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Abstract. Let F be a saturated formation containing the class of supersolvable groups
and let G be a finite group. The following theorems are presented: (1) G ∈ F if and only
if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all
Sylow subgroups of H is either c-normal or S-quasinormally embedded in G. (2) G ∈ F if
and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup
of all Sylow subgroups of F ∗(H), the generalized Fitting subgroup of H , is either c-normal
or S-quasinormally embedded in G. (3) G ∈ F if and only if there is a normal subgroup H
such that G/H ∈ F and every cyclic subgroup of F ∗(H) of prime order or order 4 is either
c-normal or S-quasinormally embedded in G.

Keywords: S-quasinormally embedded subgroup, c-normal subgroup, p-nilpotent group,
the generalized Fitting subgroup, saturated formation
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1. Introduction

All groups considered in this paper are finite. Let G be a group and let M (G)

be the set of all maximal subgroups of the Sylow subgroups of G. An interesting

problem in group theory is to study the influence of the elements of M (G) on the

structure of G. A typical result in this direction is due to Srinivasan [13]. It states

that G is supersolvable provided that every member of M (G) is normal in G. This

result has been widely generalized.

A subgroup H of G is called S-quasinormal in G provided H permutes with all

Sylow subgroups of G, i.e, HS = SH for any Sylow subgroup S of G. This concept
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was introduced by Kegel in [4] and has been studied extensively by Deskins [3] and

Schmid [12]. More recently, Ballester-Bolinches and Pedraza-Aguilera [2] generalized

S-quasinormal subgroups to S-quasinormally embedded subgroups. A subgroup H of

G is said to be S-quasinormally embedded in G provided every Sylow subgroup of H

is a Sylow subgroup of some S-quasinormal subgroup of G. In [2], Ballester-Bolinches

and Pedraza-Aguilera showed that if every subgroup in M (G) is S-quasinormally

embedded in G, then G is supersolvable. M.Asaad and A.A. Heliel [1] showed that a

group G is p-nilpotent for the smallest prime p dividing |G| if and only if all members

ofM (Gp) are S-quasinormally embedded in G. In the same paper, they showed that

a group G belongs to F , a saturated formation containing all supersolvable groups,

if and only if there is a normal subgroup H such that G/H ∈ F and every member

of M (H) is S-quasinormally embedded in G. In the paper [10], the research in this

direction has been continued further by considering a subset Md(G) of M (G). In

[11], Li and Wang have proved that G ∈ F , a saturated formation containing all

supersolvable groups, if and only if there is a normal subgroupH such that G/H ∈ F

and every member of M (F ∗(H)), where F ∗(H) is the generalized Fitting subgroup

of H , is S-quasinormally embedded in G.

As another generalization of normality, Wang [15] introduced the following con-

cept: A subgroup H of G is called c-normal in G if there is a normal subgroup K

such that G = HK andH∩K 6 HG, whereHG is the normal core ofH in G. In [15],

Wang showed that G is supersolvable if every member of M (G) is c-normal in G.

Wang’s result has been generalized by some authors( see [5], [8], [9], [16], [17], etc).

For example, Guo and Shum showed in [5] the following result. Let p be the smallest

prime dividing the order of G and let P be a Sylow p-subgroup of G. If every member

ofM (P ) is c-normal, then G is p-nilpotent. In [17], Wei, Wang and Li showed that

G ∈ F if there is a normal subgroup H such that G/H ∈ F and if every member

of M (F ∗(H)) is c-normal in G (see [17]). The research on c-normal subgroups has

formed a series, which is similar to the series of S-quasinormal subgroups, but the

two series are independent of each other.

The aim of this article is to unify and improve the results of [1], [11], [17] and some

of [5]. Our results are more general. At the end, we also consider the influences of

minimal subgroups of G on the structure of G.

A class F of finite groups is called a formation if G ∈ F and N E G imply

G/N ∈ F , and G/Ni ∈ F (i = 1, 2) implies G/N1 ∩ N2 ∈ F . If, in addition,

G/Φ(G) ∈ F implies G ∈ F , then F is called saturated. An interesting example

of a saturated formation is the class of all supersolvable groups, which is denoted

by U . For a formationF , each group G has a smallest normal subgroupN such that

G/N ∈ F . This uniquely determined normal subgroup of G is called the F -residual

subgroup of G and is denoted by GF .
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The following notation is used in the paper. If H is a subgroup of the group G,

then by HG we denote the normal core of H in G, the largest normal subgroup of G

which is contained in H . Also, Gp denotes always a Sylow p-subgroup of G for some

prime p ∈ π(G).

