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Abstract. In this paper, we consider the interaction between a rigid body and an incom-
pressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole
space Rd , d = 2 or 3. The equations for the fluid are the classical Navier-Stokes equations
whereas the motion of the rigid body is governed by the standard conservation laws of linear
and angular momentum. The time variation of the fluid domain (due to the motion of the
rigid body) is not known a priori, so we deal with a free boundary value problem.
We improve the known results by proving a complete wellposedness result: our main

result yields a local in time existence and uniqueness of strong solutions for d = 2 or 3.
Moreover, we prove that the solution is global in time for d = 2 and also for d = 3 if the
data are small enough.
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MSC 2010 : 35Q30, 76D03, 76D05

1. Introduction and statement of the main results

The aim of this work is to prove a result of wellposedness for a coupled system of

nonlinear partial and ordinary differential equations modelling the motion of a rigid

body immersed into a viscous incompressible fluid. The fluid flow is governed by the

classical Navier-Stokes system, whereas the motion of the rigid body is governed by

the balance equations for linear and angular momenta (Newton’s laws).

For d = 2 or d = 3, we denote by O(t) ⊂ R
d, the domain occupied by the rigid

body and we denote by F (t) = R
d \ O(t) the exterior domain occupied by the fluid

Patricio Cumsille’s research was partially supported by CONICYT-FONDECYT grant
(No. 3070040) and Takéo Takahashi’s research was partially supported by Grant (JCJC06
137283) of the Agence Nationale de la Recherche.
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at time t. For the sake of simplicity, we assume that the fluid is homogeneous and

of density one. Moreover, we assume that the rigid body is also homogeneous.

By choosing a frame of coordinates whose origin initially coincides with the mass

center of the rigid body, the domain occupied by the latter at instant t is given by

(1.1) O(t) = {Q(t)y + h(t) : y ∈ O(0)},

where h(t) is the position of the mass center of the rigid body, and where Q(t) is

a rotation matrix associated to the angular velocity ω(t) of the rigid body. The

matrix Q(t) is the solution of the initial value problem

Q′(t)Q∗(t)y = ω(t) × y ∀ y ∈ R
d,(1.2)

Q(0) = Id,

where, for any matrix A, we have denoted by A∗ the transpose matrix of A and by

Id the identity matrix.

For planar motion (i.e. d = 2) we can assume that

ω(t) = ω̃(t)





0

0

1





and in that case,

Q(t) =

(

Q̃(t)
0

0
0 0 1

)

with

(1.3) Q̃(t) =

(

cos θ̃(t) − sin θ̃(t)

sin θ̃(t) cos θ̃(t)

)

,

and θ̃(t) =
∫ t

0 ω̃(s) ds. The important quantities for d = 2 are ω̃, Q̃ and θ̃ and

for simplicity of notation, we omit in the sequel the tilde in all these quantities.

Therefore, for d = 2, ω is a scalar function and Q(t) a rotation matrix of order 2

and of angle θ(t) (see (1.3)).

The system of equations modelling the motion of the fluid and of the rigid body

can be written as

∂u

∂t
− ν∆u+ (u · ∇)u+ ∇p = f, x ∈ F (t), t ∈ (0, T ),(1.4)

div u = 0, x ∈ F (t), t ∈ (0, T ),(1.5)

u(x, t) = h′(t) + ω(t) × [x− h(t)], x ∈ ∂O(t), t ∈ (0, T ),(1.6)
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Mh′′(t) = −

∫

∂O(t)

σ(u, p)n dΓ +

∫

O(t)

̺f(x, t) dx, t ∈ (0, T ),(1.7)

d

dt
(Jω)(t) = −

∫

∂O(t)

[x− h(t)] × σ(u, p)n dΓ(1.8)

+

∫

O(t)

[x− h(t)] × ̺f(x, t) dx, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ F (0),(1.9)

h(0) = 0 ∈ R
d, h′(0) = h(1) ∈ R

d, ω(0) = ω(0).(1.10)

In the above system the unknowns are u(x, t) (the Eulerian velocity field of the

fluid), p(x, t) (the pressure field of the fluid), h(t) (the position of the mass center

of the rigid body) and ω(t) (the angular velocity of the rigid body). For d = 3, we

have denoted by a× b the classical cross product for a, b ∈ R
3 whereas for d = 2, for

a, b ∈ R
2 and α ∈ R, we have denoted

a× b = a1b2 − a2b1 and α× b = α

(

−b2
b1

)

.

The boundary of the rigid body at instant t is denoted by ∂O(t) and the normal

unit vector directed to the interior of the rigid body is denoted by n(x, t). We

have also denoted by f(x, t) the applied body forces (per unit mass). The positive

constant ν stands for the viscosity of the fluid. Furthermore, we have denoted by M

(respectively, by ̺) the mass (respectively, the density of the rigid body) and by J

the inertia moment related to the mass center of the rigid body.

The formulae for M and J are

M =

∫

O(t)

̺ dx =

∫

O(0)

̺ dy,

J =

∫

O(t)

̺|x− h(t)|2 dx =

∫

O(0)

̺|y|2 dy if d = 2,

and

J(t)kl =

∫

O(t)

̺
[

|x− h(t)|2δkl − (x− h(t))k(x − h(t))l
]

dx

for k, l ∈ {1, . . . , d} if d = 3,

where δkl is the Kronecker symbol.

Moreover, the notation x · y stands for the inner product of x and y and the

notation |x| stands for the corresponding norm. Finally, we have denoted by σ(u, p)

the Cauchy stress tensor field in the fluid defined by

(1.11) σkl(u, p) = −pδkl + ν
(∂uk
∂xl

+
∂ul
∂xk

)

, for k, l ∈ {1, . . . , d}.
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We also define by D(u) the matrix

Dkl(u) =
1

2

(

∂uk
∂xl

+
∂ul
∂xk

)

.

The problem of interaction between a viscous incompressible fluid and a rigid body

has been studied intensively in the recent years (see [2], [4], [6], [7], [11], [15], [18],

[19], [20], [21], etc.). However, as far as we know, only few results concerning the

existence and uniqueness of strong solutions for the problem (1.1), (1.2), (1.4)–(1.10)

are available in the case where the system fills the whole space. In that case, we can

mention the results of Takahashi and Tucsnak [22], and of Galdi and Silvestre [9].

In [22], the authors show the global in time existence and uniqueness of strong solu-

tions in two spatial dimensions in the particular case where the rigid body is a disk.

In [9], the authors prove the existence of local in time strong solutions for a rigid body

having an arbitrary regular shape. Nevertheless, their result does not yield neither

the uniqueness of solutions nor the global in time existence (even for small data).

On the other hand, due to the complexity of the problem, another related prob-

lem simpler than (1.1), (1.2), (1.4)–(1.10), in which the motion of the rigid body

is prescribed as a constant rotation has also been investigated. In particular, a

local in time existence and uniqueness result of mild solutions has been proved by

Hishida [14], and recently a local in time existence result of strong solutions has been

proved by Galdi and Silvestre [10]. Moreover, the authors prove that the solution

is global in time, provided that the initial velocity u0, in an appropriate norm, and

the magnitude of ω do not exceed a certain constant depending only on the viscosity

and on the regularity of F (0). However, the authors do not make any reference to

uniqueness properties of the solution. Both works mentioned before deal with the

problem by writing the equations of motion of the fluid-rigid body system in a frame

attached to the rigid body. Furthermore, a local in time existence and uniqueness

result of strong solutions has been very recently proved by Cumsille and Tucsnak [3].

There, the authors proved that the solution is global in time in two spatial dimensions

provided that the velocity satisfies suitable a priori estimates. We remark that the

work previously cited deals with the problem by making a new change of variables,

instead of writing the equations of motion in a frame attached to the rigid body. We

use here a similar idea to work with the problem (1.1), (1.2), (1.4)–(1.10).

In order to make the region occupied by the fluid time independent, it is quite

natural to refer the equations of motion of the fluid-rigid body system in a frame

attached to the rigid body, with origin in the center of mass of the latter, and

coinciding with an inertial frame at time t = 0 (see [8] for details). More precisely,
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let us denote

ū(y, t) = Q∗(t)u(Q(t)y + h(t), t);

p̄(y, t) = p(Q(t)y + h(t), t);

h̄(t) =

∫ t

0

Q∗(s)h′(s) ds;

J = J(0); ω(t) =

{

ω(t) for d = 2,

Q∗(t)ω(t) for d = 3;

fM (t) = −Mω(t) × h̄′(t); fJ(t) =

{

0 for d = 2,

(Jω(t)) × ω(t) for d = 3;

f(y, t) = Q∗(t)f(Q(t)y + h(t), t).

