “graphs” of Lipschitz and of d.c. Lipschitz func-

tions), respectively, naturally appear. These σ-ideals are proper subsystems of all

σ-ideals mentioned above. The sets from L1(X) were used in R
2 (under a different

but equivalent definition) by W.H.Young (under the name “ensemble ridée”) and by

H.Blumberg (under the name “sparse set”); cf. [20, p. 294]. These sets were used in

R
n e.g. (implicitly) by P.Erdös [4], and in infinite-dimensional spaces (possibly for

the first time) in [18] and [17]. The sets from DC1(X) were probably first applied in

[19] (cf. [2, p. 93]). In some articles (e.g., [18], [19], [20], [15]), also sets from smaller
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σ-ideals Ln(X) and DCn(X) generated by Lipschitz and d.c. Lipschitz surfaces of

codimension n > 1 were used.

In the present article we prove some properties of Lipschitz and Lipschitz locally

d.c. surfaces of finite codimension (Section 3; Proposition 3.6 and Proposition 3.7).

Using these properties, we study in Section 4 sets which are projections of sets from

Ln(X) on a closed space Y ⊂ X of codimension d < n. The study of such projections

was suggested by D. Preiss in connection with a result of [13] (see Remark 4.7(i)).

M.Heisler [7] proved that any such projection is a first category set in Y , which

provides (together with a result of [19]) an alternative proof of a result of [13]. We

prove that each such projection is also a subset of an Aronszajn null set in Y (and

even a subset of a set from a smaller class C∗

n). As a consequence, we obtain a result

on projections of sets of multiplicity of monotone operators (Theorem 4.9) which

improves both [13, Theorem 1.3] and the corresponding result of [7].

Our proof is more transparent than that in [7] and gives stronger results, since

it uses “perturbation” Proposition 3.7. To prove (and apply) it, we need some

results on perturbations of finite-dimensional subspaces. These results are collected

in Preliminaries, where also needful results on d.c. mappings are recalled.

2. Preliminaries

We consider only real Banach spaces. By sp{M} we denote the linear span of the

set M . A mapping is called K-Lipschitz if it is Lipschitz with a (not necessarily

minimal) constant K. A bijection f is called bilipschitz (K-bilipschitz) if both f and

f−1 are Lipschitz (K-Lipschitz).

A real function on an open convex subset of a Banach space is called d.c. (delta-

convex) if it is a difference of two continuous convex functions. Hartman’s notion of

d.c. mappings between Euclidean spaces [6] was generalized and studied in [16].

Definition 2.1. Let X,Y be Banach spaces, C ⊂ X an open convex set, and

let F : C → Y be a continuous mapping. We say that F is d.c. if there exists a

continuous convex function f : C → R such that y∗ ◦ F + f is convex whenever

y∗ ∈ Y ∗, ‖y∗‖ 6 1.

It is easy to see (cf. [16, Corollary 1.8.]) that, if Y is finite dimensional, then F is

d.c. if and only if y∗ ◦ F is d.c. for each y∗ ∈ Y ∗ (or for each y∗ from a fixed basis

of Y ∗). Note also that each d.c. mapping is locally Lipschitz ([16, p. 10]). If X is

finite-dimensional, then each locally d.c. mapping is d.c. (see [16, p. 14]) but it is not

true (see [9]) if X is infinite dimensional. We will need also the following well-known

facts on d.c. mappings.
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Lemma 2.2. Let X , X1, Y , Y1, Y2, Z be Banach spaces.

(i) Let f : X → Y be d.c. and let g : X1 → X , h : Y → Y1 be linear and continuous.

Then both f ◦ g and h ◦ f are d.c.

(ii) A mapping f = (f1, f2) : X → Y1 × Y2 is d.c. if and only if both f1 and f2 are

d.c.

(iii) If g : X → Y , h : X → Y are d.c. and a, b ∈ R, then ag + bh is d.c.

(iv) If f : X → Y is locally d.c. and g : Y → Z is locally d.c., then g ◦ f is locally

d.c.

(v) Suppose that G : X → Y is a linear isomorphism, g : X → Y is a locally d.c.

bilipschitz bijection, and the range of g−G is contained in a finite dimensional

space. Then g−1 is locally d.c.

P r o o f. The statements (i) and (ii) are very easy (cf. [16, Lemma 1.5 and

Lemma 1.7]) and (iii) follows from (i) and (ii). The statement (iv) is a special case

of [16, Theorem 4.2] and (v) is a special case of [3, Theorem 2.1]. �

We will need some notions and results concerning distances of two subspaces of a

Banach space, which are well-known from the perturbation theory of linear operators

([5], [8], [1]). Let X be a Banach space and S(X) the unit sphere of X . Let Y and

Z be closed non-trivial subspaces of X . Then the gap between Y and Z (called also

the opening or the deviation of Y and Z) is defined by

γ(Y, Z) = max
{

sup
y∈Y ∩S(X)

dist(y, Z), sup
z∈Z∩S(X)

dist(z, Y )
}

.

We set γ({0}, {0}) := 0 and γ(Y, Z) = 1 if one and only one of Y , Z is {0}. The gap

need not be a metric on the set of all non-trivial subspaces of X ; this property is

possessed by the distance ̺(Y, Z) between Y and Z defined as the Hausdorff distance

between Y ∩ S(X) and Z ∩ S(X).