2. Preliminaries

We first collect some results related to the S-quasinormal subgroup.

Lemma 2.1.

(a) An S-quasinormal subgroup of G is subnormal.

(b) If H 6 K 6 G and H is S-quasinormal in G, then H is S-quasinormal in K.

(c) If H is an S-quasinormal subgroup of G, then H/HG is nilpotent, where HG is

the core of H in G.

(d) Suppose that H is a nilpotent subgroup of G. Then H is S-quasinormal in G if

and only if the Sylow subgroups of H are S-quasinormal in G.

(e) If both H and K are S-quasinormal subgroups of G, then both H ∩ K and

〈H, K〉 are S-quasinormal subgroups of G.

(f) A p-subgroup H of G is S-quasinormal in G if and only if NG(H) > Op(G) for

some prime p ∈ π(G).

(g) Let Gp be a Sylow p-subgroup of G and let P be a maximal subgroup of Gp for

some prime p ∈ π(G). Then P is normal in G if and only if P is S-quasinormal

in G.

P r o o f. For the proof of (a) and (b), see Kegel [4]; for (c), see Deskins [3]; for

(d), (e) and (f), see Schmid [12]; for (g), see Asaad and Heliel [1]. �

The following lemma is related to S-quasinormally embedded subgroups.

Lemma 2.2. Suppose that U is an S-quasinormally embedded subgroup of G

and that K is a normal subgroup of G. Then

(a) U is S-quasinormally embedded in H whenever U 6 H 6 G.

(b) UK is S-quasinormally embedded in G and UK/K is S-quasinormally embed-

ded in G/K.

(c) Suppose that p ∈ π(G) and P is a maximal subgroup of a Sylow p-subgroup Gp

of G. If P is S-quasinormally embedded in G, then P is normally embedded in

G.

P r o o f. For the proof of (a) and (b), see Ballester-Bolinches, Pedraza-Aguilera

[2]. Now we prove (c).
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By definition, there is an S-quasinormal subgroupM of G such that P is a Sylow p-

subgroup ofM . ThenM/MG is S-quasinormal in G/MG andM/MG is nilpotent by

Lemma 2.1(c). Hence every Sylow subgroup ofM/MG is S-quasinormal in G/MG by

Lemma 2.1(d). Now, because PMG/MG is a Sylow p-subgroup of M/MG, it follows

that PMG/MG is S-quasinormal in G/MG. By Lemma 2.1(g), PMG/MG is normal

in G/MG. It is easy to see that P is a Sylow p-subgroup of PMG and PMG is normal

in G. �

Lemma 2.3. Let G be a group and p a prime dividing the order of G such that

(|G|, p − 1) = 1. If Gp is cyclic, then G is p-nilpotent.

P r o o f. Suppose |Gp| = pn. Since Gp is cyclic, |Aut(Gp)| = pn−1(p − 1).

We know that NG(P )/CG(P ) is isomorphic to a subgroup of Aut(Gp), hence

|NG(P )/CG(P )| divides (|G|, p−1) = 1. ThereforeNG(P ) = CG(P ). Then NG(P ) =

CG(P ). Applying the Burnside Theorem, we have that G is p-nilpotent. �

The following lemma is related to c-normal subgroups.

Lemma 2.4. Let X 6 H 6 G and N E G. Then

(a) If X is c-normal in G, then X is also c-normal in H .

(b) Let π be a set of primes, let N be a normal π-subgroup of G and X be a

π′-subgroup of G. If X is c-normal in G, then XN/N is c-normal in G/N .

(c) If N is a solvable minimal normal subgroup of G and N possesses a maximal

subgroup H which is c-normal in G, then N is a cyclic group of prime order.

(d) Suppose that p ∈ π(G) is such that (|G|, p − 1) = 1. If Gp possesses a maximal

subgroup H which is c-normal in G, then the p-nilpotent residual G(p) of G is

a p-group.

P r o o f. For the proof of (a), see [15]; for (b), see [9]. Now we prove (c) and (d).

