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Abstract. Let R be an exchange ring in which all regular elements are one-sided unit-
regular. Then every regular element in R is the sum of an idempotent and a one-sided unit.
Furthermore, we extend this result to exchange rings satisfying related comparability.
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An element a ∈ R is clean (unit-regular) provided it is the sum (product) of an

idempotent and a unit. A ring R is clean (unit-regular) if every element in R is

clean (unit-regular). In [5, Theorem 1], Camillo and Khurana proved that every

unit-regular ring is clean. Clean property has been extensively studied in literature;

see, e.g., [8], [10] and [13]. An element a ∈ R is one-sided unit-regular provided

there exists a one-sided unit u ∈ R such that a = aua. A regular a ∈ R is one-sided

unit-regular iff it is the product of an idempotent and a one-sided unit-regular. A

regular ring R is one-sided unit-regular provided every element in R is one-sided

unit-regular (see [6]). Let V be an infinite-dimensional vector space over a division

ring D. Then EndD(V ) is one-sided unit-regular, while it is not unit-regular. In [8,

Theorem 1], the author extended [5, Theorem 1] and showed that every element in

a one-sided unit-regular ring is the sum of an idempotent and a one-sided unit.

A ring R is an exchange ring if for every right R-module A and two decompositions

A = M ⊕ N =
⊕

i∈I

Ai, where MR
∼= R and the index set I is finite, there exist

submodules A′
i ⊆ Ai such that A = M ⊕

(

⊕

i∈I

A′
i

)

. A ring R is an exchange ring

if and only if for any x ∈ R there exists an idempotent e ∈ Rx such that 1 − e ∈

R(1 − x) (cf. [11]). Clearly, regular rings, π-regular rings, semi-perfect rings, left
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or right continuous rings, clean rings and unit C∗-algebras of real rank zero (cf. [3,

Theorem 7.2]) are all exchange rings.

As is well known, a single one-sided unit-regular element in a ring need not be

written as a sum of an idempotent and a one-sided unit. A natural problem is how to

extend [5, Theorem 1] and [8, Theorem 1] to exchange rings. Let R be an exchange

ring in which every regular element is one-sided unit-regular. We have observed that

every regular element in R is the sum of an idempotent and a non-zero divisor. In

this note, we extend this result and prove that every regular element in R is the sum

of an idempotent and a one-sided unit. Following the author, an exchange ring R

is said to satisfy related comparability provided that R = A1 ⊕ B1 = A2 ⊕ B2 with

A1
∼= B1 implies that there exists a central idempotent e ∈ R such that B1e .⊕ B2e

and B2(1 − e) .⊕ B1(1 − e) (cf. [7]). Rings of this kind include exchange rings

satisfying general comparability. Furthermore, we show that every regular element

in an exchange ring satisfying related comparability is the sum of an idempotent and

the product of two one-sided units. This generalizes [8, Theorem 3] as well.

Throughout the paper, every ring is associative with an identity. An element

x ∈ R is regular if there exists y ∈ R such that x = xyx. A ring R is (one-sided

unit) regular if every element in R is (one-sided unit) regular. M .⊕ N means that

a right R-module M is isomorphic to a direct summand of a right R-module N .

Lemma 1. Let R be an exchange ring. Then the following conditions are equiv-

alent:

(1) Every regular element in R is one-sided unit-regular.

(2) Given any right R-module decompositions R = A1 ⊕B1 = A2 ⊕ B2 with A1
∼=

A2, then B1 .⊕ B2 or B2 .⊕ B1.

(2) Every regular element in Mn(R) (n ∈ N) is one-sided unit-regular.

P r o o f. (1) ⇔ (2) is obvious by [15, Theorem 3.1].

(1) ⇔ (3) In the proof of [7, Lemma 5] we choose e = 0 or 1, and then the result

follows. �

Many authors investigated exchange rings in which every regular element is one-

sided unit-regular. Let R be an exchange ring. Then every regular element in R is

one-sided unit-regular iff for every a ∈ R there exist an idempotent e ∈ R and a one-

sided unit u ∈ R such that a = eu (cf. [15, Theorem 3.4]). Following Ara et al. (cf. [3]

and [11]), a ring R is a separative ring if the following condition holds for all finitely

generated projective right R-modules A,B : A⊕A ∼= A⊕B ∼= B⊕B =⇒ A ∼= B. In

[7, Theorem 3], the author proved that such an exchange ring is separative; hence,

its stable rank is 1, 2 or ∞.
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Theorem 2. Let R be an exchange ring in which every regular element is one-

sided unit-regular. Then every regular element in R is the sum of an idempotent

and a one-sided unit.