In this case, the equivalent system to the original one can be written as

∂ū

∂t
− ν∆ū+ [(ū − h̄′ − ω × y) · ∇]ū + ∇p̄+ ω × ū = f,(1.12)

(y, t) ∈ F (0) × (0, T ),

div ū = 0, (y, t) ∈ F (0) × (0, T ),(1.13)

ū(y, t) = h̄′(t) + ω(t) × y, (y, t) ∈ ∂O(0) × (0, T ),(1.14)

Mh̄′′(t) = −

∫

∂O(0)

σ(ū, p̄)n dΓ +

∫

O(0)

̺f(y, t) dy + fM (t), t ∈ (0, T ),(1.15)

Jω′(t) = −

∫

∂O(0)

y × (σ(ū, p̄)n) dΓ +

∫

O(0)

y × ̺f(y, t) dy + fJ(t),(1.16)

t ∈ (0, T ),

ū(y, 0) = u0(y), y ∈ F (0),(1.17)

h̄(0) = 0, h̄′(0) = h(1), ω(0) = ω(0).(1.18)

One of the main difficulties comes from the term [(ω × y) · ∇]ū, whose coefficient

becomes unbounded at large spatial distances. In order to overcome this difficulty, we

use another change of variables which coincides with Q(t)y+h(t) in a neighborhood

of the rigid body and is equal to the identity far from the rigid body. By using this

change of variables, we obtain a system of equations whose coefficients are bounded

at large spatial distances, instead of the term [(ω×y)·∇]ū. This feature of our method

allows us to improve the results of [9], in the sense that we get the uniqueness as

well as the global character (in time) of the solution.

In the rest of this work, we denote F = F (0) and O = O(0). As usual, for m ∈ N

and α ∈ [1,∞] we denote by Wm,α(F ) the Sobolev spaces formed by the functions
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in Lα(F ) which have distributional derivatives, up to the order m, in Lα(F ), and

by Hm(F ) = Wm,2(F ). We also denote by Ĥ1(F ) the homogeneous Sobolev space

Ĥ1(F ) = {q ∈ L2
loc(F ) | ∇q ∈ [L2(F )]d},

where q ∈ L2
loc(F ) means that q ∈ L2(F ∩ B0) for all open balls B0 ⊂ R

d with

B0 ∩ F 6= ∅. We identify two functions of Ĥ1(F ) if they differ by a constant.

Moreover, we set

H
m(F (t)) = [Hm(F (t))]d, H

m(Rd) = [Hm(Rd)]d

L
α(F (t)) = [Lα(F (t))]d, L

α(Rd) = [Lα(Rd)]d.

We denote

FT = {(x, t) ∈ R
d × [0, T ]; x ∈ F (t)}.

Consider a smooth mapping X : F × [0, T ] → R
d such that for all t ∈ [0, T ], X(·, t)

is a C∞-diffeomorphism from F onto F (t). Moreover, suppose that the mappings

(y, t) 7→ DtD
α
yX(y, t), α ∈ N

d,

exist, are continuous and compactly supported inF (such a mapping will be given in

Section 2). For any g : FT → R
d, we denote by gX : F × [0, T ] → R

d the mapping

gX(y, t) = g(X(y, t), t), for all t > 0 and for all y ∈ F . In order to analyze the

problem (1.1), (1.2), (1.4)–(1.10), we need to introduce the following function spaces

in variable domain:

L2(0, T ; H 2(F (t))) = {u : uX ∈ L2(0, T ; H 2(F ))},

H1(0, T ; L 2(F (t))) = {u : uX ∈ H1(0, T ; L 2(F ))},

C([0, T ],H 1(F (t))) = {u : uX ∈ C([0, T ],H 1(F ))},

L2(0, T ; Ĥ1(F (t))) = {p : pX ∈ L2(0, T ; Ĥ1(F ))}.

Finally, let us denote by U (FT ) the space of strong solutions for the velocity, defined

by

(1.19) U (FT ) = L2(0, T ; H 2(F (t)))∩C([0, T ],H 1(F (t)))∩H1(0, T ; L 2(F (t))).

We also define

(1.20) UT = L2(0, T ; H 2(F )) ∩ C([0, T ],H 1(F )) ∩H1(0, T ; L 2(F )).

The main results of this paper are the three following theorems.
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Theorem 1.1. Suppose that O is a bounded open connected subset of Rd with

boundary ∂O of class C3. Assume that

f ∈ L2
loc(0,∞; [W 1,∞(Rd) ∩ L2(Rd)]d)

and that u0 ∈ H 1(F ) with

{

div u0 = 0 in F ,

u0(x) = h(1) + ω(0) × x on ∂O.

Then, there exists T0 > 0 such that the problem (1.1), (1.2), (1.4)–(1.10) admits a

unique strong solution (u, p, h, ω) in [0, T0), that is

u ∈ U (FT ), p ∈ L2(0, T ; Ĥ1(F (t))), h ∈ H2(0, T ;Rd),

and
{

ω ∈ H1(0, T ;R) if d = 2,

ω ∈ H1(0, T ;R3) if d = 3,

for all T ∈ (0, T0).

Moreover, we can choose T0 such that one of the following alternatives holds true:

(a) T0 = +∞,

(b) the function t 7→ ‖u(t)‖H 1(F(t)) is not bounded in [0, T0).

Theorem 1.2. Assume that the hypotheses in Theorem (1.1) hold true and

suppose that d = 2. Then, assertion (a) in Theorem (1.1) holds true, that is, the

strong solution of the problem (1.1), (1.2), (1.4)–(1.10) is global in time.

Theorem 1.3. Assume that the hypotheses in Theorem (1.1) hold true and

suppose that d = 3. Moreover, suppose that

f ∈ L2(0,∞,L 2(R3)) ∩ L1(0,∞,L 2(R3)).

There exists a positive constant c = c(O, ν, ̺) such that if

(1.21) ‖u0‖
2
L 2(R3) + ‖D(u0)‖

2
[L2(R3)]9 + ‖f‖2

L2(0,∞;L 2(R3)) + ‖f‖2
L1(0,∞;L 2(R3)) < c,

then assertion (a) in Theorem (1.1) holds true, that is, the strong solution of the

problem (1.1), (1.2), (1.4)–(1.10) is global in time.

As a direct consequence of Theorem 1.1, we recover the result [9, Theorem 4.1]:
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Corollary 1.4. Assume that the hypotheses in Theorem (1.1) hold true and

suppose that d = 3. Let us denote by BR the open ball centered at 0 and of radius R

in R
3, by diam(O) the diameter of O and FR = F ∩ BR for R > diam(O). Then

there exists T ∗ and ū = ū(y, t), p̄ = p̄(y, t), h̄ = h̄(t), ω = ω(t) and Q = Q(t)

satisfying (1.12)–(1.18) and (1.2) almost everywhere in F × (0, T ∗) such that

ūi,
∂ūi
∂yj

∈ L∞(0, T ;L2(F )),
∂p̄

∂yi
,
∂2ūi
∂yj∂yk

∈ L2(0, T ;L2(F )),

h̄i ∈ H2(0, T ), ωi ∈ H1(0, T ), Qij ∈ H2(0, T )

∂ūi
∂t

∈ L2(0, T ;L2(FR)) ∀R > diam(O),

for any T ∈ (0, T ∗). Moreover,

h̄i ∈ C1([0, T ]), ωi, Qij ∈ C([0, T ]), h̄(0) = 0, h̄′(0) = h(1), ω(0) = ω(0),

Q(0) = Id, ū ∈ C([0, T ], H1(F )) with ū(·, 0) = u0(·),

for any T ∈ (0, T ∗).

Remark 1.5. The existence of solutions for the problem (1.1), (1.2), (1.4)–(1.10),

with initial data satisfying the same assumptions as in Theorem 1.1 has already been

investigated in [22] assuming that the rigid body is an infinite cylinder of circular

cross-section. Moreover, a similar problem was studied in [9], where the difference

with our problem is that in [9], the authors suppose that there are prescribed external

forces and torques acting on the rigid body and assume that only conservative forces

act on the fluid. The novelty of our results consists in the fact that we obtain an

existence and uniqueness result for strong solutions in the case of a rigid body of

arbitrary and regular shape. On the other hand, we obtain a solution which is unique

and global in time (assuming that the data are small enough if d = 3).