We will work with the gap γ(Y, Z). However, since it is easy to prove (see e.g.,

[8]) that (for nontrivial Y , Z) always

(2.1) 1
2̺(Y, Z) 6 γ(Y, Z) 6 ̺(Y, Z),

we could work also with ̺(Y, Z). We will need the following well-known facts.

Lemma 2.3. Let X be a Banach space and let F , F̃ , K be finite dimensional

subspaces of X . Then:

(i) If γ(F, F̃ ) < 1, then dimF = dim F̃ .

(ii) If F ∩K = {0}, then there exists ω > 0 such that γ(F, F̃ ) < ω implies F̃ ∩K =

{0}.
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(iii) If E⊕F = X , then there exists ω > 0 such that γ(F, F̃ ) < ω implies E⊕F̃ = X .

P r o o f. The statement (i) is proved in [5] (see [1, Theorem 2.1]) and (ii) is an

easy consequence of (2.1). (We can also apply [1, Theorem 5.2] with Y := F , Z := K

and X := F ⊕K.) The statement (iii) immediately follows from [1, Theorem 5.2].

�

The following simple lemma is also essentially well-known. Although it is not

stated explicitly in [10], it follows from [10, Theorem 2.2] which works with complex

Banach spaces. Since the formulation of [10, Theorem 2.2] is rather complicated and

we work with real spaces, for the sake of completeness we give a proof.

Lemma 2.4. Let X be a Banach space, let (v1, . . . , vn) be a basis of a space V ⊂

X and ε > 0. Then there exists δ > 0 such that the inequalities ‖w1 − v1‖ < δ, . . .,

‖wn − vn‖ < δ imply that W := sp{w1, . . . , wn} is n-dimensional and γ(V,W ) < ε.

P r o o f. First we will show that there exists η > 0 and δ∗ > 0 such that the

inequality

(2.2)

∥

∥

∥

∥

n
∑

i=1

ciwi

∥

∥

∥

∥

> η‖c‖∞

holds whenever ‖w1 − v1‖ < δ∗, . . . , ‖wn − vn‖ < δ∗ and c = (c1, . . . , cn) ∈ R
n

is arbitrary. To this end observe that there exists η∗ > 0 such that (2.2) holds

for η = η∗, wi = vi and arbitrary c. Put η := η∗/2 and δ∗ := η∗/2n. Then the

inequalities ‖w1 − v1‖ < δ∗, . . . , ‖wn − vn‖ < δ∗ imply that, for each 0 6= c ∈ R
n,

∥

∥

∥

∥

n
∑

i=1

ci
‖c‖∞

vi

∥

∥

∥

∥

−

∥

∥

∥

∥

n
∑

i=1

ci
‖c‖∞

wi

∥

∥

∥

∥

6

∥

∥

∥

∥

n
∑

i=1

ci
‖c‖∞

(vi − wi)

∥

∥

∥

∥

< nδ∗ = η∗/2.

Consequently, using the definition of η∗, we obtain

∥

∥

∥

∥

n
∑

i=1

ci
‖c‖∞

wi

∥

∥

∥

∥

>

∥

∥

∥

∥

n
∑

i=1

ci
‖c‖∞

vi

∥

∥

∥

∥

− η∗/2 > η∗ − η∗/2 = η,

which implies (2.2).

Now set δ := min{δ∗, εη/2n} and suppose that the inequalities ‖w1 − v1‖ < δ, . . .,

‖wn − vn‖ < δ hold. Let w =
n
∑

i=1

ciwi with ‖w‖ = 1 be given. Set v =
n
∑

i=1

civi. Since

‖c‖∞ 6 1/η by (2.2), we obtain

‖v − w‖ 6

n
∑

i=1

|ci|δ 6 n(1/η)δ 6 ε/2.
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Consequently, sup
w∈W∩S(X)

dist(w, V ) < ε. In a quite symmetrical way we obtain

sup
v∈V ∩S(X)

dist(v,W ) < ε, so γ(V,W ) < ε. Since we can suppose ε < 1, we know that

W is n-dimensional by Lemma 2.3(i). �

Lemma 2.5. Let X , Y be Banach spaces and F : X → Y a linear isomorphism.

Then there exists C > 0 such that

C−1γ(F (V ), F (W )) 6 γ(V,W ) 6 Cγ(F (V ), F (W ))

whenever V and W are subspaces of X .

P r o o f. We can clearly suppose that V and W are non-trivial. Since F−1 is

also a linear isomorphism, it is clearly sufficient to find D > 0 such that γ(V,W ) 6

Dγ(F (V ), F (W )) always holds. Choose K > 0 such that F is K-bilipschitz and

consider v ∈ V with ‖v‖ = 1. We can clearly find w̃ ∈ F (W ) for which ‖w̃−‖F (v)‖−1·

F (v)‖ 6 2γ(F (V ), F (W )). Since ‖F (v)‖ 6 K, we have ‖F (v) − ‖F (v)‖ · w̃‖ 6

2Kγ(F (V ), F (W )), and therefore ‖v − ‖F (v)‖ · F−1(w̃)‖ 6 2K2γ(F (V ), F (W )).