(c) By definition, there is a normal subgroup K of G such that G = HK and

H ∩K = HG. As N is a minimal normal subgroup of G, it follows that HG = 1 and

hence G = HK with H ∩K = 1. Moreover, we have that N = H(N ∩K) and H ∩K

is a normal subgroup of order p. Consequently, N = N ∩K by the minimality of N.

(d) By definition, there is a normal subgroup K of G such that G = HK and

H ∩ K = HG. Then G/HG = H/HG · K/HG. Therefore |K/HG|p = [G : H ]p =

|Gp : H | = p, i.e., the quotient group K/MG possesses a cyclic Sylow subgroup of

order p. By Lemma 2.3, K/HG must be p-nilpotent. So K/HG has a normal Hall p
′-

subgroup of G/HG, which is also a normal Hall p
′-subgroup of G/HG. Consequently,

G/HG is p-nilpotent. Hence G(p) 6 HG is a p-group. �

The following Tate’s theorem is used in the proof of our Theorem 3.1.
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Lemma 2.5 ([14]). If P is a Sylow p-subgroup of G and N E G is such that

P ∩ N 6 Φ(P ), then N is p-nilpotent.

The generalized Fitting subgroup F ∗(G) of G is the unique maximal normal

quasinilpotent subgroup of G. Its definition and important properties can be found

in [7, X 13]. We would like to give the following basic facts we will use in our proof.

Lemma 2.6 ([7, X 13]). Let G be a group and M a subgroup of G.

(1) If M is normal in G, then F ∗(M) 6 F ∗(G);

(2) F ∗(G) 6= 1 if G 6= 1; in fact, F ∗(G)/F (G) = soc(F (G)CG(F (G))/F (G));

(3) F ∗(F ∗(G)) = F ∗(G) > F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

3. Main results

Theorem 3.1. Suppose that p ∈ π(G) is such that (|G|, p − 1) = 1. Let P be

a Sylow p-subgroup of a group G. Assume that every member of M (P ) is either

c-normal or S-quasinormally embedded in G. Then G is p-nilpotent.

P r o o f. Assume that the theorem is not true and let G be a counterexample of

minimal order. LetM (P ) = {P1, . . . , Pm}. By hypothesis, each Pi is either c-normal

or S-quasinormally embedded in G. Without loss of generality, let 1 6 k 6 m such

that P1, . . . , Pk are c-normal in G and Pk+1, . . . , Pm are S-quasinormally embedded

in G.

If Pi is c-normal in G, then by Lemma 2.4 (d), G/(Pi)G is p-nilpotent. If Pi is

S-quasinormally embedded in G, by Lemma 2.2(c) there is a normal subgroupMi of

G such that Pi is a Sylow p-subgroup ofMi. Then we have |G/Mi|p = p. By Lemma

2.3, G/(Mi)G is p-nilpotent.

Set

N =

( k
⋂

i=1

(Pi)G

)

∩

( d
⋂

i=k+1

(Mi)G

)

.

Then N E G. We now claim that N is p-nilpotent. Consider the subgroup P ∩N.

Recall that Pi is a Sylow p-subgroup of (Mi)G. We have P ∩ (Mi)G = Pi, so

P ∩ N = P ∩

( k
⋂

i=1

(Pi)G

)

∩

( d
⋂

i=k+1

(Mi)G

)

=

( k
⋂

i=1

(Pi)G

)

∩

( d
⋂

i=k+1

(P ∩ (Mi)G

)

=

( k
⋂

i=1

(Pi)G

)

∩

( d
⋂

i=k+1

Pi

)

6

d
⋂

i=1

Pi = Φ(P ).
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Thus we get P ∩ N 6 Φ(P ) and N E PN . Applying Tate’s theorem (Lemma 2.5)

to the subgroup PN , we conclude that N is p-nilpotent.

Let U be the Hall p′-normal subgroup of N . Then U is normal in G and it follows

that U 6 Op′(G). It is easy to see that Op′(G) = 1 by the choice of G. Consequently,

N is a normal p-subgroup of G. Thus N 6 P ∩ N = Φ(P ). It follows by [6, III, 3.3

Hilfssatz] that N 6 Φ(G).

Now, G/Φ(G) is p-nilpotent. As the class of all p-nilpotent groups is a saturated

formation, we conclude that G is p-nilpotent, a contradiction. �

Corollary 3.2. Suppose that G is a group. If every member ofM (G) is either c-

normal or S-quasinormally embedded inG, then G has a Sylow tower of supersolvable

type.