The plan of this paper is as follows: in Section 2 we introduce the change of vari-

ables, which plays a central role in Section 3, in order to prove the local existence

of the problem (1.1), (1.2), (1.4)–(1.10). In Subsection 3.1 we study a linearized

problem associated to (1.1), (1.2), (1.4)–(1.10), after of the change of variables. Re-

garding the problem (1.1), (1.2), (1.4)–(1.10), after of the change of variables, as a

perturbation of the linearized problem of the previous subsection, we give in Sub-

section 3.2 the estimates needed in order to carry out a fixed point procedure, to

prove that such a problem admits a unique local strong solution. In Subsection 3.3

we implement our fixed point procedure to conclude the proof of Theorem 1.1. In

Section 4 we prove the global character of the solution. In Subsection 4.1 we give

some preliminary results that are valid in two or in three spatial dimensions. In
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Subsection 4.2 we prove that the solution is global in time in 2-D. Finally, in Subsec-

tion 4.3, we prove that the solution is also global in time in 3-D, if the initial velocity

and the external force are small enough (in some appropriate norms).

2. The transformed equations

2.1. The change of variables

Let us consider a fixed pair (h, ω), with h ∈ H2(0, T ;Rd) and ω ∈ H1(0, T ;R)

(resp. ω ∈ H1(0, T ;R3)) for d = 2 (resp. for d = 3). We first remark that, by using

a classical Sobolev embedding, we have that h ∈ C1([0, T ],Rd) and ω ∈ C([0, T ],R)

(resp. ω ∈ C([0, T ],R3)) for d = 2 (resp. for d = 3). Let V : R
d× [0, T ] → R

d be the

rigid velocity field associated to (h, ω), defined by

(2.1) V (x, t) = h′(t) + ω(t) × [x− h(t)] ∀x ∈ R
d, ∀ t ∈ [0, T ].

Clearly, for all t ∈ [0, T ], V (·, t) is a C∞ function and for all x ∈ R
d, the function

V (x, ·) is in H1(0, T ;Rd). Moreover, by using a Sobolev embedding we have V ∈

C(Rd × [0, T ]).

Let us denote by diam(O) the diameter of the set O and by Br the open ball

in R
d, of radius r > 0 and centered at the origin. Assume that

(2.2) r > diam(O) + ‖h‖L∞(0,T ;Rd).

With this choice of r and since O(t) is defined by (1.1), we have that O(t) ⊂ Br for

all t ∈ [0, T ].

Let ψ ∈ C∞(Rd,R) be a cut-off function, whose support be contained in B2r and

such that ψ ≡ 1 on B̄r. We introduce the functions w defined in R
d × [0, T ] by

(2.3) w(x, t) = h′ × (x− h(t)) +
|x− h(t)|2

2
ω,

and Λ: R
d × [0, T ] → R

d defined by

(2.4) Λ(x, t) =





























































−
∂ψ

∂x2
w + ψV1

∂ψ

∂x1
w + ψV2






if d = 2,















ψV1 +
∂ψ

∂x2
w3 −

∂ψ

∂x3
w2

ψV2 +
∂ψ

∂x3
w1 −

∂ψ

∂x1
w3

ψV3 +
∂ψ

∂x1
w2 −

∂ψ

∂x2
w1















if d = 3.

With the previous definitions, it is easy to show that Λ satisfies the following lemma.
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Lemma 2.1. Let r > 0 satisfy (2.2) and let w, Λ be defined by (2.3) and (2.4)

respectively. Then, we have

(1) Λ = 0 outside of B2r.

(2) div Λ = 0 in R
d × [0, T ].

(3) Λ(x, t) = V (x, t) in OT = {(x, t) ∈ R
d × [0, T ]; x ∈ O(t)},

(4) Λ ∈ C(Rd × [0, T ],Rd). Moreover, for all t ∈ [0, T ], Λ(·, t) is a C∞ function and

for all x ∈ R
d, the function Λ(x, ·) is in H1(0, T ;Rd).

Next, consider the time dependent vector field X(·, t) satisfying

(2.5)







∂X

∂t
(y, t) = Λ(X(y, t), t), t ∈ ]0, T ],

X(y, 0) = y ∈ R
d,

where Λ is defined by (2.4). We have the following result:

Lemma 2.2. For all y ∈ R
d, the initial-value problem (2.5) admits a unique

solution X(y, ·) : [0, T ] → R
d, which is a C1 function in [0, T ]. Moreover, we have

the following properties

(1) For all t ∈ [0, T ], the mapping y 7→ X(y, t) is a C∞-diffeomorphism from R
d

onto itself and from F onto F (t).

(2) Denote by Y (·, t) the inverse of X(·, t). Then, for all x ∈ R
d, the mapping

t 7→ Y (x, t) is a C1 function in [0, T ].

(3) For all y ∈ R
d and for all t ∈ [0, T ], the determinant of the jacobian matrix JX

of X(·, t) is equal to 1:

(2.6) detJX(y, t) = 1.

P r o o f. Since Λ is continuous and Λ(·, t) is a C1 function, according to the

classical result of Cauchy-Lipschitz-Picard, it follows that (2.5) admits a unique

solution X(·, t), defined in [0, T1[, with T1 6 T , which is C1 in [0, T1[. Moreover,

since Λ = 0 outside of B2r, Λ is bounded and therefore it follows that X does not

blow-up before the time T . In particular, for any t ∈ [0, T ], X(·, t) is a bijection

of Rd onto itself.

By using the regularity of Λ and a classical result (see, for instance, Hartman [12,

Theorem 4.1, p. 100]), we get that for each t ∈ [0, T ], X(·, t) is a C∞ function on Rd.

The fact that the inverse Y (·, t) of X(·, t) is a C∞ function on Rd follows in a similar

way. Thus, it follows that X(·, t) is a C∞-diffeomorphism from R
d onto itself. Now,

let us show that X(·, t) is a C∞-diffeomorphism from F onto F (t). To do this, we

remark that it is easy to verify that for each y ∈ O, the function

(2.7) X(y, t) = h(t) +Q(t)y,
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is the solution of (2.5). We then conclude that for any t ∈ [0, T ], X(·, t)(O) ⊂ O(t)

and in a similar way, Y (·, t)(O(t)) ⊂ O. Therefore X(·, t) : F → F (t) is a C∞-

diffeomorphism. The same conclusion follows for Y (·, t) : F (t) → F .

Finally, by using a classical result due to Liouville (see, for instance, Arnold [1,

p. 249]) and the fact that div Λ = 0, we obtain that X satisfies (2.6). �

In the sequel, we denote by JX and JY the jacobian matrix of X and Y respec-

tively:

JX =
(∂Xi

∂yj

)

ij
, JY =

(∂Yi
∂xj

)

ij
.

2.2 The equations in the cylindrical domain

We first define the functions

U(y, t) = JY (X(y, t), t) u(X(y, t), t); P (y, t) = p(X(y, t), t);(2.8)

H(t) =

∫ t

0

Q∗(s)h′(s) ds; Ω(t) =

{

ω(t) for d = 2,

Q∗(t)ω(t) for d = 3.
(2.9)

In order to write the equations satisfied by (U,P,H,Ω), we define for each i ∈

{1, . . . , d}

(LU)i =
d
∑

j,k=1

∂

∂yj

(

gjk
∂Ui
∂yk

)

+ 2
d
∑

j,k,l=1

gklΓijk
∂Uj
∂yl

(2.10)

+

d
∑

j,k,l=1

{

∂

∂yk
(gklΓijl) +

d
∑

m=1

gklΓmjl Γ
i
km

}

Uj ;

(MU)i =

d
∑

j=1

∂Yj
∂t

∂Ui
∂yj

+

d
∑

j,k=1

{

Γijk
∂Yk
∂t

+
∂Yi
∂xk

∂2Xk

∂t∂yj

}

Uj ;(2.11)

(NU)i =

d
∑

j=1

Uj
∂Ui
∂yj

+

d
∑

j,k=1

ΓijkUjUk;(2.12)

(GP )i =

d
∑

j=1

gij
∂P

∂yj
;(2.13)
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where, for each i, j, k ∈ {1, . . . , d}, we have denoted

gij(y, t) =

d
∑

k=1

∂Yi
∂xk

(X(y, t), t)
∂Yj
∂xk

(X(y, t), t),(2.14)

gij(y, t) =
d
∑

k=1

∂Xk

∂yi
(y, t)

∂Xk

∂yj
(y, t),(2.15)

Γkij =
1

2

d
∑

l=1

gkl
{∂gil
∂yj

+
∂gjl
∂yi

−
∂gij
∂yl

}

.(2.16)

We also define

F (y, t) = JY (X(y, t), t)f(X(y, t), t); FM = −MΩ×H ′;(2.17)

FJ =

{

0 for d = 2,

JΩ × Ω for d = 3.

(Recall that J = J(0).)