Since the roles of V and W are symmetric, we can clearly set D := 2K2. �

Lemma 2.6. Let X be an infinite dimensional Banach space, V,W ⊂ X non-

trivial finite dimensional spaces, and δ > 0. Then there exists a space Ṽ ⊂ X with

γ(V, Ṽ ) < δ and Ṽ ∩W = {0}.

P r o o f. Denote n := dimV , choose an n-dimensional space Y ⊂ X with

Y ∩ (V + W ) = {0} and a linear bijection L : V → Y . For t > 0, set Ṽt :=

{v + tL(v) : v ∈ V }. It is easy to check that each Ṽt is an n-dimensional space with

Ṽt ∩W = {0}. Applying Lemma 2.4 to a basis v1, . . . , vk of V and wi := vi + tL(vi),

it is easy to see that γ(V, Ṽt) → 0 (t→ 0+), which implies our assertion. �

Lemma 2.7. Let X be a Banach space, 1 6 n < dimX and K > 1. Let

X = E⊕F , where F is an n-dimensional space. Suppose that the canonical mapping

µ : E ⊕ F → E × F (where E × F is equipped with the maximum norm) is K-

bilipschitz. Then there exists ω > 0 such that if F̃ ⊂ X is a closed space with

γ(F, F̃ ) < ω, then X = E ⊕ F̃ and the canonical mapping µ̃ : E ⊕ F̃ → E × F̃ is

2K-bilipschitz.

P r o o f. Distinguishing the cases λ < 1, λ = 1 and λ > 1, it is easy to check

that there exists 1 > ω0 > 0 such that the inequalities

K max(1 + ω, λ) + ω 6 2Kmax(1, λ),(2.3)

K−1 max(1 − ω, λ) − ω > (2K)−1 max(1, λ)
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hold for each λ > 0 and 0 < ω < ω0. By Lemma 2.3(iii), we can choose 0 < ω < ω0

such that X = E ⊕ F̃ whenever γ(F, F̃ ) < ω. Let F̃ with γ(F, F̃ ) < ω be given and

consider arbitrary f̃ ∈ F̃ and e ∈ E. We will prove

(2.4) (2K)−1 max(‖f̃‖, ‖e‖) 6 ‖f̃ + e‖ 6 2Kmax(‖f̃‖, ‖e‖).

Since the case f̃ = 0 is trivial, by homogeneity of the norm we can suppose ‖f̃‖ = 1

and find f ∈ F with ‖f − f̃‖ < ω. Applying (2.3) to λ := ‖e‖, we obtain

‖f̃ + e‖ 6 ‖f + e‖ + ω 6 Kmax(‖f‖, ‖e‖) + ω

6 Kmax(1 + ω, ‖e‖) + ω 6 2Kmax(1, ‖e‖)

and

‖f̃ + e‖ > ‖f + e‖ − ω > K−1 max(1 − ω, ‖e‖)− ω > (2K)−1 max(1, ‖e‖).

Thus, (2.4) holds, and µ̃ is (2K)-bilipschitz. �

3. Properties of Lipschitz surfaces of finite codimension

If X is a Banach space and X = E⊕F , then we denote by πE,F the projection of

X to E along the space F .

Definition 3.1. Let X be a Banach space and A ⊂ X .

(i) Let F be a closed subspace ofX . We say thatA is an F -Lipschitz surface if there

exists a topological complement E of F and a Lipschitz mapping ϕ : E → F

such that A = {x+ ϕ(x) : x ∈ E}.

(ii) Let 1 6 n < dimX be a natural number. We say that A is a Lipschitz surface

of codimension n if A is an F -Lipschitz surface for some n-dimensional space

F ⊂ X .

(iii) If we consider in (i) mappings ϕ : E → F which are d.c. (Lipschitz d.c., locally

d.c., Lipschitz locally d.c.), we obtain the notions of an F -d.c. surface, d.c.

surface of codimension n (F -Lipschitz d.c. surface, etc.). A Lipschitz surface

(d.c. surface, etc.) of codimension 1 is said to be a Lipschitz hypersurface (d.c.

hypersurface, etc.).

(iv) The σ-ideals of sets which can be covered by countably many Lipschitz sur-

faces or d.c. surfaces of codimension n will be denoted by Ln(X) or DCn(X),

respectively.
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Lemma 3.2. Let X be a Banach space, F ⊂ X a space of dimension n (1 6 n <

dimX), and A ⊂ X . Then the following properties are equivalent.

(i) A is an F -Lipschitz surface (an F -d.c. surface, an F -Lipschitz d.c. surface, an

F -Lipschitz locally d.c. surface).

(ii) There exists a topological complement Ẽ of F such that π̃|A : A → Ẽ is a

bijection and (π̃|A)−1 is Lipschitz (d.c., etc.), where π̃ := πẼ,F .

(iii) If X = F ⊕ E and π := πE,F , then π|A : A → E is a bijection and (π|A)−1 is

Lipschitz (d.c., etc.).

(iv) If X = F ⊕ E, then there exists a Lipschitz mapping (a d.c. mapping, etc.)

ϕ : E → F such that A = {x+ ϕ(x) : x ∈ E}.

P r o o f. In the proof we use Lemma 2.2(i)–(iii).