P r o o f. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup

of G. By hypothesis, every member of M (P ) is either c-normal or S-quasinormally

embedded in G. In particular, G satisfies the condition of Theorem 3.1, so G is p-

nilpotent. Let U be the normal p-complement of G. By Lemmas 2.2 (b) and 2.4(b),

U satisfies the hypothesis. It follows by induction that U , and hence G possess the

Sylow town property of supersolvable type. �

Theorem 3.3. Let F be a saturated formation containing U and let G be a

group. Then the following statements are equivalent:

(a) G is in F .

(b) There is a normal subgroupH such that G/H ∈ F and every member ofM (H)

is either c-normal or S-quasinormally embedded in G.

P r o o f. (a) ⇒ (b): Trivial by taking H = 1.

(b) ⇒ (a): Let G satisfy (b). We have to show that G is in F . Suppose that this

is not true so that there exists a counterexample G with minimal order. The proof

is divided into five steps.

(1) H is a q-group for some prime q.

By Lemmas 2.2 (a) and 2.4(a), H satisfies the conditions of Corollary 3.2, hence

H possesses the Sylow town property of supersolvable type. Let q be the largest

prime dividing |H | and let Q be a Sylow q-subgroup of H . Then Q char H and

H E G, so Q E G. By Lemmas 2.2(b) and 2.4(b) we see that (G/Q, H/Q) satisfies

the condition of the theorem. By the choice of G, G/Q belongs to F . Thus we have

H = Q, as desired.

(2) Φ(Q) = 1.

Otherwise, by Lemmas 2.2(b) and 2.4(b), (G/Φ(Q), Q/Φ(Q)) satisfies the hypoth-

esis. So G/Φ(Q) is an F -group by the choice of G. Furthermore, Φ(Q) 6 Φ(G) by
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[6, III, 3.3 Hilfssatz], hence G/Φ(G) belongs to F . As the formation F is saturated,

it follows that G belongs to F , contrary to the choice of G.

(3) Q is a minimal normal subgroup of G.

Let N be a minimal normal subgroup of G contained in Q. Clearly the quotient

group (G/N, Q/N) satisfies the condition, so G/N ∈ F . As F is a formation, N

must be the unique minimal normal subgroup of G which is contained in Q. If

N 6 Φ(G), as the formation F is saturated, G is in F . So N 6⊆ Φ(G) and there is a

maximal subgroupM of G such that G = NM and N∩M = 1. Thus Q = N(Q∩M).

In view of G = QM and Q is normal abelian in G, we know that Q∩M is normal in

G. If Q∩M > 1, let N1 be a minimal normal subgroup of G such that N1 6 Q∩M ,

hence N1 6 Q and N 6= N1, this is a contradiction. Hence Q∩M = 1, which implies

Q = N .

(4) Every Qi ∈ M (Q) is S-quasinormally embedded in G.

Assume that there is a Qi inM (Q) such that Qi is c-normal in G. By definition,

there is a normal subgroup Ki of G such that G = QiKi and Qi ∩ Ki = (Qi)G is a

normal subgroup of G. By (3), Qi ∩ Ki = 1 or Q. If Qi ∩ Ki = Q, then Qi = Q, a

contradiction. If Qi ∩ Ki = 1, then Q = Qi(Q ∩ Ki). But then Q ∩ Ki is a normal

subgroup of order q of G. So Q = Q ∩ Ki by (3). As the formation F contains all

supersolvable groups, G is in F , contrary to the choice of G.

(5) The final contradiction.

Let Gq be a Sylow q-subgroup of G. Then Q 6 Oq(G) 6 Gq and 1 6= Q ∩ Z(Gq).

Thus we can find a subgroup X of order q of Q ∩ Z(Gq). Let {Q1, . . . , Qm} be the

subset of M (Q) satisfying X 6 Qi. Now, every Qi is S-quasinormally embedded

in G, that is, there exists an S-quasinormal subgroup Mi of G such that Qi is a

Sylow q-subgroup of Mi. Then Qi = Q ∩ Mi. In particular, Qi is the intersection

of the two S-quasinormal subgroups. By Lemma 2.1(e), Qi is S-quasinormal in G.