P r o o f. Let a ∈ R be regular. Then we have x ∈ R such that a = axa. So

R = Im a⊕ (1 − ax)R = xaR⊕ Ker a. Since R is an exchange ring, there exist right

R-modules X1, Y1 such that R = Im a ⊕ X1 ⊕ Y1 with X1 ⊆ Ker a and Y1 ⊆ xaR.

Clearly, Ker a = Kera∩(X1⊕ Ima⊕Y1) = X1⊕X2, where X2 = Kera∩(Im a⊕Y1).

Likewise, we have a right R-module Y2 such that xaR = Y1 ⊕ Y2. Clearly,

R = Im a⊕X1 ⊕ Y1 = X1 ⊕X2 ⊕ xaR.

In addition, θ : Im a = aR ∼= xaR given by θ(ar) = xar for any r ∈ R. Thus,

Im a⊕X1
∼= X1 ⊕ xaR. In view of Lemma 1, we get X2 .⊕ Y1 or Y1 .⊕ X2. Thus,

there exist right R-morphisms ψ : X2 → Y1 and ϕ : Y1 → X2 such that ϕψ = 1X2
or

ψϕ = 1Y1
. Let

k : X1 ⊕X2 → X1 ⊕ Y1; x1 + x2 7→ x1 + ψ(x2), ∀x1 ∈ X1, x2 ∈ X2;

l : X1 ⊕ Y1 → X1 ⊕ Y2; x1 + y1 7→ x1 + ϕ(y1), ∀x1 ∈ X1, y1 ∈ Y1.

Let

h : R = X1 ⊕X2 ⊕ Y1 ⊕ Y2 → X1 ⊕ Y1 ⊕X2 ⊕ Y2 = R;

x1 + x2 + y1 + y2 7→ k(x1 + x2) + y1, ∀x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2;

v : X1 ⊕ Y1 ⊕X2 ⊕ Y2 → X1 ⊕X2 ⊕ Y1 ⊕ Y2;

x1 + y1 + x2 + y2 7→ l(x1 + y1) + ψ(x2), ∀x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2.

For any x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2, it is easy to verify that

hvhv(x1 + y1 + x2 + y2) = hvh
(

l(x1 + y1) + ψ(x2)
)

= hv
(

kl(x1 + y1) + ψ(x2)
)

= h
(

lkl(x1 + y1) + ϕψ(x2)
)

= klkl(x1 + y1) + ψϕψ(x2)

= kl(x1 + y1) + ψ(x2) = hv(x1 + y1 + x2 + y2).

Hence (hv)2 = hv. Let e = hv. Then e = e2 ∈ EndR(R).

Assume that ϕψ = 1X2
. Let

ϕ : R = Im a⊕X1 ⊕ Y1 → R;

z + x1 + y1 7→ xz + x1 + ϕ(y1), ∀z ∈ Im a, x1 ∈ X1, y1 ∈ Y1.
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Then

ϕ(a− hv)(x1 + y1 + x2 + y2) = ϕ
(

a(y1 + y2) − kl(x1 + y1) − ψ(x2)
)

= ϕ
(

a(y1 + y2) − x1 − ψϕ(y1) − ψ(x2)
)

= xa(y1 + y2) − x1 − ϕψϕ(y1) − ϕψ(x2)

= y1 + y2 − x1 − ϕ(y1) − x2, ∀x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2.

Furthermore, we get

ϕ(a− hv)ϕ(a− hv)(x1 + y1 + x2 + y2)

= ϕ(a− hv)
(

y1 + y2 − x1 − ϕ(y1) − x2

)

= y1 + y2 + x1 − ϕ(y1) + ϕ(y1) + x2

= x1 + x2 + y1 + y2, ∀x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2.

This implies that ϕ(a−hv)ϕ(a−hv) = 1R, and so a−hv ∈ EndR(R) is left invertible.