If (i) holds, then there exists a topological complement Ẽ of F and a Lipschitz

(d.c., etc.) mapping ϕ̃ : Ẽ → F such that A = {x + ϕ̃(x) : x ∈ Ẽ}. Set π̃ := πẼ,F .

Then clearly π̃|A : A → Ẽ is a bijection and (π̃|A)−1 is Lipschitz (d.c., etc.), since

(π̃|A)−1(ẽ) = ẽ+ ϕ̃(ẽ).

Now let Ẽ be as in (ii), and let E and π be as in (iii). Since π|Ẽ : Ẽ → E is

clearly a linear isomorphism, (π|Ẽ)−1 = π̃|E , π|A = (π|Ẽ) ◦ (π̃|A) and (π|A)−1 =

(π̃|A)−1 ◦ (π̃|E), we easily obtain (iii).

Letting ϕ(x) := (π|A)−1(x)−x for x ∈ E, we easily see that (iii) implies (iv). The

implication (iv) ⇒ (i) is trivial. �

Remark 3.3.

(i) Every Lipschitz surface of codimension n in X is clearly a closed subset of X .

(ii) If S ⊂ X is a Lipschitz (d.c., etc.) surface of codimension n > 2, then S is a

subset of a Lipschitz (d.c., etc.) surface of codimension n− 1. Indeed, suppose

that S = {x + ϕ(x) : x ∈ E}, where ϕ : E → F , X = E ⊕ F , and F is n-

dimensional. Choose 0 6= v ∈ F and write F = sp{v} ⊕ F̃ . Set Ẽ := E + sp{v}

and, for x ∈ Ẽ, define ϕ̃(x) := πF̃ ,Ẽ (ϕ(πE,F (x))). Set S̃ := {y+ ϕ̃(y) : y ∈ Ẽ}.

It is easy to see that S ⊂ S̃ and ϕ̃ : Ẽ → F is Lipschitz (d.c., etc.) if ϕ is

Lipschitz (d.c., etc.).

Consequently, if dimX > n > 2, then Ln(X) ⊂ Ln−1(X). If X is separable,

then this inclusion is proper, see Remark 4.8, which shows that no Lipschitz

surface of codimension n − 1 belongs to Ln(X) (if dimX < ∞, it is sufficient

to use in the obvious way the basic properties of Hausdorff dimension).

(iii) If X is separable, then the σ-ideal DCn(X) coincides with the σ-ideal gener-

ated by Lipschitz d.c. surfaces (or Lipschitz locally d.c. surfaces, or locally d.c.

surfaces). This easily follows from local lipschitzness of d.c. functions, from the

well-known fact that each Lipschitz convex function defined on an open ball
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in a space E can be extended to a Lipschitz convex function on E, and from

separability of X .

(iv) It is not difficult to show that DCn(X) is a proper subset of Ln(X) (if dimX >

n > 1); see [17, p. 295] for n = 1.

Remark 3.4. Suppose that X = E ⊕ F and F is finite dimensional. An easy

argument using local compactness of F shows that πE,F (A) is closed in E whenever

A is closed and bounded in X . Consequently, πE,F (A) is an Fσ subset of E whenever

A is closed in X .

We will need the following well-known easy consequence of Brouwer’s Invariance

of Domain Theorem. Because of the lack of a suitable reference, we present a short

proof.

Lemma 3.5. Let C, C̃ be Banach spaces with 0 < dimC = dim C̃ < ∞ and

let f : C̃ → C be an injective continuous mapping such that f−1 : f(C̃) → C̃ is

Lipschitz. Then f(C̃) = C.

P r o o f. We can clearly suppose that C = C̃ and X := C = C̃ is a Euclidean

space. Brouwer’s Invariance of Domain Theorem implies that f(X) is open in X . Let

yn → y, where yn ∈ f(X). Then (yn) is bounded and, since f−1 is Lipschitz, (xn) :=

(f−1(yn)) is bounded as well. Choose a subsequence xnk
→ x ∈ X . Then f(xnk

) =

ynk
→ f(x) = y. Thus, we have proved that f(X) is closed; the connectedness of X

implies f(X) = X . �

Proposition 3.6. Let X be a Banach space, S ⊂ X a Lipschitz surface of

codimension n, and let X = D ⊕ F with dimF = n. Let ψ = πD,F |S : S → D be

injective and let ψ−1 : ψ(S) → S be Lipschitz. Then S is an F -Lipschitz surface.

Moreover, if S is a Lipschitz locally d.c. surface of codimension n, then S is an

F -Lipschitz locally d.c. surface.

P r o o f. Choose an n-dimensional space F̃ such that S is an F̃ -Lipschitz surface.

Since the case F = F̃ is obvious by Lemma 3.2, we suppose F 6= F̃ . Put K :=

F ∩ F̃ and choose spaces C, C̃ such that F = K ⊕ C̃ and F̃ = K ⊕ C. Then

clearly 1 6 dimC = dim C̃ < ∞. Choose a topological complement Z of the (finite

dimensional) space F + F̃ = K⊕C⊕ C̃ and denote E := Z⊕C, Ẽ := Z⊕ C̃. Clearly

X = F ⊕ E = F̃ ⊕ Ẽ.