Again applying Lemma 2.1(e), we obtain that
m
⋂

i=1

(Qi) is S-quasinormal in G. It is

clear that
m
⋂

i=1

(Qi) = X by the definition of {Q1, . . . , Qm}, so X is S-quasinormal

in G. By Lemma 2.1(f), Oq(G) 6 NG(X). On the other hand, Gq centralizes X .

Consequently, X is normal in G. But then we have Q = X by (3), and we get

G ∈ F , which is the final contradiction. �

From Theorem 3.3 the following corollaries are immediate.

Corollary 3.4 ([1]). Let F be a saturated formation containing U and let G be

a group and H a normal subgroup such that G/H ∈ F . Suppose that every member

of M (H) is S-quasinormally embedded in G. Then G is in F .
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Corollary 3.5 ([16]). Let F be a saturated formation containing U and let G be

a group and H a normal subgroup such that G/H ∈ F . Suppose that every member

of M (H) is c-normal in G. Then G is in F .

Remark. The following example indicates that our theorem covers the results of

Asaad and Heliel [1] and Wei [16] result’s properly.

Example 3.6. G =
〈

a, b, c : a5 = b4 = c5 = 1, b−1ab = a2, [a, c] = [b, c] = 1
〉

.

This group is supersolvable with order 22.52. Sylow 2-subgroup T = 〈b〉 is of

order 4,
〈

b2
〉

is a maximal subgroup of T , it is S-quasinormally embedded in G, but

not c-normal. All maximal subgroups of Sylow 5-subgroup are c-normal, but not

all are S-quasinormally embedded in G, in fact, the subgroup 〈u〉 (u = ac) is not

S-quasinormally embedded in G.

Theorem 3.7. Let F be a saturated formation containing U and let G be a

group. Then the following two statements are equivalent:

(a) G ∈ F .

(b) There exists a normal solvable subgroup H of G such that G/H ∈ F and every

member of M (F (H)) is either c-normal or S-quasinormally embedded in G.

P r o o f. (a) ⇒ (b): Consider H = 1.

(b) ⇒ (a): Assume that G satisfies (b). We want to show that G belongs to F .

As H is assumed to be solvable, we have that F (H) > 1; otherwise H = 1, the trivial

case.

(1) Φ(H) = 1 and hence F (H) is abelian.

We know that F (H) is the largest normal nilpotent subgroup of H , it follows that

Φ(H) 6 F (H) and Φ(H) E G. Put N = Φ(H) We claim that (G/N, F (H/N))

satisfies the condition. For this purpose, let L/N be the Fitting subgroup of H/N .

As N = Φ(H) 6 Φ(G) by [6, III, 3.3 Hilfssatz], L/N is a nilpotent normal subgroup

of H/N . By [6, III, 3.7, Satz], L is nilpotent, so L 6 F (H) and it follows that

F (H/N) = F (H)/N . Thus every Sylow subgroup of F (H/N) possesses the form

PN/N where P is a Sylow subgroup of H andM (PN/N) = {PiN/N |Pi ∈ M (P )}.

By hypothesis, Pi is either c-normal or S-quasinormally embedded in G. It follows

by Lemmas 2.2(b) and 2.4(b) that PiN/N is either c-normal or S-quasinormally em-

bedded in G/N . Consequently, G/N satisfies the condition. If N > 1, the induction

implies that the theorem holds for (G/N, F (H/N)), so G/N belongs to F . As F

is saturated and N 6 Φ(G), we can conclude that G ∈ F , as desired. Therefore we

may assume that N = 1. Hence F (H) is a direct product of normal subgroups of

prime order.

(2) Every minimal normal subgroup of G contained in F (H) is cyclic.
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Let N be any minimal normal subgroup of G which is contained in F (H). Then

N 6 Op(G) for some prime p. Let Gp be a Sylow p-subgroup ofG. ThenN∩Z(Gp) >

1. So we can find a subgroup X of order p such that X 6 N ∩ Z(Gp). Let P be

a Sylow p-subgroup of F (H) and let {P1, . . . , Pm} be the set of maximal subgroups

Pi of P satisfying X 6 Pi (m > 1). If Pi is S-quasinormally embedded in G, then

there is a S-quasinormal subgroup Mi such that Pi is a Sylow p-subgroup of Mi.