With the above notations, we can consider the following problem written in the

fixed spatial domain F = F (0):

∂U

∂t
− ν(LU) + (MU) + (NU) + (GP ) = F, in F × (0, T ),(2.18)

divU = 0, in F × (0, T ),(2.19)

U(y, t) = H ′(t) + Ω(t) × y, on ∂O × (0, T ),(2.20)

MH ′′(t) = −

∫

∂O

σ(U,P )n dΓ +

∫

O

̺F (y, t) dy + FM (t), t ∈ (0, T ),(2.21)

JΩ′(t) = −

∫

∂O

y × σ(U,P )n dΓ +

∫

O

y × ̺F (y, t) dy + FJ (t), t ∈ (0, T ),(2.22)

U(y, 0) = u0(y), y ∈ F ,(2.23)

H(0) = 0, H ′(0) = h(1), Ω(0) = ω(0).(2.24)

This system is the transformation of the system (1.1), (1.2), (1.4)–(1.10) by using

the mapping X , as stated in the following proposition.

Proposition 2.3. The quadruple (u, p, h, ω) satisfies

u ∈ U (FT ), p ∈ L2(0, T ; Ĥ1(F (t))), h ∈ H2(0, T ;Rd),
{

ω ∈ H1(0, T ;R) if d = 2,

ω ∈ H1(0, T ;R3) if d = 3,
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together with (1.1), (1.2), (1.4)–(1.10) in [0, T ] if and only if the quadruple

(U,P,H,Ω) defined by (2.8)–(2.9) satisfies

U ∈ UT , P ∈ L2(0, T ; Ĥ1(F )), H ∈ H2(0, T ;Rd),
{

Ω ∈ H1(0, T ;R) if d = 2,

Ω ∈ H1(0, T ;R3) if d = 3,

together with (2.18)–(2.24) in [0, T ].

For a proof of this proposition, see Propositions 4.5 and 4.6 in [21].

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is similar to the proof of the local in time existence of

strong solutions given in [21] or in [3]. The main difference comes from the change

of variables used to transform the system (1.1), (1.2), (1.4)–(1.10) into a system of

equations written in a fixed spatial domain. For this reason, we only give the main

steps of the proof without details.

3.1. The linearized problem

A first step in the proof of Theorem 1.1 is to get the wellposedness for the following

linear system:

∂U

∂t
− ν∆U + ∇P = Z, in F × (0, T ),(3.1)

divU = 0, in F × (0, T ),(3.2)

U(y, t) = H ′(t) + Ω(t) × y, on ∂O × (0, T ),(3.3)

MH ′′(t) = −

∫

∂O

σ(U,P )n dΓ + ZM (t), t ∈ (0, T ),(3.4)

JΩ′(t) = −

∫

∂O

y × σ(U,P )n dΓ + ZJ(t), t ∈ (0, T ),(3.5)

U(y, 0) = u0(y), y ∈ F ,(3.6)

H(0) = 0, H ′(0) = h(1), Ω(0) = ω(0).(3.7)

To achieve this, we extend U to Rd by setting

U(y, t) = H ′(t) + Ω(t) × y ∀ (y, t) ∈ O × (0, T ).

An easy calculation yields that D(U) = 0 in O × (0, T ). It is thus natural to define

the following function spaces:

H = {U ∈ L
2(Rd) : divU = 0 in R

d, D(U) = 0 in O},(3.8)

V = {U ∈ H
1(Rd) : divU = 0 in R

d, D(U) = 0 in O}.(3.9)
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We endow L 2(Rd) and H with the inner product

(f, g)L 2(Rd) =

∫

F

f · g dy +

∫

O

̺f · g dy ∀f, g ∈ L
2(Rd),

where ̺ > 0 is the density of the rigid body.

The study of 3.1)–(3.7) can be done as in [22] or [21] by using an approach based

on the theory of semigroups. More precisely, we define

D(A) = {U ∈ V; U |F ∈ H
2(F )};(3.10)

A U =







−ν∆U in F ,

2ν

M

∫

∂O

D(U)n dΓ + 2ν(J)−1

[∫

∂O

y ×D(U)n dΓ

]

× y in O;
(3.11)

and

AU = PA U ∀U ∈ D(A);(3.12)

where P is the orthogonal projector from L 2(Rd) onto H, and where, in the expres-

sion of A U , D(U) represents the trace of the restriction of D(U) to F = R
d \ O.

As in [22], we can prove the following result.

Proposition 3.1. The operator A defined by (3.10), (3.11) and (3.12) is

self-adjoint and non-negative. Consequently, −A is the generator of a contrac-

tion strongly continuous semigroup on H. Moreover, there exists a constant

C = C(ν, ̺,F ) > 0 such that for all U ∈ D(A)

(3.13) ‖U‖H 2(F) 6 C‖(I +A)U‖L 2(Rd).

By using the above proposition, we obtain the following result, which can be

proven in the same way as Corollary 4.3 from [22].

Corollary 3.2. Let T > 0 and suppose that Z ∈ L2(0, T ; L 2(F )), ZM ∈

L2(0, T ;Rd), ZJ ∈ L2(0, T ;R) for d = 2, or ZJ ∈ L2(0, T ;R3) for d = 3 and let

u0 ∈ H 1(F ) be such that

div u0 = 0, in F ,

u0 = h(1) + ω(0) × y, on ∂O.

Then, the linear problem (3.1)–(3.7) admits a unique strong solution (U,P,H,Ω)

in [0, T ], i.e. U ∈ UT , P ∈ L2(0, T ; Ĥ1(F )), H ∈ H2(0, T ;Rd), Ω ∈ H1(0, T ;R) if
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d = 2, or Ω ∈ H1(0, T ;R3) if d = 3. Moreover, there exists a positive constant C

such that

‖U‖UT
+ ‖∇P‖L2(0,T ;L 2(F)) + ‖H ′‖H1(0,T ;Rd) + ‖Ω‖H1(0,T )(3.14)

6 C(‖u0‖H 1(Rd) + ‖Z‖L2(0,T ;L 2(F)) + ‖ZM‖L2(0,T ;Rd) + ‖ZJ‖L2(0,T )).

This constant C depends only on ̺, ν, F and on T and it is non-decreasing with

respect to T .

3.2. Proof the local existence and uniqueness result

Following the same approach than in [21] and in [3], we write the system (2.18)–

(2.24) as the system

∂U

∂t
− ν∆U + ∇P = Ẑ, in F × (0, T ),

divU = 0, in F × (0, T ),

U(y, t) = H ′(t) + Ω(t) × y, on ∂O × (0, T ),

MH ′′(t) = −

∫

∂O

σ(U,P )n dΓ + ẐM (t), t ∈ (0, T ),

JΩ′(t) = −

∫

∂O

y × σ(U,P )n dΓ + ẐJ(t), t ∈ (0, T ),

U(y, 0) = u0(y), y ∈ F ,

H(0) = 0, H ′(0) = h(1), Ω(0) = ω(0),

with

Ẑ(y, t) = F + ν((L − ∆)U) − (MU) − (NU) + ((∇− G)P ),

ẐM (t) =

∫

O

̺F (y, t) dy + FM (t), ẐJ =

∫

O

y × ̺F (y, t) dy + FJ (t),

and where F , FM and FJ are defined by (2.17).

We define the mapping Z from

L2(0, T ;L2(F )) × L2(0, T ;Rd) × L2(0, T )

into itself by

Z





Z

ZM

ZJ



 =





F + ν((L − ∆)U) − (MU) − (NU) + ((∇− G)P )
∫

O
̺F (y, t) dy + FM

∫

O
y × ̺F (y, t) dy + FJ



 ,
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where in the above expression, (U,P,H,Ω) is the solution of the linear system (3.1)–

(3.7) associated with (Z,ZM , ZJ) (see Corollary 3.2).

By estimating carefully the coefficients in L, M, N, G, FM and FJ , we can

prove that for small time T depending only on ‖u0‖H 1(F), h
(1) and ω(0), the map-

ping Z admits a unique fixed point. Therefore, there exists a unique strong so-

lution (U,P,H,Ω) of the system (2.18)–(2.24) on [0, T ]. Moreover, since Ω(t) is a

continuous mapping, it is well known that the initial-value problem

Q′(t)z = Q(t)(Ω(t) × z) ∀ z ∈ R
d,

Q(0) = Id,

has a unique solution Q ∈ C1([0, T ],Rd
2

).

Finally, by using the inverse transformation

u(x, t) = JX(Y (x, t), t)U(Y (x, t), t); p(x, t) = P (Y (x, t), t);

h(t) =

∫ t

0

Q(s)H ′(s) ds; ω(t) =

{

Ω(t) for d = 2,

Q(t)Ω(t) for d = 3,

we obtain the existence and uniqueness of strong solutions on [0, T ] for the sys-

tem (1.1), (1.2), (1.4)–(1.10).