By Lemma 3.2, ϕ̃ := πẼ,F̃ |S : S → Ẽ is a bilipschitz bijection. It is easy to

see (proceeding similarly to the proof of Lemma 3.2) that ϕ := πE,F |S : S → E is

injective and ϕ−1 : ϕ(S) → S is Lipschitz. So Lemma 3.2 implies that, to prove the

first part of the assertion, it is sufficient to verify ϕ(S) = E.
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To this end choose an arbitrary e ∈ E and write e = z+c, where z ∈ Z and c ∈ C.

For each x ∈ C̃, put f(x) := ϕ◦(ϕ̃)−1(x+z)−z. Clearly f(x) ∈ (F+F̃ )∩E = C; so f :

C̃ → C. It is easy to see that f is continuous injective and f−1(y) = ϕ̃◦ϕ−1(y+z)−z

for each y ∈ f(C̃). Consequently, f−1 is Lipschitz, and so f(C̃) = C by Lemma 3.5.

For c̃ := f−1(c) we have ϕ((ϕ̃)−1(c̃+ z)) = c+ z = e; so ϕ(S) = E.

To prove the second part of the assertion, we suppose that (ϕ̃)−1 : Ẽ → X is

moreover locally d.c. Then g := ϕ ◦ (ϕ̃)−1 = πE,F ◦ (ϕ̃)−1 is clearly Lipschitz and

it is locally d.c. by Lemma 2.2 (i). Since ϕ(S) = E, we have that g : Ẽ → E is

a bijection and g−1 = ϕ̃ ◦ ϕ−1 is Lipschitz. Choose a linear bijection L : C̃ → C,

and let G : Ẽ → E be the mapping which assigns to a point ẽ = c̃ + z (c̃ ∈ C̃,

z ∈ Z) the point G(ẽ) := L(c̃) + z. Then clearly G is a linear isomorphism. Since

G(ẽ)− ẽ ∈ C+ C̃ and g(ẽ)− ẽ ∈ F + F̃ , we obtain that g−G has a finite dimensional

range. Consequently, Lemma 2.2(v) implies that g−1 is locally d.c. Thus, Lemma

2.2(iv) implies that ϕ−1 = (ϕ̃)−1 ◦ g−1 is locally d.c. So, Lemma 3.2 implies that S

is an F -Lipschitz locally d.c. surface. �

Proposition 3.7. Let X be a Banach space, F ⊂ X an n-dimensional space, and

A ⊂ X an F -Lipschitz or F -Lipschitz locally d.c. surface. Then there exists ε > 0

such that if F̃ ⊂ X is respectively an n-dimensional space with γ(F, F̃ ) < ε, then A

is an F̃ -Lipschitz or F̃ -Lipschitz locally d.c. surface.

P r o o f. Choose E such that X = E ⊕ F and K > 1 such that the canonical

mapping γ : E ⊕ F → E × F is K-bilipschitz. Choose a corresponding ω > 0 by

Lemma 2.7. Denote π := πE,F and choose L > 1 such that (π|A)−1 is Lipschitz with

the constant L. Choose ε > 0 such that ε < ω and

(3.1) 2K2Lε < 1/2.

Now suppose that an n-dimensional space F̃ with γ(F, F̃ ) < ε is given. Since ε < ω,

we have that X = E ⊕ F̃ and the canonical mapping γ̃ : E ⊕ F̃ → E × F̃ is 2K-

bilipschitz. By Proposition 3.6, it is sufficient to prove that, putting π̃ := πE,F̃ , the

mapping (π̃|A)−1 is Lipschitz with the constant 2L; i.e., that

(3.2) ‖x− y‖ 6 2L‖π̃(x) − π̃(y)‖ = 2L‖π̃(x − y)‖, x, y ∈ A.

Thus, consider x, y ∈ A, x 6= y, and write x − y = e1 + f = e2 + f̃ , where e1 =

π(x− y) ∈ E, e2 = π̃(x− y) ∈ E, f ∈ F and f̃ ∈ F̃ . We know that ‖x− y‖ 6 L‖e1‖

and so ‖f̃‖ 6 2K‖x− y‖ 6 2KL‖e1‖.

If f̃ = 0, then (3.2) is obvious. If f̃ 6= 0, put z̃ := ‖f̃‖−1f̃ and find z ∈ F such

that ‖z̃ − z‖ 6 ε. Then f2 := ‖f̃‖z satisfies ‖f̃ − f2‖ 6 ε‖f̃‖, and so

K−1‖e1 − e2‖ 6 ‖e1 − e2 + f − f2‖ = ‖f̃ − f2‖ 6 ε‖f̃‖ 6 2KLε‖e1‖.
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Thus, by (3.1), we obtain ‖e1 − e2‖ 6 ‖e1‖/2, and so ‖e2‖ > ‖e1‖/2. Therefore

‖x− y‖ 6 L‖e1‖ 6 2L‖e2‖, which proves (3.2) and completes the proof. �

Remark 3.8. I do not know whether analogues of Proposition 3.6 and Proposi-

tion 3.7 hold for Lipschitz d.c. surfaces.

4. Projections of Lipschitz surfaces of finite codimension

Definition 4.1. Let X be a separable Banach space and let a finite-dimensional

space V ⊂ X be given. We define the following classes of sets:

(i) A(V ) is the system of all Borel sets B ⊂ X such that V ∩ (B + a) is Lebesgue

null (in V ) for each a ∈ X . For 0 6= v ∈ X we put A(v) := A(sp{v}).