Assume that ψϕ = 1Y1
. Given any t ∈ Im a, x1 ∈ X1, y1 ∈ Y1, we have t ∈ aR =

a
(

Y1 ⊕ Y2

)

. So we can find y′1 ∈ Y1 and y
′
2 ∈ Y2 such that t = a(y′1 + y′2). Choose

x′1 = −x1 ∈ X1 and x
′
2 = −ϕ(y1 + y′1) ∈ X2. Then

(a− hv)(x′1 + x′2 + y′1 + y′2) = a(y′1 + y′2) − x′1 − ψϕ(y′1) − ψ(x′2)

= t+ x1 − y′1 − ψ(x′2) = t+ x1 + y1.

This means that a− hv ∈ EndR(R) is a right R-epimorphism. As R is a projective

right R-module, a − hv ∈ EndR(R) is right invertible. Let u = a − hv. Thus,

a = e+ u, where u ∈ R is right or left invertible. The proof is complete. �

Recall that an exchange ring R satisfies the comparability axiom provided that

for any regular x, y ∈ R, either xR .⊕ yR or yR .⊕ xR. Let R be an exchange ring

satisfying the comparability axiom. We claim that every regular element in R is the

sum of an idempotent and a one-sided unit. Since every regular element in such an

exchange ring is one-sided unit-regular, we are done by Theorem 2.

Corollary 3. Let R be an exchange ring in which every regular element is one-

sided unit-regular. Then every regular matrix A ∈ Mn(R) (n ∈ N) is the sum of an

idempotent matrix and a right or left invertible matrix.

P r o o f. In view of Lemma 1, Mn(R) is an exchange ring in which every regular

matrix is one-sided unit-regular. Therefore the assertion is true by Theorem 2. �
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Corollary 4. Let R be an exchange ring in which every regular element is one-

sided unit-regular. If a ∈ R is regular, then 2a is the sum of two right or left invertible

elements.

P r o o f. Let a ∈ R. In view of Theorem 2, there exists an idempotent e ∈ R

such that a− e ∈ R is right or left invertible. As in the proof of Theorem 2, we also

have that a + e ∈ R is right or left invertible. Therefore 2a = (a − e) + (a + e), as

required. �

Let R be an exchange ring in which every regular element is one-sided unit-regular.

If 1
2 ∈ R, then every regular a ∈ R is the sum of two one-sided units.

Theorem 2. Let A be a right R-module having the finite exchange property,

and let E = EndR(A). Suppose that A is expressible as a direct sum of isomorphic

indecomposable submodules. Then every regular element in E is the sum of an

idempotent and an one-sided unit.

P r o o f. Assume that A = A1 ⊕B = A2 ⊕C with A1
∼= A2, then A = A1 ⊕B =

⊕

i∈I

Yi, where each Yi is isomorphic to an indecomposable submodule Y of A. In

view of [16, Lemma 28.1], A1 has the finite exchange property. Thus, we have some

Y ′
i ⊆ Yi such that A = A1 ⊕

(

⊕

i∈I

Y ′
i

)

. It is easy to verify that Y ′
i ⊆⊕ Yi for all

i ∈ I. As each Yi is indecomposable, we see that either Y
′
i = 0 or Y ′

i = Yi. Thus,

there is a subset H1 of I such that B ∼=
⊕

i∈H1

Yi. Likewise, there is a subset H2 of I

such that C ∼=
⊕

i∈H2

Yi. Clearly, |H1| 6 |H2| or |H2| 6 |H1|, whence either B .⊕ C

or C .⊕ B. As in the proof of Lemma 1, every regular element in E is one-sided

unit-regular. Therefore we complete the proof by Theorem 2. �

Separativity plays a key role in the direct sum decomposition theory of exchange

rings. It is conceivable that all exchange rings are separative (see [11]).

Corollary 6. Let R be a simple separative exchange ring. Then every regular

element in R is the sum of an idempotent and a one-sided unit.

P r o o f. If R is directly finite, R has stable range one from [3, Theorem 3.4]. It

follows by Corollary 5 that every regular element in R is the sum of an idempotent

and a unit. If R is directly infinite, then R⊕D ∼= R for some nonzero right R-module

D. Let x, y ∈ R be regular. If x = 0 or y = 0, then xR .⊕ yR or yR .⊕ xR. Now

we assume that x 6= 0, y 6= 0. Since R is simple, there exists n ∈ N such that

xR .⊕ nD. Thus xR ⊕ R .⊕ nD ⊕ R ∼= R, and so xR ⊕ R .⊕ R .⊕ yR ⊕ R.