3.3. End of the proof of Theorem 1.1

In the above section, we have shown that there exists a time T > 0 such that

the problem (1.1), (1.2), (1.4)–(1.10) admits a unique strong solution (u, p, h, ω) in

[0, T ]. Let us define T0 > 0 as follows:

T0 := sup{T ∈ R
∗

+; (1.1), (1.2), (1.4)–(1.10) admits a unique(3.15)

strong solution in [0, T ]}.

To finish the proof of Theorem 1.1, we have to prove that one of the alternatives (a)

or (b) holds true. We act by contradiction: let us assume that T0 <∞ and that the

function t 7→ ‖u(t)‖H 1(F(t)) is bounded in [0, T0). It is not difficult to see that this

implies that the mappings

t 7→ |h′(t)|, t 7→ |ω(t)|

are bounded in [0, T0). In particular, using that T0 <∞, we get that h is bounded in

[0, T0) and therefore that there exists a uniform r > 0 so that (2.2) holds true. This

fact, combined with the above subsections, implies that there exists T1 > 0 such that,

for all t ∈ [0, T0), there exists a unique strong solution of (1.1), (1.2), (1.4)–(1.10) in

[t, t+ T1]. This contradicts (3.15) and completes the proof of Theorem 1.1.
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4. Proof of the global existence of strong solutions

To get the global in time existence, we assume that T0 < ∞ and we are going to

show that the mappings

t 7→ ‖u(t)‖H 1(F(t)), t 7→ |h′(t)|, t 7→ |ω(t)|

are bounded in [0, T0) without any extra hypothesis if d = 2 and assuming that

the initial velocity and the external force are small enough if d = 3. According to

Theorem 1.1, this will imply Theorems 1.2 and 1.3.

4.1. Preliminary results

Let (u, p, h, ω) be the strong solution to the problem (1.1), (1.2), (1.4)–(1.10). It

is natural to extend u to Rd by

(4.1) u(x, t) = h′(t) + ω(t) × [x− h(t)] x ∈ O(t), t ∈ [0, T0).

In that case, we have that u(t) ∈ H 1(R)d) for all t ∈ [0, T0) and D(u) = 0 for

t ∈ [0, T0) and x ∈ O(t). Moreover, we can easily check that

∫

F(t)

|D(u)|2 dx =

∫

Rd

|D(u)|2 dx =
1

2

∫

Rd

|∇u|2 dx >
1

2

∫

F(t)

|∇u|2 dx.

A simple calculation shows that there exist two positive constants c1 and c2 depend-

ing only on O and on ̺ such that

(4.2) c1|a|
2 6 (Ja) · a 6 c2|a|

2 (a ∈ R
3).

Lemma 4.1. Let (u, p, h, ω) be the strong solution to the problem (1.1), (1.2),

(1.4)–(1.10) as in Theorem 1.1. Then, there exists a positive constant C = C(O, ̺)

such that

sup
t∈[0,T0)

(‖u(t)‖2
L 2(F(t)) + |h′(t)|2 + |ω(t)|2) + 2ν

∫ T0

0

‖∇u(t)‖2
[L2(F(t))]d2 dt(4.3)

6 C(‖f‖2
L1(0,T0;L 2(Rd)) + ‖u0‖

2
L 2(F) + |h(1)|2 + |ω(0)|2).

P r o o f. By taking the inner product of (1.4) with u, we obtain that

∫

F(t)

∂u

∂t
· u dx−

∫

F(t)

div σ(u, p) · u dx+

∫

F(t)

[(u · ∇)u] · u dx(4.4)

=

∫

F(t)

f · u dx, a.e. in (0, T0).

977



On the other hand, the Reynolds transport theorem combined with the fact that

div u = 0 in F (t) implies

(4.5)

∫

F(t)

∂u

∂t
· u dx+

∫

F(t)

[(u · ∇)u] · u dx =
1

2

d

dt

∫

F(t)

|u|2 dx, a.e. in (0, T0).

Moreover, by using (1.6), (1.7) and (1.8), we obtain that a.e. in (0, T0)

−

∫

F(t)

div σ(u, p) · u dx(4.6)

= 2ν

∫

F(t)

|D(u)|2 dx−

∫

∂O(t)

(σ(u, p)n) · u dΓ

= 2ν

∫

F(t)

|D(u)|2 dx+
M

2

d

dt
|h′(t)|2 +

1

2

d

dt
[(Jω(t)) · ω(t)]

−

∫

O(t)

h′(t) · ̺f(x, t) dx−

∫

O(t)

[ω(t) × (x− h(t))] · ̺f(x, t) dx.

Therefore, by replacing (4.5) and (4.6) in (4.4), we get that

d

dt
‖u(t)‖2

L 2(F(t)) + 4ν‖Du(t)‖2
[L2(F(t))]d2 +M

d

dt
|h′(t)|2 +

d

dt
[(Jω(t)) · ω(t)](4.7)

= 2(f(t), u(t))L 2(F(t)) + 2

∫

O(t)

̺f(x, t) · [h′(t) + ω(t) × (x− h(t))] dx,

a.e. in (0, T0).

The above inequality yields that

‖u(t)‖2
L 2(F(t)) +M |h′(t)|2 + (Jω(t)) · ω(t)(4.8)

6 2

(∫ t

0

‖f(s)‖L 2(Rd) ds

)2

+ 2‖u0‖
2
L 2(F) + 2M |h(1)|2 + 2Jω(0) · ω(0),

for all t ∈ [0, T0). Combining (4.7) and the above inequality, we conclude that

4ν

∫ t

0

‖D(u(s))‖2
[L2(F(s))]d2 ds(4.9)

6 3

[(∫ T0

0

‖f(s)‖L 2(Rd) ds

)2

+ ‖u0‖
2
L 2(F) +M |h(1)|2 + Jω(0) · ω(0)

]

,

for all t ∈ [0, T0). The result follows from (4.8) and (4.9). �
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The above lemma gives in particular an estimate on ‖u(t)‖2
L 2(F(t)). In order to

obtain an estimate on ‖u(t)‖2
H 1(F(t)), we need to introduce some auxiliary functions.

First let us consider ξ : R
d → R a smooth function with compact support such

that ξ(x) = 1 in a neighborhood of O. Then we set

ψ̂(x, t) = ξ(Q∗(x− h(t))),

and we define Λ̂ : R
d × [0, T ] → R

d by

(4.10) Λ̂(x, t) =







































































−
∂ψ̂

∂x2
w + ψ̂V1

∂ψ̂

∂x1
w + ψ̂V2









if d = 2,

















ψ̂V1 +
∂ψ̂

∂x2
w3 −

∂ψ̂

∂x3
w2

ψ̂V2 +
∂ψ̂

∂x3
w1 −

∂ψ̂

∂x1
w3

ψ̂V3 +
∂ψ̂

∂x1
w2 −

∂ψ̂
∂x2

w1

















if d = 3,

with V and w defined by (2.1) and by (3.2). The function Λ̂ satisfies the proper-

ties (2), (3) and (4) of Lemma 2.1 (with Λ̂ instead of Λ). Define X̂ as the solution

of the initial boundary value problem

(4.11)







∂X̂

∂t
(y, t) = Λ̂(X̂(y, t), t), t ∈ ]0, T ],

X̂(y, 0) = y ∈ R
d.

The function X̂ satisfies all the properties of Lemma 2.2 (with X̂ instead of X) and

in particular that, for each y ∈ O,

(4.12) X̂(y, t) = h(t) +Q(t)y.

Finally, we can estimate the function Λ̂:

(4.13) ‖Λ̂‖W 2,∞(F(t)) 6 C(|h′(t)| + |ω(t)|).

Similarly, by changing slightly the functions V and w defined by (2.1) and by (2.3),

we can prove the following result.
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Proposition 4.2. Let (H,Ω) be the transformed of (h, ω) given by (2.9) and let

r > diam(O) be fixed. Then, there exists a vector field Λ̄ ∈ C(Rd× [0, T0)) satisfying

the following properties:

(1) Λ̄ = 0 outside of B2r.

(2) div Λ̄ = 0 in R
d × [0, T0).

(3) Λ̄(y, t) = H ′(t) + Ω(t) × y for all (y, t) ∈ O × [0, T0).

(4) For all t ∈ [0, T0), Λ̄(·, t) is a C∞ mapping in Rd and for all y ∈ R
d, Λ̄(y, ·) is in

H1(0, T ;Rd) for any T ∈ (0, T0).

(5) There exists a positive constant C = C(O, ̺) such that

(4.14) ‖Λ̄(t)‖[H2(R2)]2 6 C(|h′(t)| + |ω(t)|),

for each t ∈ [0, T0).