Then Pi = P ∩ Mi and hence Pi is S-quasinormal in G because the intersection of

two S-quasinormal subgroups is also S-quasinormal (see Lemma 2.1(e)). Suppose

that Pi is not S-quasinormally embedded in G. By hypothesis, Pi is c-normal in

G. By definition, there is a normal subgroup Ki of G such that G = PiKi and

Pi ∩Ki 6 (Pi)G, the normal core of Pi in G. Write K∗ for the subgroup KiX . Thus

(K∗)G = (K∗)PiKi = K∗, that is, K∗ is normal in G. As P is abelian by conclusion

(1), we see that Pi ∩ K∗ is normal in G. So Pi ∩ K∗ 6 (Pi)G and hence X 6 (Pi)G.

Now

X 6

( l
⋂

i=1

(Pi)

)

∩

( m
⋂

i=l+1

((Pi)G)

)

6

m
⋂

i=1

(Pi) = X,

where P1, . . . , Pl are all S-quasinormal in G and all (Pi)G are normal in G. The

inclusion gives X =
( l

⋂

i=1

(Pi)
)

∩
( m

⋂

i=l+1

(Pi)G

)

. In particular, X is the intersection

of some S-quasinormal subgroups. Again applying Lemma 2.1(e), we conclude that

X is S-quasinormal in G. Thus Op(G) 6 NG(X) by Lemma 2.1(f). Note that Gp

centralizes X and G = Op(G)Gp, hence it follows that X is normal in G. As N is a

minimal normal subgroup of G, we have N = X and (2) holds.

(3) The conclusion.

It is well-known that F (H) is the product of minimal subgroups Xi which are

normal in G. By conclusion (2), all Xi are of prime order. Denote by S the set

of all subgroups Xi. Then for each X ∈ S we have CH(X) = H ∩ CG(X) E G

and H/CH(X) is cyclic. Also, by hypothesis, G/H ∈ F and F contains U . Hence

G/CH(X) ∈ F for all X ∈ S . Because

CH(F (H)) =
⋂

X∈S

CH(X)

and F is a formation, we get G/CH(F (H)) ∈ F . On the other hand, since H is

solvable, it follows that CH(F (H)) 6 F (H) by [6, III, 4.2 Satz]. This yields that

G/F (H) = G/CH(F (H)). Thus G/F (H) ∈ F . Applying Theorem 3.3, we get that

G belongs to F , completing the proof. �
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Corollary 3.8. Let G be a group. If there exists a normal solvable subgroup

H of G such that G/H is supersolvable and every member of M (F (H)) is either

c-normal or S-quasinormally embedded in G, then G is supersolvable.

Next we want to delete the solvability of H in the assumption of Theorem 3.7 by

replacing F (H) by F ∗(H), the generalized Fitting subgroup ofH . First we generalize

Corollary 3.8 as follows.

Theorem 3.9. Suppose that G is a group with a normal subgroup H such

that G/H is supersolvable. If every member of M (F ∗(H)) is either c-normal or

S-quasinormally embedded in G, then G is supersolvable.

P r o o f. Suppose that the theorem is false and let G be a counter-example of

smallest order; then we have:

(1) Every proper normal subgroup of G containing F ∗(H) is supersolvable.

If N is a proper normal subgroup of G containing F ∗(H), we have that N/N∩H ∼=

NH/H is supersolvable. By Lemma 2.6(c), F ∗(H) = F ∗(F ∗(H)) 6 F ∗(H ∩ N) 6

F ∗(H), so F ∗(H ∩ N) = F ∗(H). Then every member of M (F ∗(H ∩ N)) (i.e., of

M (F ∗(H))) is either c-normal or S-quasinormally embedded in G, thus in N by

Lemmas 2.1 (a) and 2.4(a). So N, N ∩H satisfy the hypotheses of the theorem, and

the minimal choice of G implies that N is supersolvable.

(2) H = G and F ∗(G) = F (G) < G.

If H < G, then H is supersolvable by (1). In particular, H is solvable, so G is

solvable and F ∗(H) = F (H), hence G is supersolvable by Corollary 3.8, a contra-

diction.

If F ∗(G) = G, then G is supersolvable by applying Theorem 3.3 for the special

case F = U , a contradiction. Thus F ∗(G) < G, it is supersolvable by (1), so

F ∗(G) = F (G) by Lemma 2.6(c).

(3) For any Sylow p-subgroup P of F (G), G = POp(G).