Hence, R ⊕
(

xR ⊕ E
)

∼= R ⊕ yR for a right R-module E. As xR and yR are both
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nonzero, we have R .⊕ s(xR) .⊕ s
(

xR ⊕ E
)

and R .⊕ t(yR) for some s, t ∈ N.

Applying [3, Lemma 2.1], xR .⊕ xR⊕E ∼= yR. In view of [15, Theorem 3.1], every

regular element in R is one-sided unit-regular. Therefore the result follows from

Theorem 2. �

An element e ∈ R is infinite if there exist orthogonal idempotents f, g ∈ R such

that e = f + g while eR ∼= fR and g 6= 0. A simple ring is said to be purely infinite

if every nonzero right ideal of R contains an infinite idempotent (cf. [2]). It is well

known that a ring R is a purely infinite, simple ring iff it is not a division ring and

for any nonzero a ∈ R there exist s, t ∈ R such that sat = 1 (see [4, Theorem 1.6]).

The class of purely infinite simple regular rings is rather large (cf. [4, Example 1.3]).

Theorem 7. Let R be a purely infinite, simple ring. Then every regular element

in R is the sum of an idempotent and a one-sided unit.

P r o o f. In view of [2, Theorem 1.1], R is an exchange ring. Let x, y ∈ R be

regular. If x = 0, then xR .⊕ yR. If x 6= 0, then there exist s, t ∈ R such that

sxt = 1. Construct a right R-morphism ϕ : xR → R given by ϕ(xr) = sxr for any

r ∈ R. For any r ∈ R, we see that r = sxtr = ϕ(xtr), and so ϕ is an R-epimorphism.

Since R is a projective right R-module, we get a split exact sequence:

0 → Kerϕ →֒ xR
ϕ
→ R → 0.

Thus, R .⊕ R⊕Kerϕ ∼= xR. As y ∈ R is regular, yR .⊕ R. As a result, yR .⊕ xR.

According to [15, Theorem 3.1], every regular element in R is one-sided unit-regular,

and therefore we complete the proof from Theorem 2. �

We claim that every purely infinite, simple ring is separative. As in the proof

of Theorem 7, every regular element in a purely infinite, simple ring is one-sided

unit-regular, and we are through by [7, Theorem 3]. Use 2R to denote the set

{2a ∈ R ; a ∈ R}. Now we derive

Corollary 8. Let R be a purely infinite, simple ring. Then 2R is generated by

six one-sided units.

P r o o f. By virtue of [2, Theorem 1.1], R is an exchange ring. Let a ∈ R. Then

there exists an idempotent e ∈ aR such that 1−e ∈ (1−a)R. Thus, ea, (1−e)(1−a) ∈

R are both regular. According to Theorem 7, we have an idempotent f ∈ R and a

one-sided unit u ∈ R such that ea = f +u. Similarly to Corollary 4, we also have an

one-sided unit v ∈ R such that ea = −f+v. Thus, 2ea = (f +u)+(−f+v) = u+v.
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Likewise, we have two one-sided units u′, v′ ∈ R such that 2(1 − e)(1 − a) = u′ + v′.

Thus
2a = 2(1 − e) + 2(eax) − 2(1 − e)(1 − a)

= 1 + (1 − 2e) + u+ v − u′ − v′

= 1 + (1 − 2e)−1 + u+ v − u′ − v′.

Therefore 2R is generated by six one-sided units. �

Lemma 9. Let R be an exchange ring. Then the following conditions are equiv-

alent:

(1) R satisfies related comparability.

(2) Given any right R-module decompositions R = A1 ⊕ B1 = A2 ⊕ B2 with

A1
∼= A2, there exists a central idempotent e ∈ R such that B1e .⊕ B2e

and B2(1 − e) .⊕ B1(1 − e).

(3) Mn(R)(n ∈ N) satisfies related comparability.

P r o o f. See [7, Theorem 6] and [9, Lemma 5]. �

Theorem 10. Let R be an exchange ring satisfying related comparability. Then

every regular element in R is the sum of an idempotent and the product of two

one-sided units.