Next, we prove a technical result, which will be used in the proof of both Theo-

rem 1.2 and Theorem 1.3.

Lemma 4.3. Let (u, p, h, ω) be the strong solution to the problem (1.1), (1.2),

(1.4)–(1.10) as in Theorem 1.1, and let us assume that f ∈ L2(0, T0; L
2(Rd)). Then,

we have that for almost every t in (0, T0),

−

∫

F(t)

div σ(u, p) ·
(∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)

dx(4.15)

= ν
d

dt

∫

F(t)

|Du|2 dx+M |h′′(t)|2 + ω′(t) ·
d

dt
(Jω(t))

−M [ω(t) × h′(t)] · h′′(t)

−

∫

O(t)

̺f(x, t) · [h′′(t) + ω′(t) × (x − h(t)) − ω(t) × h′(t)] dx

+ 2ν

∫

F(t)

(Du) : ((∇u)(∇Λ̂) −D((u · ∇)Λ̂)) dx.

P r o o f. We prove formula (4.15) only in the case d = 3, the proof in the case

d = 2 is similar. We split the proof in two steps.

First Step. Let us consider

v ∈ U (FT0
)

satisfying

div v = 0, x ∈ F (t), t ∈ (0, T0),

and

v(x, t) = l(t) + k(t) × (x− h(t)) x ∈ ∂O(t), t ∈ (0, T0),
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with (l, k) ∈ H1(0, T0). We assume moreover that

(4.16)
∂v

∂t

∣

∣

∣

F(t)
∈ L2(0, T0; H

1(F (t))).

By using the change of variables y 7→ X̂(y, t) introduced above, we easily get that

(4.17)
d

dt

∫

F(t)

|Dv|2 dx =

∫

F(t)

∂

∂t
|Dv|2 + Λ̂ · ∇(|Dv|2) dx,

with Λ̂ defined by (4.10). A simple calculation shows that

(4.18)
∂

∂t
|Dv|2 + Λ̂ · ∇(|Dv|2) = 2Dv : D

(∂v

∂t
+ (Λ̂ · ∇)v

)

− 2(Dv) : ((∇v)(∇Λ̂)).

Combining (4.17) and (4.18), we obtain that

1

2

d

dt

∫

F(t)

|Dv|2 dx =

∫

F(t)

Dv : D
(∂v

∂t
+ (Λ̂ · ∇)v

)

− (Dv) : ((∇v)(∇Λ̂)) dx

and thus

1

2

d

dt

∫

F(t)

|Dv|2 dx =

∫

F(t)

Dv : D
(∂v

∂t
+ (Λ̂ · ∇)v − (v · ∇)Λ̂

)

(4.19)

+ (Dv) : (D((v · ∇)Λ̂)) − (Dv) : ((∇v)(∇Λ̂)) dx.

By noticing that

div
(∂v

∂t
+ (Λ̂ · ∇)v − (v · ∇)Λ̂

)

= 0,

we deduce from (4.19) that

ν
d

dt

∫

F(t)

|Dv|2 dx =

∫

F(t)

σ(v, p) : D
(∂v

∂t
+ (Λ̂ · ∇)v − (v · ∇)Λ̂

)

(4.20)

+ 2ν(Dv) : (D((v · ∇)Λ̂)) − 2ν(Dv) : ((∇v)(∇Λ̂)) dx.

On the other hand, since

v(X̂(y, t), t) = l(t) + k(t) × (Q(t)y) for y ∈ ∂O,

we have that

d

dt
[v(X̂(y, ·), ·)](t) =

[∂v

∂t
+ (Λ̂ · ∇)v

]

(X(y, t), t)(4.21)

= l′(t) + k′(t) × (Q(t)y) + k(t) × (ω(t) ×Q(t)y)

for y ∈ ∂O.
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We also notice that

(4.22) [(v · ∇)Λ̂](x, t) = ω(t) × v for x ∈ ∂O(t).

Combining (4.21) and (4.22), we deduce that

∂v

∂t
+ (Λ̂ · ∇)v − (v · ∇)Λ̂ = l′(t) + k′(t) × (x− h(t)) − ω(t) × l(t)(4.23)

+ (k(t) × ω(t)) × (x − h(t)) for x ∈ ∂O(t).

Integrating (4.20) by parts and using (4.23), we deduce that

ν
d

dt

∫

F(t)

|Dv|2 dx(4.24)

= −

∫

F(t)

div σ(v, p) ·
(∂v

∂t
+ (Λ̂ · ∇)v − (v · ∇)Λ̂

)

dx

+

∫

∂O(t)

σ(v, p)n · (l′(t) + k′(t) × (x− h(t)) − ω(t) × l(t)

+ (k(t) × ω(t)) × (x− h(t))) dΓ

+

∫

F(t)

2ν(Dv) : (D((v · ∇)Λ̂)) − 2ν(Dv) : ((∇v)(∇Λ̂)) dx.

Second Step. Let us use the change of variables (2.8)–(2.9) introduced in Section 2:

we set

U(y, t) = JY (X(y, t), t)u(X(y, t), t).

Since the operator A defined by (3.10)–(3.12) is non-negative, we have that the

mapping

U 7→ ‖U‖D(A) := ‖(I +A)U‖L 2(Rd),

is a norm in D(A). Then, the dual space of D(A) (endowed with the above norm),

with respect to the pivot space V, is D(A)′ = H (see (3.8) and (3.9) for a definition

of these spaces). Thus, since (u, p, h, ω) is the strong solution to the problem (1.1),

(1.2), (1.4)–(1.10) we have that U ∈ L2(0, T ;D(A)) and that U ′ ∈ L2(0, T ;D(A)′).

Therefore, according to a classical result (see, for instance, [23, pages 261–262]),

there exists a sequence UN ∈ C∞([0, T ], D(A)) (N ∈ N) such that

UN → U strongly in L2(0, T ;D(A)),(4.25)

(UN )′ → U ′strongly in L2(0, T ;D(A)′).
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Let us set uN(x, t) = JX(Y (x, t), t)UN (Y (x, t), t). We obtain from [16, Theo-

rem 2.5] that

(4.26)
∂uN

∂t
(x, t) = JX(Y (x, t), t)

[∂UN

∂t
(Y (x, t), t) + (MUN )(Y (x, t), t)

]

,

where (MU) is defined by (2.11). In particular, we deduce from (4.26) that

∂uN

∂t

∣

∣

∣

F(t)
∈ L2(0, T ; H 1(F (t))).

We also have that

div uN = 0, x ∈ F (t), t ∈ (0, T0),

and

uN(x, t) = lN(t) + kN (t) × (x− h(t)) x ∈ ∂O(t), t ∈ (0, T0),

with (lN , kN) ∈ H1(0, T0).

From the first step, we deduce that

ν
d

dt

∫

F(t)

|DuN |2 dx(4.27)

= −

∫

F(t)

div σ(uN , p) ·
(∂uN

∂t
+ (Λ̂ · ∇)uN − (uN · ∇)Λ̂

)

dx

+

∫

∂O(t)

σ(uN , p)n ·
(

(lN )′(t)

+ (kN )′(t) × (x− h(t)) − ω(t) × lN (t) + (kN (t) × ω(t)) × (x− h(t))
)

dΓ

+

∫

F(t)

2ν(DuN ) : (D((uN · ∇)Λ̂)) − 2ν(DuN) : ((∇uN )(∇Λ̂)) dx.

Using again [16, Theorem 2.5], (4.25) implies that

lN → h′ in H1(0, T0), kN → ω in H1(0, T0),

uN → u in L2(0, T0;H
2(F (t)))

and
∂uN

∂t
→

∂u

∂t
in L2(0, T0;L

2(F (t))).

Combining the above convergences with (4.27), we obtain the result. �
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4.2. Proof of Theorem 1.2

We are now in a position to complete the proof of Theorem 1.2. Assume d = 2.

We recall that we argue by contradiction: we assume that T0 <∞ and we are going

to show that the mappings

t 7→ ‖u(t)‖H 1(F(t)), t 7→ |h′(t)|, t 7→ |ω(t)|,

are bounded in [0, T0).