(ii) A∗(V, ε) (where 0 < ε < 1) is the system of all Borel sets B ⊂ X such that

B ∈ A(W ) for each space W with γ(V,W ) < ε, and A∗(V ) is the system of all

sets B such that B =
∞
⋃

k=1

Bk, where Bk ∈ A∗(V, εk) for some 0 < εk < 1.

(iii) C∗

d (where d ∈ N) is the system of those B ⊂ X that can be written as B =
∞
⋃

k=1

Bk, where each Bk belongs to A∗(Vk) for some Vk with dimVk = d.

(iv) A is the system of those B ⊂ X that can be, for every complete sequence (vk)

in X , written as B =
∞
⋃

k=1

Bk, where each Bk belongs to A(vk).

Note that C∗

1 coincides with C∗ from [14] and A is the system of all Aronszajn

null sets. For basic properties of sets from A see [2]. Lemma 2.5 easily implies the

following fact.

Lemma 4.2. Let X , Y be Banach spaces and F : X → Y a linear isomorphism.

Let S ⊂ X belong to A∗(V, δ). Then there exists ε > 0 such that F (S) ∈ A∗(F (V ), ε)

(in the space Y ).

Proposition 4.3. Let X be a separable infinite dimensional Banach space. Then

C∗

1 ⊂ C∗

2 ⊂ . . . ⊂ A and all inclusions are proper.

P r o o f. To prove the inclusions C∗

d ⊂ A, it is sufficient to show thatA∗(V, ε) ⊂ A

whenever V ⊂ X is a d-dimensional space and 0 < ε < 1. Let V , ε and B ∈

A∗(V, ε) be given. Choose a basis (v1, . . . , vd) of V and consider an arbitrary complete

sequence (ui) in X . Choose a δ > 0 that corresponds to (v1, . . . , vd) and ε by Lemma

2.4. Clearly we can choose n ∈ N and vectors w1, . . . wd in U := sp{u1, . . . , un} such

that ‖wi − vi‖ < δ, i = 1, . . . , d. Then, denoting W := sp{w1, . . . , wd}, we have

γ(V,W ) < ε, and so B ∈ A(W ). Consequently, by the Fubini theorem, B ∈ A(U).
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Using [2, Proposition 6.29], we easily obtain that B can be decomposed asB =
n
⋃

i=1

Bi,

where Bi ∈ A(ui). So, B ∈ A, and C∗

d ⊂ A is proved.

To prove C∗

d ⊂ C∗

d+1, consider a B ∈ A∗(V, ε) where dimV = d and 1 > ε >

0. Choose a basis v1, . . . , vd of V with ‖vi‖ = 1 and find a corresponding δ > 0

by Lemma 2.4. Now choose an arbitrary Z ⊃ V with dimZ = d + 1. To prove

B ∈ A∗(Z, δ), consider an arbitrary (d + 1)-dimensional W with γ(W,Z) < δ. By

the definition of γ, find w1, . . . , wd ∈ W with ‖w1 − v1‖ < δ, . . . , ‖wd − vd‖ < δ

and set W̃ := sp{w1, . . . , wd}. The choice of δ implies that γ(W̃ , V ) < ε, and so

W̃ ∩ (B + a) is Lebesgue null in W̃ for each a ∈ X . Consequently, by the Fubini

theorem, W ∩ (B + a) is Lebesgue null in W for each a ∈ X . So B ∈ A∗(Z, δ), and

C∗

d ⊂ C∗

d+1 follows.

A construction of a set in A \ C∗

1 is presented in the proof of [14, Proposition 13].

Moreover, it is shown in [14] that this set (F2(I)) meets any 2-dimensional affine

space in a 2-dimensional Lebesgue null set, which shows that even C∗

2 \ C∗

1 6= ∅. It is

not difficult to modify that construction and obtain a set in C∗

d+1 \ C
∗

d for each d (see

Remark 4.4). However, since the notation is somewhat complicated in the general

case, we will give a detailed proof for d = 2 only.

Our construction starts quite similarly to the construction of a set from A\C∗ on

p. 20 of [14]. Namely, by the same procedure as in [14] we can define positive numbers

c0, c1, c2, . . . and nonzero vectors u0, u1, u2, . . . in X such that both {u6n−3 : n ∈ N}

and {u6n : n ∈ N} are dense in X , and the formula F (x) =
∞
∑

k=0

ckxk+1uk (where

x = (x1, x2, . . .)) defines a continuous linear injective mapping of ℓ∞ to X , which is

continuous on I := {x ∈ ℓ∞ : 1 6 xk 6 2}.

As in [14], we equip I with the topology of pointwise convergence (so it is a compact

metrizable space) and with the measure µ defined as the product of countably many

copies of the Lebesgue measure on [1, 2].

Choose two sequences ξ11 , ξ
1
2 , . . . and ξ

2
1 , ξ

2
2 , . . . such that 0 < ξ1j < 1/(j + 1)!,

0 < ξ2j < 1/(j + 1)! and

lim
k→∞

∞
∑

j=k

c3j−2ξ
1
j 2j‖u3j−2‖/c6k−3 = 0, lim

k→∞

∞
∑

j=k

c3j−1ξ
2
j 2j‖u3j−1‖/c6k = 0.