P r o o f. Let a ∈ R be regular. Then we have x ∈ R such that a = axa. As

in the proof of Theorem 2, we can find right R-modules X1, X2, Y1, Y2 such that

R = X1 ⊕X2 ⊕ Y1 ⊕ Y2. In addition,

R = Im a⊕X1 ⊕ Y1 = X1 ⊕X2 ⊕ xaR with Im a⊕X1
∼= X1 ⊕ xaR.

Since R satisfies related comparability, there exists a central idempotent e ∈ R such

that X2e .⊕ Y1e and Y1(1 − e) .⊕ X2(1 − e). Thus, there exist right R-morphisms

ψ : X2e→ Y1e and ϕ : Y1e→ X2e such that ϕψ = 1X2e. Let

k : X1e⊕X2e→ X1e⊕ Y1e;

x1 + x2 7→ x1 + ψ(x2), ∀x1 ∈ X1e, x2 ∈ X2e;

l : X1e⊕ Y1e→ X2e⊕ Y2e;

x1 + y1 7→ x1 + ϕ(y1), ∀x1 ∈ X1e, y1 ∈ Y1e.

Let

h : Re = X1e⊕X2e⊕ Y1e⊕ Y2e→ X1e⊕ Y1e⊕X2e⊕ Y2e = Re,

x1 + x2 + y1 + y2 7→ k(x1 + x2) + y1,

v : Re = X1e⊕ Y1e⊕X2e⊕ Y2e→ X1e⊕X2e⊕ Y1e⊕ Y2e = Re,

x1 + y1 + x2 + y2 7→ l(x1 + y1) + ψ(x2),
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∀x1 ∈ X1e, y1 ∈ Y1e, x2 ∈ X2e, y2 ∈ Y2e. As in the proof of Theorem 2, we get that

hv ∈ EndR(Re) is an idempotent. Let

ϕ : Re = (Im a)e⊕X1e⊕ Y1e→ Re;

z + x1 + y1 7→ xz + x1 + ϕ(y1), ∀z ∈ (Im a)e, x1 ∈ X1e, y1 ∈ Y1e.

Then one simply checks that ϕ(ae−hv)ϕ(ae−hv) = 1Re, and so ae−hv ∈ EndR(Re)

is left invertible.

Also we have two rightR-morphisms ψ′ : X2(1−e) → Y1(1−e) and ϕ
′ : Y1(1−e) →

X2(1 − e) such that ψϕ = 1Y1(1−e). Let

k′ : X1(1 − e) ⊕X2(1 − e) → X1(1 − e) ⊕ Y1(1 − e);

x1 + x2 7→ x1 + ψ(x2), ∀x1 ∈ X1(1 − e), x2 ∈ X2(1 − e);

l′ : X1(1 − e) ⊕ Y1(1 − e) → X2(1 − e) ⊕ Y2(1 − e);

x1 + y1 7→ x1 + ϕ(y1), ∀x1 ∈ X1(1 − e), y1 ∈ Y1(1 − e).

Let
h′ : R(1 − e) = X1(1 − e) ⊕X2(1 − e) ⊕ Y1(1 − e) ⊕ Y2(1 − e) →

X1(1 − e) ⊕ Y1(1 − e) ⊕X2(1 − e) ⊕ Y2(1 − e) = R(1 − e),

x1 + x2 + y1 + y2 7→ k(x1 + x2) + y1,

v′ : R(1 − e) = X1(1 − e) ⊕ Y1(1 − e) ⊕X2(1 − e) ⊕ Y2(1 − e) →

X1(1 − e) ⊕X2(1 − e) ⊕ Y1(1 − e) ⊕ Y2(1 − e) = R(1 − e);

x1 + y1 + x2 + y2 7→ l(x1 + y1) + ψ(x2),

∀x1 ∈ X1(1 − e), y1 ∈ Y1(1 − e), x2 ∈ X2(1 − e), y2 ∈ Y2(1 − e). Similarly, we

see that h′v′ ∈ EndR

(

R(1 − e)
)

is an idempotent. Given any t ∈ (Im a)(1 − e),

x1 ∈ X1(1 − e), y1 ∈ Y1(1 − e), we have t ∈ aR(1 − e) = a
(

Y1 ⊕ Y2

)

(1 − e). So

we can find y′1 ∈ Y1(1 − e) and y′2 ∈ Y2(1 − e) such that t = a(y′1 + y′2). Choose

x′1 = −x1 ∈ X1(1 − e) and x′2 = −ϕ(y1 + y′1) ∈ X2(1 − e). Then we have

(

a(1 − e) − hv
)

(x′1 + x′2 + y′1 + y′2) = t+ x1 + y1.