P r o o f of Theorem 1.2. Let (u, p, h, ω) be the strong solution of the prob-

lem (1.1), (1.2), (1.4)–(1.10) given by Theorem 1.1. From Lemma 4.1, we already

know that the mappings

t 7→ ‖u(t)‖L 2(F(t)), t 7→ |h′(t)|, t 7→ |ω(t)|,

are bounded in [0, T0). As a consequence, (4.13) yields that

(4.28) ‖Λ̂‖W 2,∞(F(t)) 6 C K1,

where C is a positive constant and where K1 is defined by

K1 = (‖f‖2
L1(0,T0;L 2(R2)) + ‖u0‖

2
L 2(F) + |h(1)|2 + |ω(0)|2)1/2.

First, we take the inner product of the equation (1.4) with

∂u

∂t
+ (Λ̂ · ∇)u − (u · ∇)Λ̂

and we obtain
∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(t))
+

∫

F(t)

∂u

∂t
· [(Λ̂ · ∇)u− (u · ∇)Λ̂] dx

−

∫

F(t)

div σ(u, p) ·
(∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)

dx

= −

∫

F(t)

[(u · ∇)u] ·
(∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)

dx

+

∫

F(t)

f ·
(∂u

∂t
+ (Λ̂ · ∇)u − (u · ∇)Λ̂

)

dx, a.e in (0, T0).

Combining the above equation with Lemmata 4.1 and 4.3, and with the rela-

tion (4.28), we obtain that for a.e. t ∈ (0, T0)

1

2

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(t))
+ ν

d

dt

∫

F(t)

|D(u)|2 dx+
1

2
M |h′′(t)|2 +

1

2
J |ω′(t)|2(4.29)

6 C
(

K4
1 + (K2

1 + 1)‖∇u‖2
L 2(R2)4 + ‖(u · ∇)u‖2

L 2(F(t))

+ ‖f(t)‖2
L 2(R2) + |ω(t) × h′(t)|2

)

.
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The above inequality, the inequality (4.3) and (4.36) yield that for a.e. t ∈ (0, T0)

1

2

∥

∥

∥

∂u

∂t
(t)
∥

∥

∥

2

L 2(F(t))
+ ν

d

dt
‖D(u(t))‖2

[L2(R2)]4 +
1

2
M |h′′(t)|2 +

1

2
J |ω′(t)|2(4.30)

6 C
(

K4
1 + (K2

1 + 1)‖∇u‖2
L 2(R2)4 + ‖f(t)‖2

L 2(R2)

+ ‖(u · ∇)u(t)‖2
L 2(F(t))

)

,

and where C = C(O, ̺, r) is a positive constant.

Next, we have to estimate (u · ∇)u in terms of the left-hand side of (4.30). To

do this, we use the change of variables x = Q(t)y + h(t). Consider the functions

ū(y, t) = Q∗(t)u(Q(t)y + h(t), t) and p̄(y, t) = p(Q(t)y + h(t), t), with Q(t) given

by (1.2). By means of simple calculations, it is easy to see that (u·∇x)u = Q(ū·∇y)ū.

Thus, it follows that

(4.31)

∫

F(t)

|(u · ∇x)u|
2 dx =

∫

F

|(ū · ∇y)ū|
2 dy.

Next, by applying the Hölder inequality combined with the continuous embedding

of H1/2(F ) in L4(F ) and with an interpolation inequality (see, for instance, Lions

and Magenes [17, p. 23]), we obtain that there exists a constant C1 = C1(F ) > 0

such that

∫

F

|(ū · ∇y)ū|
2 dy 6 ‖ū‖2

[L4(F)]2‖∇ū‖
2
[L4(F)]4(4.32)

6 C1‖ū‖L 2(F)‖ū‖H 1(F)‖∇ū‖[L2(F)]4‖∇ū‖[H1(F)]4

6 C1‖ū‖L 2(F)‖∇ū‖[L2(F)]4{‖ū‖L 2(F) + ‖∇ū‖[L2(F)]4}

×

{

‖∇ū‖[L2(F)]4 +
2
∑

i=1

‖D2ūi‖[L2(F)]4

}

.

On the other hand, we can consider (u, p) as the solution of a resolvent Stokes

problem at some fixed time t > 0:

u− ν∆u+ ∇p = f̃ + u in F (t),

div u = 0 in F (t),

u|∂O(t) = h′(t) + ω(t) × [x− h(t)] x ∈ ∂O(t),

where

(4.33) f̃(x, t) = −
∂u

∂t
(x, t) − (u · ∇)u(x, t) + f(x, t).
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Thus, by means of simple calculations, it clearly follows that (ū, p̄) satisfies the similar

resolvent Stokes problem

ū− ν∆ū + ∇p̄ = F̃ + ū in F ,

div ū = 0 in F ,

ū|∂O = Λ̄|∂O ,

where

F̃ (y, t) = Q∗(t)f̃(Q(t)y + h(t), t),

and where Λ̄(y, t) is given by Proposition 4.2. Therefore, as a consequence of [5,

Theorem 2.1], we obtain that there exists a constant C2 = C2(ν,F ) > 0 such that

(4.34)

2
∑

i=1

‖D2ūi‖[L2(F)]4 6 C2(‖F̃‖L 2(F) + ‖ū‖L 2(F) + ‖Λ̄‖H 2(R2)).

Finally, from (4.31) and (4.32), combined with the above inequality, we deduce that

‖(u · ∇x)u‖
2
L 2(F(t))

6 C1‖u‖L 2(F(t))‖∇u‖
2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

+ C1C2‖u‖L 2(F(t))‖∇u‖[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

× (‖f̃‖L 2(F(t)) + ‖ū‖L 2(F) + ‖Λ̄‖H 2(R2)).

Combining the above inequality with the definition (4.33) of f̃ and with the esti-

mate (4.14) of Λ̄, we obtain that for a.e. t ∈ (0, T0)

‖(u · ∇)u‖2
L 2(F(t))

6 C1‖u‖L 2(F(t))‖∇u‖
2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

+ C1C2‖u‖L 2(F(t))‖∇u‖[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

×
(∥

∥

∥

∂u

∂t

∥

∥

∥

L 2(F(t))
+ ‖(u · ∇)u‖L 2(F(t)) + ‖f‖L 2(R2) + ‖u‖L 2(F(t)) + CK1

)

,

which implies that for any ε > 0 there exists a positive constant Cε depending on O,

ν and ̺ such that a.e. in (0, T0)

‖(u · ∇)u‖2
L 2(F(t)) 6 Cε

(

‖u‖L 2(F(t))‖∇u‖
2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

+ ‖u‖2
L 2(F(t))‖∇u‖

2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

2

+ ‖f‖2
L 2(R2) + ‖u‖2

L 2(F(t)) +K2
1

)

+ ε
∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(t))
.
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Therefore, by replacing the above estimate (with ε small enough) in (4.30), we get

that for a.e. t ∈ (0, T0)

1

8

∥

∥

∥

∂u

∂t
(t)
∥

∥

∥

2

L 2(F(t))
+

1

2
ν

d

dt
‖D(u(t))‖2

[L2(R2)]4 +
1

4
M |h′′(t)|2 +

1

4
J |ω′(t)|2

6 C3

(

K4
1 + (K2

1 + 1)‖∇u‖2
L 2(R2)4 + ‖f(t)‖2

L 2(R2)

+ ‖u‖L 2(F(t))‖∇u‖
2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

+ ‖u‖2
L 2(F(t))‖∇u‖

2
[L2(F(t))]4(‖u‖L 2(F(t)) + ‖∇u‖[L2(F(t))]4)

2

+ ‖u‖2
L 2(F(t)) +K2

1

)

,

for some positive constant C3 = C3(O, ̺, ν, r).

Hence, by integrating the above inequality with respect to t, and applying

Lemma 4.1, we obtain that for all t ∈ [0, T0)

1

8

∫ t

0

∥

∥

∥

∂u

∂t
(s)
∥

∥

∥

2

L 2(s)
ds+

1

4
ν‖∇u(t)‖2

[L2(R2)]4(4.35)

+
1

4
M

∫ t

0

|h′′(s)|2 ds+
1

4
J

∫ t

0

|ω′(s)|2 ds

6 K2 +K3

∫ t

0

(1

4
ν‖∇u(s)‖2

[L2(R2)]4

)

(2ν‖∇u(s)‖2
[L2(R2)]4) ds,

where

K2 =
1

4
ν‖∇u0‖

2
[L2(R2)]4 + C4

(

K2
1(K2

1 + 1)T0 +K2
1 (K4

1 + 1) + ‖f‖2
L2(0,T0;L 2(R2))

)

,

K3 = C4K
2
1 ,

and where C4 = C4(O, ̺, ν, r) is a positive constant.