Now, for x ∈ I, set

G(x) =
∞
∑

k=1

c3k−2ξ
1
kx1x3 . . . x2k−1u3k−2+

∞
∑

k=1

c3k−1ξ
2
kx2x4 . . . x2ku3k−1+

∞
∑

k=1

xkc3ku3k.
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Then G : I → X is a continuous mapping. Indeed, we have G = F ◦H , where

H(x1, x2, . . .) := (0, ξ11x1, ξ
2
1x2, x1, ξ

1
2x1x3, ξ

2
2x2x4, x2, ξ

1
3x1x3x5, ξ

2
3x2x4x6, x3, . . .),

and H : I → ℓ∞ is clearly continuous. So, G(I) is compact.

Let ej be the j-th member of the canonical basis of ℓ∞. Observe that if x ∈ I,

k1, k2 ∈ N, t, τ ∈ R and x + te2k1−1 + τe2k2
∈ I, then G(x + te2k1−1 + τe2k2

) =

G(x) + tvk1
(x) + τwk2

(x), where

vk(x) :=

∞
∑

j=k

c3j−2ξ
1
j (x1x3 . . . x2j−1/x2k−1)u3j−2 + c6k−3u6k−3,

wk(x) :=

∞
∑

j=k

c3j−1ξ
2
j (x2x4 . . . x2j/x2k)u3j−1 + c6ku6k.

Now consider x, y ∈ I such that x 6= y and tG(x) + (1 − t)G(y) ∈ G(I) for

infinitely many real t. Since F is a linear injection of ℓ∞ to X , for any such t we

have tH(x) + (1 − t)H(y) = H(z) for some z ∈ I. Considering, for each k ∈ N, the

(3k+1)-st coordinates ofH(z) we obtain z = tx+(1−t)y. Consequently, considering

the (3k − 1)-st and 3k-th coordinates of H(z), we obtain that, for each k ∈ N,

tx1x3 . . . x2k−1 + (1 − t)y1y3 . . . y2k−1 = (tx1 + (1 − t)y1) . . . (tx2k−1 + (1 − t)y2k−1),

tx2x4 . . . x2k + (1 − t)y2y4 . . . y2k = (tx2 + (1 − t)y2) . . . (tx2k + (1 − t)y2k).

Since the above equalities hold for infinitely many t, we infer that x and y differ at

most in one odd coordinate and at most in one even coordinate (otherwise one of

the right sides, for suficiently large k, would be a polynomial in t of degree greater

than one, which is impossible). Consequently, there exist k1, k2 ∈ N such that

y ∈ x+ sp{e2k1−1, e2k2
}; so G(y) ∈ G(x) + sp{vk1

(x), wk2
(x)}.

The above analysis shows that the set of lines which contain any fixed point

G(x), x ∈ I, and meet the set G(I) in an infinite set, can be covered by count-

ably many planes containing G(x). Therefore G(I) meets any 3-dimensional affine

subspace of X in a set of 3-dimensional Lebesgue measure zero. Consequently,

G(I) ∈ C∗

3 .

Now suppose that G(I) ∈ C∗

2 , hence G(I) =
∞
⋃

n=1
Bn, where Bn ∈ A∗(Vn, εn) and

Vn are 2-dimensional subspaces of X . Write Vn = sp{pn, qn} and choose δn > 0 (by

Lemma 2.4) such that γ(Vn, sp{v, w}) < εn whenever ‖v− pn‖ < δn and ‖w− qn‖ <
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δn. For any given n find k1, k2 such that

∞
∑

j=k1

2jc3j−2ξ
1
j ‖u3j−2‖ < c6k1−3δn/2,

‖u6k1−3 − pn‖ < δn/2,
∞
∑

j=k2

2jc3j−1ξ
2
j ‖u3j−1‖ < c6k2

δn/2,

‖u6k2
− qn‖ < δn/2.

For any x ∈ I we have

‖vk1
(x) − c6k1−3pn‖ 6

∞
∑

j=k1

2jc3j−2ξ
1
j ‖u3j−2‖ + c6k1−3‖u6k1−3 − pn‖ < c6k1−3δn,

‖wk2
(x) − c6k2

qn‖ 6

∞
∑

j=k2

2jc3j−1ξ
1
j ‖u3j−1‖ + c6k2

‖u6k2
− qn‖ < c6k2

δn.

So ‖vk1
(x)/c6k1−3 − pn‖ < δn and ‖wk2

(x)/c6k2
− qn‖ < δn, which shows that the

plane G(x) + sp{vk1
(x), wk2

(x)} meets Bn in a 2-dimensional Lebesgue null set.