As R(1−e) is a projective right R-module, a(1−e)−h′v′ ∈ EndR

(

R(1−e)
)

is right

invertible. As a result, we deduce that

a = ae+ a(1 − e) =
(

hv + h′v′
)

+
(

(ae− hv) + (a(1 − e) − h′v′)
)

=
(

hv + h′v′
)

+
(

(ae− hv) + 1R(1−e)

)(

1Re + (a(1 − e) − h′v′)
)

,
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where

hv + h′v′ : R = Re+R(1 − e) → Re +R(1 − e) = R,

x+ y 7→ hv(x) + h′v′(y),

(ae− hv) + 1R(1−e) : R = Re+R(1 − e) → Re +R(1 − e) = R,

x+ y 7→ (ae− hv)(x) + y,

1Re +
(

a(1 − e) − h′v′
)

: R = Re+R(1 − e) → Re +R(1 − e) = R,

x+ y 7→ x+
(

a(1 − e) − h′v′
)

(y),

∀x ∈ Re, y ∈ R(1−e). It is easy to verify that hv+h′v′ ∈ EndR(R) is an idempotent,

(ae−hv)+1R(1−e) ∈ EndR(R) is left invertible and 1Re+
(

a(1−e)−h′v′
)

∈ EndR(R)

is right invertible. Thus the result follows. �

Corollary 11. Let R be an exchange ring satisfying related comparability. Then

every regular matrix A ∈ Mn(R) (n ∈ N) is the sum of an idempotent matrix and

the product of two right or left invertible matrices.

P r o o f. In view of Lemma 9, Mn(R) is an exchange ring satisfying related

comparability, and therefore the assertion is true by Theorem 10. �

Corollary 12. Let R be an exchange ring satisfying related comparability. If

a ∈ R is regular, then 2a is the sum of two products of two right or left invertible

elements.

P r o o f. According to Theorem 9, there exists an idempotent e ∈ R and two

one-sided units u, v ∈ R such that a− e = uv. As in the proof in Theorem 9, we also

have a + e = u′v′ for some one-sided units u′, v′ ∈ R. As a result, we deduce that

2a = (a− e) + (a+ e) = uv + u′v′, as asserted. �

Theorem 13. Let R be an exchange ring and let a ∈ R be regular. If EndR(aR)

satisfies related comparability, then a ∈ R is the sum of an idempotent and the

product of two one-sided units.

P r o o f. Let a ∈ R be regular. Then we have x ∈ R such that a = axa. Let

f = ax. Then EndR(aR) ∼= fRf , and so fRf is an exchange ring satisfying related

comparability. By virtue of Theorem 10, there exist an idempotent g ∈ fRf and

two one-sided units u, v ∈ fRf such that af = g + uv. Thus,

a = af + a(1 − f) = g + uv + a(1 − f) = (g + 1 − f) +
(

uv + a(1 − f) − (1 − f)
)

.
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Let e = g+(1−f). Then e ∈ R is an idempotent. In addition, uv+a(1−f)−(1−f) =
(

u+ a(1 − f) − (1 − f)
)(

v + (1 − f)
)

. Assume that there exist s, t ∈ fRf such that

su = f = vt. So we get

(

s+ a(1 − f) − (1 − f)
)(

u+ a(1 − f) − (1 − f)
)

= 1 − a(1 − f) + sa(1 − f).

This implies that

(

1 + a(1 − f) − sa(1 − f)
)(

s+ a(1 − f) − (1 − f)
)(

u+ a(1 − f) − (1 − f)
)

=
(

1 + a(1 − f) − sa(1 − f)
)(

1 − a(1 − f) + sa(1 − f)
)

= 1.