Finally, by applying the Grönwall lemma in (4.35), we get that for all t ∈ [0, T0)

1

8

∫ t

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(s)
ds+

1

4
ν‖∇u(t)‖2

[L2(R2)]4 +
1

4
M

∫ t

0

|h′′(s)|2 ds+
1

4
J

∫ t

0

|ω′(s)|2 ds

6 K2 exp 2

{

K3

∫ T0

0

(2ν‖∇u(s)‖2
[L2(R2)]4) ds

}

6 K2 exp{2CK3K1}.

The above estimate combined with Lemma 4.1 implies the result. �

Remark 4.4. In the above proof, assuming that T0 <∞, we have shown that the

H1-norm of u(t) does not blow-up at T0, which, according to Theorem 1.1, implies

the global in time existence of u for d = 2. This proof also yields that

∂u

∂t
, and h′′, ω′

are bounded in L2(0, T0; L (F (t))), and in L2(0, T0) respectively.
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4.3. Proof of Theorem 1.3

In this section we prove Theorem 1.3: if the H1-norm of the initial velocity u0

is small enough, and if the external force is also small enough (in some appropriate

norm), then the solution of the problem (1.1), (1.2), (1.4)–(1.10), given by Theo-

rem 1.1, is global in time. We still argue by contradiction and assume that T0 <∞.

P r o o f of Theorem 1.3. We begin the proof as in the proof of Theorem 1.2: let

(u, p, h, ω) be the strong solution of the problem (1.1), (1.2), (1.4)–(1.10) given by

Theorem 1.1. From Lemma 4.1, we already know that the mappings

t 7→ ‖u(t)‖L 2(F(t)), t 7→ |h′(t)|, t 7→ |ω(t)|,

are bounded in [0, T0). The relation (4.28) also holds true, the constant K1 being

defined by

K1 = (‖f‖2
L1(0,∞;L 2(R3)) + ‖u0‖

2
L 2(F) + |h(1)|2 + |ω(0)|2)1/2.

We can also estimate Λ̂ in a different way. From the Sobolev-Gagliardo-Nirenberg

inequality, the following relation

(4.36) |h′(t)| + |ω(t)| 6 C‖∇u(t)‖[L2(R3)]9

holds true and the above inequality and (4.13) imply that

(4.37) ‖Λ̂‖W 2,∞(F(t)) 6 C‖∇u(t)‖[L2(R3)]9 .

Both relations (4.28) and (4.37) are used in the sequel. We first take the inner

product of the equation (1.4) with

∂u

∂t
+ (Λ̂ · ∇)u − (u · ∇)Λ̂

and we obtain

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(t))
+

∫

F(t)

∂u

∂t
· [(Λ̂ · ∇)u − (u · ∇)Λ̂] dx

−

∫

F(t)

div σ(u, p) ·
(∂u

∂t
+ (Λ̂ · ∇)u − (u · ∇)Λ̂

)

dx

= −

∫

F(t)

[(u · ∇)u] ·
(∂u

∂t
+ (Λ̂ · ∇)u − (u · ∇)Λ̂

)

dx

+

∫

F(t)

f ·
(∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)

dx, a.e in (0, T0).
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Combining the above equation with Lemmata 4.1 and 4.3, and with relations (2.8)

and (4.37), we obtain that for a.e. t ∈ (0, T0)

1

2

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L 2(F(t))
+ ν

d

dt

∫

F(t)

|D(u)|2 dx+
1

2
M |h′′(t)|2 +

c2
2
|ω′(t)|2(4.38)

6 C
(

K1(K1 + 1)‖∇u(t)‖2
[L2(F(t))]9 + ‖(u · ∇)u‖2

L 2(F(t)) + ‖f(t)‖2
L 2(R3)

+ |ω(t) × h′(t)|2 + |(Jω(t)) × ω(t)|2
)

,

where C = C(O, ̺, r) is a positive constant and where c2 is the constant defined

by (4.2). The above inequality, the inequality (4.3) and the inequality (4.36) yield

that for a.e. t ∈ (0, T0)

1

2

∥

∥

∥

∂u

∂t
(t)
∥

∥

∥

2

L 2(F(t))
+ ν

d

dt
‖D(u(t))‖2

[L2(R3)]9 +
1

2
M |h′′(t)|2 +

1

2
c2|ω

′(t)|2(4.39)

6 C
(

K1(K1 + 1)‖∇u(t)‖2
[L2(F(t))]9 + ‖f(t)‖2

L 2(R3)

+ ‖(u · ∇)u(t)‖2
L 2(F(t))

)

,

and where C = C(O, ̺, r) is a positive constant.

As in the proof of Theorem 1.2, we have to estimate (u · ∇)u in terms of the left-

hand side of (4.39). We consider the function ū(y, t) = Q∗(t)u(Q(t)y + h(t), t) and

we use similar arguments as those of the proof of Theorem 1.2, (see (4.31), (4.32))

to finally obtain

(4.40) ‖(u·∇x)u‖
2
L 2(F(t)) 6 C1‖∇ū‖

3
[L2(R3)]9

(

‖∇ū‖[L2(R3)]9 +

3
∑

i=1

‖D2ūi‖[L2(F)]9

)

,

for some constant C1 = C1(F ) > 0 and a.e. in (0, T ).

On the other hand, if we define v = ū−Λ̄, then for any fixed time t > 0, (v(t), p̄(t))

is a solution of the stationary Stokes equations:

−ν∆v + ∇p̄ = F̃ in F ,

div v = 0 in F ,

v = 0 on ∂O,

where

f̃(x, t) = −
∂u

∂t
(x, t) − (u · ∇)u(x, t) + f(x, t),

where

F̃ (y, t) = Q∗(t)f̃(Q(t)y + h(t), t),
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and where Λ̄(y, t) is given by Proposition 4.2. Therefore, as consequence of [13,

Lemma 1], we obtain that there exists a positive constant C depending only on ν

and on F such that

3
∑

i=1

‖D2vi‖[L2(F)]9 6 C(‖F̃‖L 2(F) + ‖∇v‖L 2(F)).

The above inequality yields that the existence of a constant C2 = C2(ν,F ) > 0 such

that
3
∑

i=1

‖D2ūi‖[L2(F)]9 6 C2(‖F̃‖L 2(F) + ‖∇ū‖L 2(F) + ‖Λ̄‖H 2(R3)).

Proceeding as in the proof of Theorem 1.2, we get that a.e. in (0, T0)

‖(u · ∇)u‖2
L 2(F(t))

6 C1‖∇u‖
4
[L2(R3)]9 + C1C2‖∇u‖

3
[L2(R3)]9

×
(∥

∥

∥

∂u

∂t

∥

∥

∥

L 2(F(t))
+ ‖(u · ∇)u‖L 2(F(t)) + ‖f‖L 2(R3) + ‖∇u‖[L2(R3)]9

)

.

The above relation implies that

∥

∥

∥

∂u

∂t
(t)
∥

∥

∥

2

L 2(F(t))
+ |h′′(t)|2 + |ω′(t)|2 + ν

d

dt
‖∇u(t)‖2

[L2(R3)]9(4.41)

6 C3

(

K1(K1 + 1)‖∇u(t)‖2
[L2(R3)]9 + ‖f‖2

L 2(R3)

+ ‖∇u(t)‖4
[L2(R3)]9 + ‖∇u(t)‖6

[L2(R3)]9

)

,

for some positive constant C3 = C3(O, ̺, ν), and therefore,

∫ t

0

∥

∥

∥

∂u

∂t
(s)
∥

∥

∥

2

L 2(F(s))
ds+

∫ t

0

|h′′(s)|2 +

∫ t

0

|ω′(s)|2 ds+ ν‖∇u(t)‖2
[L2(R3)]9

6 ν‖∇u0‖
2
[L2(R3)]9 + C4(K

2
1 (K2

1 + 1) + ‖f‖2
L2(0,∞;L 2(R3)))

+ C4

∫ t

0

2ν‖∇u(s)‖6
[L2(R3)]9 ds,

for some positive constant C4 = C4(O, ̺, ν).

Let us assume that

(4.42) ν‖∇u0‖
2
[L2(R3)]9 + C4(K

2
1 (K2

1 + 1) + ‖f‖2
L2(0,∞;L 2(R3))) + C4CK

2
1 < ν,

where C is the constant appearing in (4.3). Then it can be easily checked that

‖∇u(t)‖[L2(R3)]9 6 1 ∀ t ∈ [0, T0).
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On the other hand, the relation (1.21) implies (4.42) for c small enough. Therefore,

from Lemma 4.1 and from the above inequality, we have that the mapping t 7→

‖u(t)‖H 1(F(t)) is bounded in [0, T0) provided (1.21) holds true for c small enough.

We conclude the global existence and uniqueness to the problem (1.1), (1.2), (1.4)–

(1.10) for small data. �

Remark 4.5. We note that (4.41) combined with the fact that the mapping

t 7→ ‖D(u(t))‖[L2(R3)]9

is bounded in [0, T0) implies that ∂u/∂t is bounded in L
2(0, T0; L

2(F (t))), and that

h′′, ω′ are bounded in L2(0, T0).
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