Hence the set

{(t, τ) : x+ te2k1−1 + τe2k2
∈ G−1(Bn)} = {(t, τ) : G(x) + tvk1

(x) + τwk2
(x) ∈ Bn}

is Lebesgue null, and the Fubini theorem gives µ(G−1(Bn)) = 0. (Note that G−1(Bn)

is Borel, since G is continuous.) But this contradicts I =
∞
⋃

n=1
G−1(Bn), and we infer

that G(I) /∈ C∗

2 . �

Remark 4.4. For an arbitrary d ∈ N we obtain as above that Gd(I) ∈ C∗

d+1 \ C
∗

d ,

where Gd = F ◦Hd,

Hd(x) := (0, ξ11x1, . . . , ξ
d
1xd, x1, ξ

1
2x1xd+1, . . . , ξ

d
2xdx2d, x2, ξ

1
3x1xd+1x2d+1, . . .),

and (ξ1i ), . . . , (ξd
i ) are suitably chosen sequences.

Proposition 4.5. Let X be a separable infinite dimensional Banach space, S

a Lipschitz surface of codimension n > 2, and P : X → Y a continuous linear

mapping onto a Banach space Y such that dim(ker(P )) < n. Then there exists

an n-dimensional space D ⊂ Y and 0 < ε < 1 such that P (S) ∈ C∗(D, ε) in Y .

Consequently, P (S) is a first category subset of Y which is Aronszajn null in Y .
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P r o o f. Denote K := kerP . Choose a space F ⊂ X such that dimF = n

and S is an F -Lipschitz surface. Using Lemma 3.7, Lemma 2.3 and Lemma 2.6, we

can choose a space V with dimV = n such that S is an V -Lipschitz surface and

V ∩K = {0}. Choose a closed space H ⊂ X such that X = H ⊕ (K ⊕ V ). Denoting

Z := H⊕V , we have X = Z⊕K. Set π := πZ,K . Using Lemma 3.7 and Lemma 2.3,

we find 0 < δ < 1 such that γ(V,W ) < δ implies that S is a W -Lipschitz surface and

W ⊕ (H ⊕K) = X . Now consider an arbitrary W ⊂ Z such that γ(V,W ) < δ. We

can choose a Lipschitz mapping ϕ : H⊕K →W such that S = {h+k+ϕ(h+k) : h ∈

H, k ∈ K}. Consequently, π(S) = {h+ ϕ(h+ k) : h ∈ H, k ∈ K}. Now consider an

arbitrary a = h0 + w0 ∈ Z. Then (π(S) + a) ∩W = {w0 + ϕ(−h0 + k) : k ∈ K}.

Since the mapping ψ : K → W defined by ψ(k) := w0 + ϕ(−h0 + k) is Lipschitz

and dimK < dimW , we obtain that (π(S) + a) ∩W is Lebesgue null in W . Since

π(S) is an Fσ set by Remark 3.3(i) and Remark 3.4, we obtain that π(S) ∈ C∗(V, δ)

in Z. Since F := P |Z is a linear isomorphism with F (π(S)) = P (S), Lemma 4.2

implies that P (S) ∈ C∗(D, ε) for D := F (V ) and some ε > 0. Consequently, P (S)

is Aronszajn null in Y by Lemma 4.3. Thus, intP (S) = ∅. Since P (S) is an Fσ set,

we obtain that P (S) is a first category set. �

As an immediate consequence we obtain the following result.

Proposition 4.6. Let X be a separable infinite dimensional Banach space, n > 2,

A ∈ Ln(X), and let P : X → Y be a continuous linear mapping onto a Banach

space Y such that dim(ker(P )) < n. Then P (S) is a subset of a set from C∗

n in Y .

Consequently, P (S) is a first category subset of Y which is a subset of an Aronszajn

null set in Y .

Remark 4.7. Let X , Y , P and n be as in Proposition 4.6.

(i) Let f be a continuous convex function on X and Bn := {x ∈ X : dim(∂f(x)) >

n}. Then [13, Theorem 1.3] states that P (A) is a first category set. Using

the results of [19], it is easy to see that [13, Theorem 1.3] is equivalent to the

statement that P (A) is a first category set for each A ∈ DCn(X), but the proof

of [13] is direct, it does not use [19].

(ii) The result that P (A) is a first category set for each A ∈ Ln(X) is due to Heisler

[7].

(iii) An example from [7] shows that there exists A ∈ DCn(X) such that P (A) /∈

L1(Y ).

(iv) It is not known whether P (A) is σ-porous or Γ-null for each A ∈ Ln(X) (or

A ∈ DCn(X)). The negative answer seems to be probable.

Remark 4.8. Let X be a separable infinite dimensional space. Proposition 4.6

easily implies that the inclusions Ln(X) ⊂ Ln−1(X) (n > 1) are proper. Indeed,
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no Lipschitz surface S of codimension n − 1 can belong to Ln(X), since there is a

surjective continuous linear projection of S to a space E of codimension n− 1.

Proposition 4.6 implies the following result which improves both [13, Theorem 1.3]

and [7, Theorem 5.6].

Theorem 4.9. Let X be a separable infinite dimensional Banach space, n > 2,

and let T : X → X∗ be a monotone (mutivalued) operator. Denote by Bn the set of

all x ∈ X for which the convex hull of T (x) is at least n-dimensional. Let P : X → Y

be a continuous linear mapping onto a Banach space Y such that dim(ker(P )) < n.

Then P (Bn) is a subset of a set from C∗

n in Y . Consequently, P (Bn) is a first category

subset of Y which is a subset of an Aronszajn null set in Y .

P r o o f. Since Bn ∈ Ln(X) by [18], the assertion follows from Proposition 4.6.
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