That is, u+ a(1 − f) − (1 − f) ∈ R is left invertible. Furthermore, we see that

(

v + (1 − f)
)(

t+ (1 − f)
)

= f + (1 − f) = f,

i.e., v+ (1− f) ∈ R is right invertible. Therefore a ∈ R is the sum of an idempotent

e ∈ R and the product of two one-sided units u+ a(1− f)− (1− f) and v+ (1− f),

as required. �

Recall that an ideal I of an exchange ring R satisfies general comparability pro-

vided that for any regular x, y ∈ I there exists a central idempotent e ∈ R such that

xRe .⊕ yRe and yR(1 − e) .⊕ xR(1 − e). Let I be an ideal of an exchange ring.

If I satisfies 1-comparability, then it satisfies general comparability (cf. [12]). Let e

be a primitive idempotent in a regular ring R. By virtue of [12, Example 1.2], ReR

is an ideal satisfying general comparability.

Corollary 14. Let I be an ideal of an exchange ring R and let a ∈ I be regular.

If I satisfies general comparability, then a ∈ I is the sum of an idempotent and the

product of two one-sided units.

P r o o f. Since a ∈ I is regular, we can find e = e2 ∈ I such that aR = eR; hence

EndR(aR) ∼= eRe. Given a′x′ + b′ = e in eRe, then (a′ + 1 − e)(x′ + 1 − e) + b′ = 1

in R. Let a′′ = a′ + 1 − e, x′′ = x′ + 1 − e and b′′ = b′. Then a′′x′′ + b′′ = 1 with

a′′, x′′ ∈ 1 + I, b′′ ∈ I. As R is an exchange ring, we have an idempotent f ∈ R such

that f = b′′s and 1−f = (1−b′′)t for some s, t ∈ R. Thus, (1−f)a′′x′′t+f = 1. Let

a = (1−f)a′′, x = x′′t and b = f . Then ax+b = 1 in R. Clearly, a ∈ 1+I is regular;

hence, there exists c ∈ R such that a = aca. In addition, c ∈ 1 + I. By assumption,

(1 − ac)Rg .⊕ (1 − ca)Rg and (1 − ca)R(1 − g) .⊕ (1 − ac)R(1 − g) for a central

idempotent g ∈ R. Obviously, we have ϕ : aRg ∼= caRg given by ϕ(arg) = carg for

any r ∈ R. Clearly, there exists a split R-monomorphism ψ : (1−ac)Rg → (1−ca)Rg.

Construct an R-morphism ϕ : Rg = aRg ⊕ (1 − ac)Rg → caRg ⊕ (1 − ca)Rg = Rg
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given by ϕ(s+ t) = ϕ(s) + ψ(t) for any s ∈ aRg, t ∈ (1 − ac)Rg. Then aϕ(g)a = ag

and ϕ(g) ∈ R is left invertible in gRg. Likewise, we have aϕ(1 − g)a = a(1 − g) and

ϕ(1 − g) ∈ R is right invertible in (1 − g)R(1 − g). Thus, a = aua, where ug ∈ gR

is left invertible and u(1 − g) ∈ R(1 − g) is right invertible. Set h = ua. Then

hx + ub = u, and so h(x + ub) + (1 − h)ub = u. Clearly, there is a y ∈ R such that

(1−h)ub = (1−h)uby(1−h)ub. Let k = (1−h)uby(1−h). Then h(x+ub)+kub = u,

h = h2, k = k2 and hk = kh = 0. As a result, h(x+ ub) = hu and kub = ku. Hence,

(h+ k)u = u, and so
(

h(1 − huby(1 − h)) + uby(1 − h)
)

u = u. Furthermore, we get

u
(

a+ by(1 − h)(1 + huby(1− h))
)(

1 − huby(1 − h)
)

u

=
(

h+ uby(1 − h)(1 + huby(1 − h))
)(

1 − huby(1 − h)
)

u = u.

Let z = y(1−h)
(

1+huby(1−h)
)

. Then we get that g(a+ by) ∈ gR is left invertible

and (1 − g)(a + by) ∈ (1 − g)R is right invertible. This implies that eRe satisfies

related comparability. According to Theorem 13 we complete the proof. �

Corollary 15. Let R be an exchange ring and let a ∈ R be regular. If RaR

satisfies general comparability, then a ∈ R is the sum of an idempotent and the

product of two one-sided units.

P r o o f. Let I = RaR. Then I satisfies general comparability. As a ∈ I, the

result follows from Corollary 14. �
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