Otherwise, POp(G) is a proper normal subgroup of G. Obviously F (G) 6

POp(G), so POp(G) is supersolvable by (1), thus Op(G) is supersolvable. Since

G/Op(G) is a p-group, G is solvable. Now G is supersolvable by Corollary 3.8, a

contradiction.

(4) The final contradiction.

For any maximal subgroup P1 of P , P1 is either c-normal or S-quasinormally

embedded in G by hypotheses. If P1 is S-quasinormally embedded, then there exists

an S-quasinormal subgroup K of G such that P1 is a Sylow p-subgroup of K. Hence

P1 = P ∩K. Noticing that P1 is the intersection of two S-quasinormal subgroups of

G, we have that P1 is S-quasinormal in G by Lemma 2.1(e). Consequently, NG(P1) >

Op(G) by Lemma 2.1(f). Obviously, P normalizes P1, so P1 is normal in G by (3).
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Therefore P1 is c-normal in G. We have proved that every member ofM (F ∗(G)) is

c-normal in G. Now applying [17, Theorem 3.1] we get G is supersolvable, the final

contradiction. �

Theorem 3.10. Let F be a saturated formation containing U , the class of all

supersolvable groups, and suppose that G is a group with a normal subgroup H such

that G/H ∈ F . If every member ofM (F ∗(H)) is either c-normal or S-quasinormally

embedded in G, then G ∈ F .

P r o o f. By hypotheses every member of M (F ∗(H)) is either c-normal or S-

quasinormally embedded in G, thus in H by Lemmas 2.1 (a) and 2.4(a). Hence H is

supersolvable by Theorem 3.9. In particular, H is solvable and so F ∗(H) = F (H).

Therefore G ∈ F by Theorem 3.7, as desired. �

The following corollaries are immediate from Theorem 3.10.

Theorem 3.11 ([11]). Let F be a saturated formation containing U and let G

be a group. Then G ∈ F if and only if there exists a normal subgroup H such that

G/H ∈ F and every member ofM (F ∗(H)) is S-quasinormally embedded in G.

Theorem 3.12 ([17]). Let F be a saturated formation containing U and let G

be a group. Then G ∈ F if and only if there exists a normal subgroup H such that

G/H ∈ F and every member ofM (F ∗(H)) is c-normal in G.

4. Dual results

Many authors also considered how the properties of minimal subgroups of G in-

fluence the structure of G. Here we mention two results of this kind.

Theorem 4.1 ([17, Theorem 3.2]). Let F be a saturated formation containing

U , the class of all supersolvable groups, and suppose that G is a group. If every

cyclic subgroup of prime order or order 4 of F ∗(GF ) is c-normal in G, where GF is

the F -residual subgroup of G, then G ∈ F .

Theorem 4.2 ([11, Theorem 3.4]). Let F be a saturated formation containing

U , the class of all supersolvable groups, and suppose that G is a group. If every

cyclic subgroup of prime order or order 4 of F ∗(GF ) is S-quasinormally embedded

in G, then G ∈ F .

Now we can unify Theorems 4.1 and 4.2 to get
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Theorem 4.3. Let F be a saturated formation containing U , the class of all

supersolvable groups and suppose that G is a group with a normal subgroup H such

that G/H ∈ F . If every cyclic subgroup of any Sylow subgroups of F ∗(H) of prime

order or order 4 is either c-normal or S-quasinormally embedded in G, then G ∈ F .

P r o o f. Since G/H ∈ F , we have that GF , the F -residual subgroup of G, is

contained in H . Hence, for any cyclic subgroup 〈x〉 of F ∗(GF ) 6 F ∗(H) of prime

order or order 4, 〈x〉 is either c-normal or S-quasinormally embedded in G. If 〈x〉 is

c-normal in G, then there exists a normal subgroup K of G such that G = 〈x〉K and

〈x〉 ∩K = 〈x〉G. Hence G/K is cyclic, then G/K ∈ F by the hypotheses. Therefore

GF 6 K. This implies that 〈x〉 6 K, so 〈x〉 = 〈x〉 ∩K = 〈x〉G is a normal subgroup

of G. Obviously, 〈x〉 is S-quasinormally embedded in G. Hence we have proved

that every cyclic subgroup of prime order or order 4 of F ∗(GF ) is S-quasinormally

embedded in G. Applying Theorem 4.2, we have G ∈ F , as desired. �

Acknowledgment. The authors thank the referee for his or her useful remarks.
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